Junior Problems

J571. Consider the quadratic equation

$$
m^{5} x^{2}-\left(m^{7}+m^{6}-m^{4}-m\right) x+m^{8}-m^{5}-m^{3}+1=0,
$$

with roots x_{1}, x_{2}, where m is a real parameter. Prove that $x_{1}=1$ if and only if $x_{2}=1$.
Proposed by Titu Andreescu, University of Texas at Dallas, USA

J572. Let a, b, c be positive real numbers such that $a^{2}+b^{2}+c^{2}=3$. Prove that

$$
a+b+c+\frac{3}{a b+b c+c a} \geq 4
$$

Proposed by An Zhenping, Xianyang Normal University, China
J573. Prove that in any triangle $A B C$

$$
\sin \frac{A}{2}+2 \sin \frac{B}{2} \sin \frac{C}{2} \leq 1
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
J574. Let a, b, c be positive real numbers such that $a b+b c+c a=1$ and

$$
\left(a+\frac{1}{a}\right)^{2}\left(b+\frac{1}{b}\right)^{2}-\left(b+\frac{1}{b}\right)^{2}\left(c+\frac{1}{c}\right)^{2}+\left(c+\frac{1}{c}\right)^{2}\left(a+\frac{1}{a}\right)^{2}=1 .
$$

Prove that $a=1$.

> Proposed by Adrian Andreescu, University of Texas at Dallas, USA

J575. Through point C lying outside of the circle ω two lines are drawn that are tangent to the circle at points A and B. Point D lies on the segment $A B$ and M is the midpoint of $C D$. Through point M a line is drawn that is tangent to circle ω at X. Prove that lines $C X$ and $D X$ are perpendicular.

Proposed by Waldemar Pompe, Warsaw, Poland

J576. Let a, b, c, d be positive real numbers such that

$$
\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}=1 .
$$

Prove that

$$
a b+a c+a d+b c+b d+c d-3(a+b+c+d) \geq 18
$$

Proposed by An Zhenping, Xianyang Normal University, China

Senior Problems

S571. Let a be a nonzero real number for which there is a real number $b \geq 1$ such that

$$
a^{3}+\frac{1}{a^{3}}=b \sqrt{b+3} .
$$

Prove that

$$
a^{2}+\frac{1}{a^{2}}=b+1 .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

S572. Prove that in any triangle $A B C$

$$
\frac{9}{4} \sqrt{\frac{r}{2 R}} \leq \sqrt{3} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \leq 1+\frac{r}{4 R} .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

S573. Points A, B, C, D lie on a line in that order. Let o_{1} and o_{2} be the circles with diameters $A B$ and $C D$, respectively. Circle ω is externally tangent to circles o_{1} and o_{2}. Circle Ω is internally tangent to o_{1} and o_{2} and intersects ω at points E and F. Prove that $\angle A E B=\angle C F D$.

Proposed by Waldemar Pompe, Warsaw, Poland

S574. Find all real numbers x such that

$$
\left\{\frac{6 x^{2}+168 x+2022}{x^{2}+24 x+237}\right\}=\frac{6}{7},
$$

where $\{x\}$ denotes the fractional part of x.
Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

S575. Let $A B C$ be an acute triangle, with orthocenter H. Let A_{1}, B_{1}, C_{1} be the midpoints of $B C, C A, A B$, respectively, and let A_{2}, B_{2}, C_{2} be points inside segments $H A_{1}, H B_{1}, H C_{1}$ such that

$$
\frac{H A_{2}}{A_{2} A_{1}}=\frac{H B_{2}}{B_{2} B_{1}}=\frac{H C_{2}}{C_{2} C_{1}}=2 .
$$

Prove that lines $A A_{2}, B B_{2}, C C_{2}$ are concurrent.

Proposed by Mihaela Berindeanu, Bucharest, România

S576. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers such that $a_{1}+a_{2}+\cdots+a_{n}=\sqrt{n}$. Prove that

$$
\left(a_{1}+\frac{1}{a_{1}}\right)^{2}+\left(a_{2}+\frac{1}{a_{2}}\right)^{2}+\cdots+\left(a_{n}+\frac{1}{a_{n}}\right)^{2} \geq(n+1)^{2} .
$$

Proposed by Titu Andreescu, USA and Alessandro Ventullo, Italy

Undergraduate Problems

U571. Let A be a $n \times n$ matrix with real entries and let $\alpha \neq 0$ be a real number. Prove that if $A^{3}=I$ and $(A-\alpha I)^{3}=0$, then $A B=B A$, for all $n \times n$ matrices B.

Proposed by Mircea Becheanu, Montreal, Canada

U572. Evaluate

$$
\int\left(x+\frac{1}{4 x}\right) \frac{e^{x}}{\sqrt{x}} d x
$$

Proposed by Toyesh Prakash Sharma, St.C.F. Andrews School, Agra, India
U573. Prove the inequality

$$
\sum_{k=1}^{\infty} \frac{k 2^{\frac{k+1}{2}}}{3^{2^{k}-1}}<e
$$

Proposed by Mohammed Imran, Chennai, India
U574. Let $f:[a, b] \longrightarrow \mathbb{R}$ be a continuous function such that $\int_{a}^{b} f(x) d x>0$. Prove that for all positive numbers $c<(b-a)^{2}$, there is $\varepsilon \in(a, b)$ such that

$$
\int_{a}^{b} f(x) d x>\frac{c}{b-a} f(\varepsilon) .
$$

Proposed by Ovidiu Gabriel Dinu, Bălceşti-Vâlcea, România

U575. Let $f:[0,1] \longrightarrow \mathbb{R}$ be a continuous function with $f(0)=0$. Prove that there is $c \in(0,1)$ such that

$$
\int_{0}^{c}(1-x)^{2} f(x) d x=(1-c) \int_{0}^{c} f(x) d x .
$$

Proposed by Florin Stănescu, Găeşti, România

U576. Find all triples (m, n, p) of positive integers for which there is a real polynomial $P(x)$ such that

$$
P(x)+x^{m} P(1-x)=\left(x^{2}-x+1\right)^{n}\left(x^{2}-x-1\right)^{p} .
$$

Determine whether there are infinitely many such polynomials.
Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

Olympiad Problems

O571. .Let a, b, c, d be positive real numbers such that

$$
a b c d=a b+a c+a d+b c+b d+c d .
$$

Prove that

$$
\sum a b c-2 \sum a b+3 \sum a \geq 36(\sqrt{6}-2),
$$

where all sums are symmetric sums.

Proposed by Marian Tetiva, România

O572. Let a, b, c, d be positive integers and let C be a nonzero integer. The map $f: \mathbb{Z} \rightarrow \mathbb{Z}$ has the property that $f(m n)=f(m) f(n)$ for all integers m, n, and there is N such that, for all $n \geq N$,

$$
f(c(a n+b)+d) \equiv C \bmod (a n+b)
$$

Prove that there is an integer e such that $|f(n)|=|n|^{e}$ for all integers n relatively prime to $a c$.
Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran
O573. Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
x+f\left(x^{2}+f(y)\right)=x f(x)+f(x+y)
$$

for all $x, y \in \mathbb{R}$.

> Proposed by Prodromos Fotiadis, Nikiforos High School, Drama, Greece

O574. Segment $A B$ is a chord of circle Γ. Different circles ω_{1} and ω_{2} are internally tangent to Γ at points P and Q, respectively, and to the segment $A B$ at a common point. Chords $A B$ and $P Q$ meet at D. Let C be the midpoint of arc $A B$ of circle Γ that contains point P. Prove that line $C D$ passes through the center of ω_{1}.

Proposed by Waldemar Pompe, Warsaw, Poland
O575. Let $\left(L_{n}\right)_{n \geq 1}$ be the Lucas sequence, $L_{1}=1, L_{2}=3, L_{n+2}=L_{n+1}+L_{n}$, for $n=1,2,3, \ldots$. Prove that if $n=\frac{1}{4}\left(L_{6 m+1}-1\right)$ for some positive integer m, then

$$
\prod_{k=0}^{n}\left[(4 k-1)^{4}+64\right]
$$

is a perfect square.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
O576. If m_{a}, m_{b}, m_{c} are the medians of a triangle with side-lengths a, b, c, prove that

$$
m_{a}^{3}\left(b c-a^{2}\right)+m_{b}^{3}\left(c a-b^{2}\right)+m_{c}^{3}\left(a b-c^{2}\right) \geq 0
$$

Proposed by Marius Stănean, Zalău, România

