Junior Problems

J565. Let $f(m, n)=(m n+4)^{2}+4(m-n)^{2}$. Prove that $f\left(2021^{2}, 2023^{2}\right)$ is divisible by $\left(2022^{2}+1\right)^{2}$.
Proposed by Adrian Andreescu, University of Texas at Dallas, USA

J566. Let a, b, c, d be positive real numbers such that $a b c+b c d+c d a+d a b=1$. Prove that

$$
\frac{1}{1+a^{3}}+\frac{1}{1+b^{3}}+\frac{1}{1+c^{3}}+\frac{1}{1+d^{3}} \leq \frac{16}{5}
$$

Proposed by An Zhenping, Xianyang Normal University, China

J567. Let x, y, z be real numbers, $z \neq 0$, such that

$$
\left|\frac{y^{2}}{z}-2 x z\right| \leq 2 \quad \text { and } \quad\left|y^{2} z+\frac{2 x}{z}\right| \leq 2 .
$$

Find the maximum of $x^{2022}+y^{2}$.
Proposed by Mihaela Berindeanu, Bucharest ,România
J568. Let $A B C$ be a scalene triangle and let M be the midpoint of $B C$. The circumcircle of $\triangle A M B$ meets $A C$ at D, other than A. Similarly, the circumcircle of $\triangle A M C$ meets $A B$ at E, other than A. Let N be the midpoint of $D E$. Prove that $M N$ is parallel to the A-symmedian of $\triangle A B C$.

Proposed by Ana Boiangiu, Bucharest, România
J569. Let a, b, c be positive real numbers. Prove that

$$
\sqrt[4]{\frac{2 a b}{a^{2}+b^{2}}}+\sqrt[4]{\frac{2 b c}{b^{2}+c^{2}}}+\sqrt[4]{\frac{2 c a}{c^{2}+a^{2}}}+\frac{(a+b)(b+c)(c+a)}{8 a b c} \geq 4
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
J570. Let $A B C$ be an acute triangle. Prove that

$$
\left(\frac{\sin A+\sin B}{\cos C}\right)^{2}+\left(\frac{\sin B+\sin C}{\cos A}\right)^{2}+\left(\frac{\sin C+\sin A}{\cos B}\right)^{2} \geq 36
$$

Proposed by Marius Stănean, Zalău, România

S565. Let a, b, c, λ be positive real numbers. Prove that

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{a b c(\lambda+1)^{3}}{(a+\lambda b)(b+\lambda c)(c+\lambda a)} \geq 4
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

S566. Let a, b, c, d be positive real numbers such that

$$
a b c d=3+2(a+b+c+d)+(a b+a c+a d+b c+b d+c d)
$$

Prove that

$$
a b+a c+a d+b c+b d+c d \geq 3(a+b+c+d)+18
$$

Proposed by An Zhenping, Xianyang Normal University, China
S567. Let x, y, z be positive real numbers such that $x+y+z=1$ and $(x-y z)(y-z x)(z-x y)>0$. Prove that

$$
\frac{1}{x-y z}+\frac{1}{y-z x}+\frac{1}{z-x y} \geq \frac{2}{x+y z}+\frac{2}{y+z x}+\frac{2}{z+x y}
$$

Proposed by Mircea Becheanu, Canada
S568. Let $A B C$ be a triangle with $\angle A B C=60^{\circ}, O$ its circumcenter, and I its incenter. Let M be the intersection of $A I$ with the circumcircle of $\triangle A B C$. Prove that if $O I=I M$, then $A B=\sqrt{2} A I$.

Proposed by Mihaela Berindeanu, Bucharest, România
S569. Find all perfect squares written in base 10 with one digit of 6 , and n digits of 1 , for some positive integer n.

Proposed by Titu Andreescu, USA, and Marian Tetiva, România
S570. Let a, b, c, d be positive numbers satisfying the equality

$$
a b c+a b d+a c d+b c d=a b+a c+a d+b c+b d+c d
$$

and such that no two of them are less than 1 and the other two are greater than 1. Prove that

$$
a+b+c+d-a b c d \geq \frac{15}{16}
$$

Proposed by Marian Tetiva, România

Undergraduate Problems

U565. Let p be a prime and let b_{1}, \ldots, b_{p-1} be integers such that they are congruent (in some order) to $1, \ldots, p-1$ modulo p. Also, let a_{1}, \ldots, a_{p-1} be integers such that p divides $a_{1} b_{1}+\cdots+a_{p-1} b_{p-1}$. Prove that there is a permutation i_{1}, \ldots, i_{p-1} of $1, \ldots, p-1$ such that the determinant of the circulant matrix

$$
\left(\begin{array}{ccccc}
a_{i_{1}} & a_{i_{2}} & \ldots & a_{i_{p-2}} & a_{i_{p-1}} \\
a_{i_{p-1}} & a_{i_{1}} & a_{i_{2}} & & a_{i_{p-2}} \\
\vdots & a_{i_{p-1}} & a_{i_{1}} & \ddots & \vdots \\
a_{i_{3}} & & \ddots & \ddots & a_{i_{2}} \\
a_{i_{2}} & a_{i_{3}} & \ldots & a_{i_{p-1}} & a_{i_{1}}
\end{array}\right)
$$

is also divisible by p.

Proposed by Titu Andreescu, USA, and Marian Tetiva, România
U566. Solve in real numbers the equation

$$
125^{x}+64^{\frac{1}{x}}+81 \cdot 5^{x} \cdot 4^{\frac{1}{x}}=27^{3} .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

U567. Let d be an even positive integer and let C be a complex number. Prove that there are no polynomials $Q(x)$ and $R(x)$ with complex coefficients and of degree at least two such that

$$
\left(x-1^{2}\right)\left(x-3^{2}\right) \ldots\left(x-(d-1)^{2}\right)+C=Q(R(x)) .
$$

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

U568. Let $a>2$ be a real number. Evaluate

$$
\int_{0}^{a} \frac{\tan ^{-1} x}{a x^{2}-a x+a-1} d x
$$

Proposed by Nicusor Zlota, Focşani, România
U569. Let d be a positive integer and let $P(X)=a_{0}+a_{1} X+\ldots+a_{d} X^{d}$ be a polynomial with positive coefficients. Prove that for any monic polynomial $f \in \mathbb{R}[X]$ taking positive values on $(0, \infty)$ there is a positive integer m such that all coefficients of $P(X)^{m} f(X)$ are nonnegative.

Proposed by Titu Andreescu, USA, and Navid Safaei, Iran
U570. Solve the following differential equation

$$
\frac{d y}{d x}=\tan (x-y)+\cot (x-y) .
$$

Proposed by Toyesh Prakash Sharma, St.C.F. Andrews School, Agra, India

Olympiad Problems

O565. Let a, b, c be the sidelengths of a triangle, $s=(a+b+c) / 2$ its semiperimeter, and r its inradius. We denote

$$
x=\sqrt{\frac{s-a}{s}}, y=\sqrt{\frac{s-b}{s}}, \text { and } z=\sqrt{\frac{s-c}{s}} .
$$

Let $S=x+y+z$ and $Q=x y+x z+y z$. Prove that

$$
\frac{r}{s} \leq \frac{2 S-\sqrt{4-Q}}{9} \leq \frac{1}{3 \sqrt{3}} .
$$

Proposed by Titu Andreescu, USA, and Marian Tetiva, România

O566. Let a, b, c be positive real numbers such that $a b c=1$. Prove that

$$
\frac{(a+b+1)^{2}}{a^{3}+b^{3}+1}+\frac{(b+c+1)^{2}}{b^{3}+c^{3}+1}+\frac{(c+a+1)^{2}}{c^{3}+a^{3}+1} \leq 9 .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

O567. Let $A B C$ be a scalene triangle with incenter I and circumcenter O. Let N be the center of the ninepoint circle of $\triangle A B C$ and M be the midpoint of $B C$. Knowing that the midpoint of $O I$ lies on side $B C$, prove that $I M$ is parallel to $A N$.

Proposed by Todor Zaharinov, Sofia, Bulgaria
O568. Let x, y, z be positive real numbers such that $x^{2}+y^{2}+z^{2}+x y z=4$. Prove that

$$
\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^{2}+11 x y z \geq 20
$$

Proposed by Marius Stănean, Zalău, România
O569. Let a, b, c be positive real numbers such that $a+b+c=a b+b c+c a$. Prove that

$$
\frac{4 a b c}{(1+a)(1+b)(1+c)}+4 \leq \frac{3 a}{1+a}+\frac{3 b}{1+b}+\frac{3 c}{1+c} \leq 5 .
$$

Proposed by An Zhenping, Xianyang Normal University, China
O570. Find all perfect squares in base 10 with one digit of 4 , and n digits of 9 , for some positive integer n.
Proposed by Titu Andreescu, USA, and Marian Tetiva, România

