Junior Problems

J499. Let a, b, c, d be positive real numbers such that

$$
a(a-1)^{2}+b(b-1)^{2}+c(c-1)^{2}+d(d-1)^{2}=a+b+c+d .
$$

Prove that

$$
(a-1)^{2}+(b-1)^{2}+(c-1)^{2}+(d-1)^{2} \leq 4 .
$$

Proposed by Adrian Andreescu, University of Texas at Austin, USA
J500. Let a, b, c, d be positive real numbers such that $a b c d=1$. Prove that

$$
\frac{1}{5 a^{2}-2 a+1}+\frac{1}{5 b^{2}-2 b+1}+\frac{1}{5 c^{2}-2 c+1}+\frac{1}{5 d^{2}-2 d+1} \geq 1 .
$$

Proposed by An Zhenping, Xianyang Normal University, China

J501. In a convex quadrilateral $A B C D, M$ and N are the midpoints of diagonals $A C$ and $B D$, respectively. The intersection of the diagonals lies on segments $C M$ and $D N$, while points P and Q lie on segment $A B$ and satisfy

$$
\angle P M N=\angle B C D \quad \text { and } \quad \angle Q N M=\angle A D C .
$$

Prove that lines $P M$ and $Q N$ meet at a point lying in line $C D$.

Proposed by Waldemar Pompe, Warsaw, Poland

J502. Let a, b, c be positive real numbers. Prove that

$$
\frac{a^{3}}{c\left(a^{2}+b c\right)}+\frac{b^{3}}{a\left(b^{2}+c a\right)}+\frac{c^{3}}{b\left(c^{2}+a b\right)} \geq \frac{3}{2}
$$

Proposed by Konstantinos Metaxas, Athens, Greece
J503. Solve in positive integers the equation

$$
\min \left(x^{4}+8 y, 8 x+y^{4}\right)=(x+y)^{2} .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

J504. Let $A B C$ be a triangle with circumcenter O, E be an arbitrary point on $A C$ and F a point on $A B$ such that B lies between A and F. Let K be the circumcenter of the triangle $A E F$. Denote by D the intersection of lines $B C$ and $E F, M$ the intersection of lines $A K$ and $B C$, and N the intersection of lines $A O$ and $E F$. Prove that points A, D, M, N are concyclic.

Senior Problems

S499. Let a and b be distinct real numbers. Prove that $27 a b(\sqrt[3]{a}+\sqrt[3]{b})^{3}=1$ if and only if $27 a b(a+b+1)=1$.
Proposed by Titu Andreescu, University of Texas at Dallas, USA

S500. Let a, b, c be pairwise distinct real numbers. Prove that

$$
\left(\frac{a-b}{b-c}-2\right)^{2}+\left(\frac{b-c}{c-a}-2\right)^{2}+\left(\frac{c-a}{a-b}-2\right)^{2} \geq 17
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
S501. Solve the equation $[x\rfloor\{8 x\}=2 x^{2}$, where $\lfloor a\rfloor$ and $\{a\}$ are the greatest integers less than or equal to a and the fractional part of a, respectively.

> Proposed by Adrian Andreescu, University of Texas at Austin, USA

S502. Find all positive integers n such that

$$
a+b+c \mid a^{n}+b^{n}+c^{n}-n a b c
$$

for all positive integers a, b, c.

Proposed by Oleg Muskarov, Sofia, Bulgaria

S503. Solve in positive integers the equation

$$
\begin{aligned}
& 101 x^{3}-2019 x y+101 y^{3}=100 . \\
& \text { Proposed by Titu Andreescu, University of Texas at Dallas, USA }
\end{aligned}
$$

S504. Let $a \geq b \geq c \geq 0$ be real numbers such that $a+b+c=3$. Prove that

$$
a b^{2}+b c^{2}+c a^{2}+\frac{3}{8} a b c \leq \frac{27}{8}
$$

Proposed by An Zhenping, Xianyang Normal University, China

Undergraduate Problems

U499. Let a, b, c be positive real numbers not greater than 2 . The sequence $\left(x_{n}\right)_{n \geq 0}$ is defined by $x_{0}=a, x_{1}=$ $b, x_{2}=c$ and

$$
x_{n+1}=\sqrt{x_{n}+\sqrt{x_{n-1}+x_{n-2}}}
$$

for all $n \geq 2$. Prove that $\left(x_{n}\right)_{n \geq 0}$ is convergent and find its limit.
Proposed by Mircea Becheanu, Canada and Nicolae Secelean, România
U500. Evaluate

$$
\lim _{n \rightarrow \infty} \tan \pi \sqrt{4 n^{2}+n}
$$

Proposed by Adrian Andreescu, University of Texas at Austin, USA
U501. Let $a_{1}, a_{2}, \ldots, a_{n} \geq 1$ be real numbers such that $a_{1} a_{2} \ldots a_{n}=2^{n}$. Prove that

$$
a_{1}+\cdots+a_{n}-\frac{2}{a_{1}}-\cdots-\frac{2}{a_{n}} \geq n
$$

Proposed by Marin Chirciu, Piteşti, România
U502. Find all pairs (p, q) of primes such that $p q$ divides

$$
\left(20^{p}+1\right)\left(7^{q}-1\right)
$$

Proposed by Alessandro Ventullo, Milan, Italy

U503. Let $m<n$ be positive integers and let a and b be real numbers. It is known that for every positive real number c the polynomial

$$
P_{c}(x)=b x^{n}-a x^{m}+a-b-c
$$

has exactly m roots strictly inside the unit circle. Prove that the polynomial

$$
Q(x)=m x^{n}+n x^{m}-m+n
$$

has exactly $m-\operatorname{gcd}(m, n)$ roots lying strictly inside the unit circle.
Proposed by Navid Safaei, Sharif Institute of Technology, Tehran, Iran

U504. Evaluate

$$
\int \frac{x^{2}+1}{\left(x^{3}+1\right) \sqrt{x}} d x
$$

Proposed by Titu Andreescu, University of Texas a Dallas, USA

Olympiad Problems

O499. For each positive integer d find the interval $I \subset \mathbb{R}$ of largest length such that for any choice of $a_{0}, a_{1}, \ldots, a_{2 d-1} \in I$ the polynomial

$$
P(x)=x^{2 d}+a_{2 d-1} x^{2 d-1}+\cdots+a_{1} x+a_{0}
$$

has no real root.

> Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

O500. In triangle $A B C, \angle A \leq \angle B \leq \angle C$. Prove that

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{R}{r}+\frac{r}{R}+\frac{1}{2}
$$

and

$$
\frac{b}{a}+\frac{c}{b}+\frac{a}{c} \leq \frac{7}{2}-\frac{r}{R}
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
O501. Let x, y, z be real numbers such that $-1 \leq x, y, z \leq 1$ and $x+y+z+x y z=0$. Prove that

$$
x^{2}+y^{2}+z^{2}+1 \geq(x+y+z \pm 1)^{2} .
$$

Proposed by Marius Stănean, Zalău, România
O502. Let $A B C D E$ be a convex pentagon and let M be the midpoint of $A E$. Suppose that $\angle A B C+\angle C D E=$ 180° and $A B \cdot C D=B C \cdot D E$. Prove that

$$
\frac{B M}{D M}=\frac{A B}{A C} \cdot \frac{C E}{D E}
$$

Proposed by Khakimboy Egamberganov, ICTP, Trieste, Italy
O503. Prove that in any triangle $A B C$,

$$
\left(\frac{a+b}{m_{a}+m_{b}}\right)^{2}+\left(\frac{b+c}{m_{b}+m_{c}}\right)^{2}+\left(\frac{c+a}{m_{c}+m_{a}}\right)^{2} \geq 4 .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
O504. Let G be a connected graph such that all degrees are at least 2 and there are no even cycles. Prove that G has a spanning subgraph such that the degree of each vertex is 1 or 2 . Prove that the conclusion does not hold if we drop the 'no even cycles' condition. (A spanning subgraph of G is a subgraph which contains all vertices of G.)

