Junior Problems

J529. Let a and b be positive real numbers. Prove that for any $x \geq \max (a, b)$

$$
\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right) \geq 8 \sqrt{a b} x(x-a)(x-b) .
$$

Proposed by Adrian Andreescu, University of Texas at Dallas, USA

J530. Let a, b, c be positive real numbers. Prove that

$$
\frac{a+b}{\sqrt{2\left(a^{2}+b^{2}\right)}}+\frac{b+c}{\sqrt{2\left(b^{2}+c^{2}\right)}}+\frac{c+a}{\sqrt{2\left(c^{2}+a^{2}\right)}}+\frac{3\left(a^{2}+b^{2}+c^{2}\right)}{2(a b+b c+c a)} \geq \frac{9}{2} .
$$

Proposed by Marius Stănean, Zalău, România

J531. Solve in real numbers the system of equations:

$$
\left\{\begin{array}{l}
x^{5} y^{5}+1=y^{5} \\
x^{9} y^{9}+1=y^{9}
\end{array}\right.
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

J532. Let a and b be real numbers such that $a b \geq \frac{1}{3}$. Prove that

$$
\frac{1}{3 a^{2}+1}+\frac{1}{3 b^{2}+1} \geq \frac{2}{3 a b+1} .
$$

Proposed by An Zhenping, Xianyang Normal University, China

J533. Find the range of the expression

$$
\frac{a-b}{c}
$$

where a, b, c are the side-lengths of a triangle with $\angle A=90^{\circ}$ and $c \leq b$.
Proposed by Shiva Oswal, Stanford Online High School, USA
J534. Find the greatest prime p such that $3 p$ has three digits and divides $31^{31}+32^{155}$.

Proposed by Adrian Andreescu, University of Texas at Dallas, USA

Senior Problems

S529. Prove that if the number $\overline{a b c b c a}$ is divisible by 37 then so is

$$
(a-b)^{2}+(b-c)^{2}+(c-a)^{2} .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

S530. Let $A B C$ be a triangle with area K. Prove that

$$
a(s-a) \cos \frac{B-C}{4}+b(s-b) \cos \frac{C-A}{4}+c(s-c) \cos \frac{A-B}{4} \geq 2 \sqrt{3} K .
$$

Proposed by An Zhenping, Xianyang Normal University, China

S531. Let x, y, z be real numbers such that $-1 \leq x, y, z \leq 1$ and $x+y+z+x y z=0$. Prove that

$$
x+y+z+\frac{72}{9+x y+y z+z x} \geq 8
$$

Proposed by Marius Stănean, Zalău, România
S532. Let a, b, c be positive real numbers such that $a b c=1$. Prove that for any $0 \leq t \leq \min \{a, b, c\}$,

$$
\left(2 a^{2}-6 a t+7 t^{2}\right)\left(2 b^{2}-6 b t+7 t^{2}\right)\left(2 c^{2}-6 c t+7 t^{2}\right) \geq 108 t^{5}(a-t)(b-t)(c-t)
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
S533. For every positive integer we denote by $\tau(a)$ the number of positive divisors of a and by $d_{1}(a)<d_{2}(a)<$ $\cdots<d_{\tau(a)}(a)$ the increasing sequence of these divisors. Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a sequence of positive integers. We say that the refinement of this sequence is the sequence

$$
d_{1}\left(x_{1}\right), d_{2}\left(x_{1}\right), \ldots, d_{\tau\left(x_{1}\right)}\left(x_{1}\right), d_{1}\left(x_{2}\right), \ldots, d_{\tau\left(x_{2}\right)}\left(x_{2}\right), \ldots, d_{1}\left(x_{n}\right), \ldots, d_{\tau\left(x_{n}\right)}\left(x_{n}\right) .
$$

For example, the refinement of the sequence $(1,4,7,10)$ is the sequence $(1,1,2,4,1,7,1,2,5,10)$. Let p be prime number. Starting with the sequence $\left(1, p, p^{2}, \ldots, p^{p}\right)$ we refine it 2020 times in a row. Evaluate how many times each prime power p^{i} appears in the last sequence.

Proposed by Besfort Shala, University of Primorska, Koper, Slovenia
S534. Let $A B C$ be a triangle with incircle tangent to sides $B C, C A, A B$ at points D, E, F, respectively. Suppose that K, L, M are midpoints of $B F, B D, B C$, respectively. The line which passes through D and is parallel to the bisector of the angle $C B A$ intersects $K L$ at P. Prove that $P M \| E F$ if and only if $B C=3 B D$.

Undergraduate Problems

U529. Let $P(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+1$ be a polynomial whose roots $x_{1}, x_{2}, \ldots, x_{n}$ are real and positive. Prove that for any positive real number t

$$
\left(t^{2}-t x_{1}+x_{1}^{2}\right)\left(t^{2}-t x_{2}+x_{2}^{2}\right) \cdots\left(t^{2}-t x_{n}+x_{n}^{2}\right) \geq 2^{n} t^{\frac{n}{2}}|P(t)| .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
U530. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{\sin 1+\left(\sin \frac{1}{2}\right)^{2}+\cdots+\left(\sin \frac{1}{n}\right)^{n}}{\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}}
$$

Proposed by Florin Rotaru, Focşani, România

U531. Evaluate

$$
\int_{0}^{1} \frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{\sqrt[3]{1+x}+\sqrt[3]{1-x}} d x
$$

Proposed by Alessandro Ventullo, Milan, Italy
U532. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{\sqrt[n]{1^{2} 3^{2} \cdots(2 n+1)^{2}}}{1+3+\cdots+(2 n+1)}
$$

Proposed by Mircea Becheanu, Canada

U533. Evaluate

$$
\int_{1}^{2}(1+\ln x) x^{x} \mathrm{~d} x .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
U534. Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
f(x) f(x+y) \geq f(x)^{2}+x y
$$

for all $x, y \in \mathbb{R}$.

Olympiad Problems

O529. Let a and b be odd positive integers. Prove that for any positive integer n there is a positive integer m such that 2^{n} divides at least one of the numbers $a^{m} b^{2}-1$ and $b^{m} a^{2}-1$.

Proposed by Navid Safaei, Sharif University of Science, Tehran, Iran
O530. Let a, b, c be positive real numbers such that $a b c=1$. Prove that

$$
\sqrt{4 a^{2}-a+1}+\sqrt{4 b^{2}-b+1}+\sqrt{4 c^{2}-c+1} \geq 2(a+b+c)
$$

Proposed by An Zhenping, Xianyang Normal University, China

O531. Let $A B C$ be an acute triangle and A_{1}, B_{1}, C_{1} be the midpoints of sides $B C, C A, A B$, respectively. The orthogonal projection of A_{1} onto $A B$ is denoted by A^{\prime} and the orthogonal projection of A_{1} onto $A C$ is denoted by $A^{\prime \prime}$. The intersection of the tangents in A^{\prime} and $A^{\prime \prime}$ to the circumcircle of $\Delta A_{1} A^{\prime} A^{\prime \prime}$ is denoted by X. Points Y and Z are constructed similarly. Prove that lines $X A_{1}, Y B_{1}, Z C_{1}$ are concurrent.

Proposed by Mihaela Berindeanu, Bucharest, România
O532. Points D and E lie on sides $A B$ and $B C$ of triangle $A B C$, respectively. Assume the incenter I of triangle $A B C$ lies inside quadrilateral $A D E C$ and $B D>A D$. Let r be the inradius of triangle $A B C$ and suppose the distance x from point I to line $D E$ satisfies

$$
\frac{x}{r}=\frac{B D-A D}{A B} .
$$

Prove that the inradius of triangle $B D E$ is equal to the radius of a circle tangent to segment $A D$ and to rays $A C$ and $D E$.

Proposed by Waldemar Pompe, Warszaw, Poland
O533. Let a, b, c, d be positive real numbers. Prove that

$$
\frac{b c d}{a^{2}}+\frac{a c d}{b^{2}}+\frac{a b d}{c^{2}}+\frac{a b c}{d^{2}} \geq 2 \sqrt{a^{2}+b^{2}+c^{2}+d^{2}}
$$

Proposed by An Zhenping, Xianyang Normal University, China

O534. Let n be a positive integer. An arithmetic sequence is called n-small if it consists of integers and if its common difference has at most n positive divisors. Prove that there is $c>0$ such that for any $N \geq 1$ the set $\left\{1^{n}, 2^{n}, 3^{n}, \ldots\right\}$ shares at most $c N^{1 / n}$ elements with any n-small arithmetic sequence of length N.

Proposed by Titu Andreescu, USA and Gabriel Dospinescu, France

