Junior Problems

J535. Solve in positive integers the equation

$$
x^{3}-\frac{13}{2} x y-y^{3}=2020 .
$$

Proposed by Adrian Andreescu, University of Texas at Dallas, USA

J536. Let $A B C$ be an acute triangle. Prove that

$$
\left(\frac{a+b}{\cos C}\right)^{2}+\left(\frac{b+c}{\cos A}\right)^{2}+\left(\frac{c+a}{\cos B}\right)^{2} \geq \frac{16(a+b+c)^{2}}{3}
$$

Proposed by Florin Rotaru, Focşani, România

J537. Solve in rational numbers the equation

$$
x\lfloor x\rfloor\{x\}=58,
$$

where $\lfloor x\rfloor$ and $\{x\}$ are the greatest integer less than or equal to x and the fractional part of x, respectively.

Proposed by Adrian Andreescu, University of Texas at Dallas, USA
J538. Prove that in any triangle $A B C$

$$
\frac{(a+b)(b+c)(c+a)}{4 a b c} \leq 1+\frac{R}{2 r}
$$

Proposed by Marius Stănean, Zalău, România
J539. Let $\alpha>0$ be a real number. Prove that if a, b, c are real numbers in the interval $[\alpha, 30 \alpha]$,

$$
\frac{7}{a+6 b}+\frac{7}{b+6 c}+\frac{7}{c+6 a} \geq \frac{6}{a+5 b}+\frac{6}{b+5 c}+\frac{6}{c+5 a}
$$

Proposed by Mihaela Berindeanu, Bucharest, România
J540. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+\lfloor y\rfloor)=\lfloor f(x)\rfloor+f(y),
$$

for all $x, y \in \mathbb{R}$.

Senior Problems

S535. Find all triples (p, q, r) of primes such that

$$
\frac{1}{p-1}+\frac{1}{q}+\frac{1}{r+1}=\frac{1}{2}
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
S536. Let $S=\{2,4,6, \ldots, 2020\}$ be the set of positive even integers not greater than 2020 and $T=$ $\{3,6,9, \ldots, 2019\}$ be the set of positive multiples of 3 less than 2020. Evaluate

$$
\sum_{A \subseteq S} \sum_{B \subseteq T}|A \cup B| .
$$

Proposed by Li Zhou, Polk State College, USA
S537. Let $A B C$ be a triangle with $\angle B=50^{\circ}$. Let D be a point on the segment $B C$ such that $\angle B A D=30^{\circ}$ and $A D=B C$. Find $\angle C A D$.

Proposed by Marius Stănean, Zalău, România
S538. Let $P(x)=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n-1} x+a_{n}$ be a polynomial with real coefficients and n an even positive integer. If $P(x)$ has n non-negative real roots, prove that

$$
1+\sqrt[n]{a_{n}} \leq \sqrt[n]{P(-1)} \leq 1-\frac{a_{1}}{n}
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
S539. There is a street with n houses on the left side and n houses on the right side. Moreover, the houses which are in front of one to another are identical. We have to paint the houses with m different colors in such a way that no two neighboring houses nor two face to face houses are of the same color. In how many ways can this coloring be done?

Proposed by Mircea Becheanu, Canada
S540. Let $s(x)$ denote the sum of digits of the positive integer x. Find all positive integers n such that $s(n)=3 s(n+1)$.

Proposed by Titu Andreescu, USA and Marian Tetiva, România

U535. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of real numbers such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{a_{k}}{k}=1
$$

Evaluate

$$
\lim _{n \rightarrow \infty} \sum_{k=n+1}^{2 n} \frac{a_{1}+\cdots+a_{k}}{k^{3}}
$$

Proposed by Serban Cioculescu, Găeşti, România

U536. Evaluate

$$
\int x(\sqrt{1+x}+\sqrt{1-x}) \mathrm{d} x .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

U537. Let k be a positive integer. Evaluate

$$
\lim _{n \rightarrow \infty} n^{2 k}\left(\frac{\arctan n^{k}}{n^{k}}-\frac{\arctan \left(n^{k}+1\right)}{n^{k}+1}\right)
$$

Proposed by Dinu Ovidiu Gabriel, Bălceşti, Vâlcea, România

U538. Let $p>2$ be a prime and $r>1$ be an integer. Define the set

$$
S=\left\{a \in \mathbb{Z} \mid a^{a} \equiv a\left(\bmod p^{r}\right), 2 \leq a \leq p^{r-2}\right\}
$$

Prove that

$$
|S| \leq p^{r-2}(p-1)(p-\varphi(p-1)) .
$$

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

U539. Evaluate

$$
\int_{0}^{1} \frac{-2 x^{2} \ln x}{\sqrt{1-x^{2}}\left(x^{4}-x^{2}+1\right)} d x
$$

Proposed by Paolo Perfetti, Roma, Italy
U540. Let x be rational number. Prove that $\mathbb{Q}(\sqrt[3]{x})=\mathbb{Q}(\sqrt[3]{2})$ if and only if $x=2 q^{3}$ or $x=4 q^{3}$, for some rational number q.

Olympiad Problems

O535. Let $A B C D$ be a convex quadrilateral with an incircle. Let $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ be the excircles of $A B C D$ tangent to segments $A B, B C, C D, D A$, respectively. Prove that the lengths of the internal common tangent segments to the pairs of circles $\left(\omega_{1}, \omega_{3}\right)$ and $\left(\omega_{2}, \omega_{4}\right)$ are equal.

Proposed by Waldemar Pompe, Warsaw, Poland
O536. Let a, b, c be the side-lengths of the sides of a triangle and let S be its area. Let R and r be the circumradius and inradius of the triangle, respectively. Prove that

$$
a^{2}+b^{2}+c^{2} \leq 4 S \sqrt{\frac{6 r}{R}}+3\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]
$$

Proposed by Marius Stănean, Zalău, România

O537. Let $i_{1}<\cdots<i_{l}$ and $j_{1} \leq \cdots \leq j_{m}$ be nonnegative integers such that

$$
2^{i_{1}}+\cdots+2^{i_{l}}=2^{j_{1}}+\cdots+2^{j_{m}} .
$$

Prove that $l \leq m$.
Proposed by Titu Andreescu, USA and Marian Tetiva, România
O538. Find the greatest constant λ such that the inequality

$$
\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}+\lambda \geq \frac{2}{3}(1+\lambda)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)
$$

holds for all positive real numbers a, b, c.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
O539. Let $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ be a convex hexagon in which all angles are obtuse. Let $A_{1} A_{2} \cap B_{1} B_{2}=C$, $B_{1} B_{2} \cap C_{1} C_{2}=A$, and $C_{1} C_{2} \cap A_{1} A_{2}=B$. Let O be the circumcenter of $A B C$. Suppose that $\angle B_{2} O C_{1}=$ $\angle B A C, \angle C_{2} O A_{1}=\angle C B A$, and $\angle A_{2} O B_{1}=\angle A C B$. Prove that

$$
A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2} \leq A_{2} B_{1}+B_{2} C_{1}+C_{2} A_{1}
$$

Proposed by Dominik Burek, Krakow, Poland
O540. Let a, b, c be positive real numbers such that $a+b+c=3$. Prove that

$$
\frac{a}{\sqrt[3]{4\left(b^{6}+c^{6}\right)}+7 b c}+\frac{b}{\sqrt[3]{4\left(c^{6}+a^{6}\right)}+7 c a}+\frac{c}{\sqrt[3]{4\left(a^{6}+b^{6}\right)}+7 a b}+\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{12} \geq \frac{7}{12}
$$

Proposed by Hoang Le Nhat Tung, Hanoi, Vietnam

