Junior Problems

J493. In triangle $A B C, R=4 r$. Prove that $\angle A-\angle B=90^{\circ}$ if and only if

$$
a-b=\sqrt{c^{2}-\frac{a b}{2}} .
$$

Proposed by Adrian Andreescu, University of Texas at Austin, USA

J494. Let a, b, c be positive real numbers. Prove that

$$
\frac{a b+b c+c a+a+b+c}{(a+b)(b+c)(c+a)} \leq \frac{3}{8}\left(1+\frac{1}{a b c}\right)
$$

Proposed by Florin Rotaru, Focşani, România

J495. Let a, b, c be postive numbers such that $a b c=1$. Prove that

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a^{2}+b}+\frac{1}{b^{2}+c}+\frac{1}{c^{2}+a} \geq \frac{9}{2} .
$$

Proposed by An Zhenping, Xianyang Normal University, China

J496. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ be positive real numbers. Prove that

$$
\sum_{\text {cyc }} \frac{a_{1}}{2\left(a_{1}+a_{2}\right)+a_{3}} \cdot \sum_{\text {cyc }} \frac{a_{2}}{2\left(a_{1}+a_{2}\right)+a_{3}} \leq 1 .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
J497. Prove that for any positive real numbers a, b, c

$$
\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a}+\sqrt{a b}+\sqrt{b c}+\sqrt{c a} \geq 2(a+b+c) .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

J498. Let $A B C$ be a triangle with $\angle A \neq \angle B$ and $\angle C=30^{\circ}$. On the internal angle bisector of $\angle B C A$ consider the points D and E such that $\angle C A D=\angle C B E=30^{\circ}$ and on the perpendicular bisector of $A B$, on the same side as C related to $A B$, consider the point F such that $\angle A F B=90^{\circ}$. Prove that $D E F$ is an equilateral triangle.

Senior Problems

S493. In triangle $A B C, R=4 r$. Prove that

$$
\frac{19}{2} \leq(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \leq \frac{25}{2}
$$

Proposed by Adrian Andreescu, University of Texas at Austin, USA

S494. Let $n>1$ be an integer. Solve the equation

$$
x^{n}-\lfloor x\rfloor=n .
$$

Proposed by Alessandro Ventullo, Milan, Italy
S495. Let a, b, c be real numbers not less than $\frac{1}{2}$ such that $a+b+c=3$. Prove that

$$
\begin{gathered}
\sqrt{a^{3}+3 a b+b^{3}-1}+\sqrt{b^{3}+3 b c+c^{3}-1}+\sqrt{c^{3}+3 c a+a^{3}-1}+ \\
+\frac{1}{4}(a+5)(b+5)(c+5) \leq 60 .
\end{gathered}
$$

When does equality hold?
Proposed by Titu Andreescu, University of Texas at Dallas, USA
S496. Let $A B C$ be a triangle and let a, b, c be the lengths of its sides. Prove that the centroid of the triangle lies on the incircle if and only if

$$
(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=\frac{1}{8}(a+b+c)^{2} .
$$

Proposed by Albert Stadler, Herrliberg, Switzerland
S497. Let $a, b, c \geq \frac{6}{5}$ be real numbers such that

$$
a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+8 .
$$

Prove that

$$
a b+b c+c a \leq 27 .
$$

Proposed by Marius Stănean, Zalău, România
S498. Solve in integers the equation

$$
(m n+8)^{3}+(m+n+5)^{3}=(m-1)^{2}(n-1)^{2} .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Undergraduate Problems

U493. Let A, B, C be matrices of order n such that $A B C=B C A=A+B+C$. Prove that $A(B+C)=-B C$ if and only if $(B+C) A=-B C$.

> Proposed by Titu Andreescu, University of Texas at Dallas, USA

U494. Let m be a real number such that the roots a, b, c of the polynomial $X^{3}+m X^{2}+X+1$ satisfy the condition:

$$
a^{3} b+b^{3} c+c^{3} a+a b^{3}+b c^{3}+c a^{3}=0 .
$$

Prove that a, b, c cannot all be real numbers.
Proposed by Mircea Becheanu, Montreal, Canada
U495. Let $g: \mathbb{N} \longrightarrow \mathbb{N}$ be a one-to-one function such that $\mathbb{N} \backslash g(\mathbb{N})$ is infinite. Let $n \geq 2$ be an arbitrary positive integer. Prove that g admits a functional $n^{t h}$ root, that is there is a function $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that $f \circ \cdots \circ f=g$, where f appears n times.

Proposed by Titu Andreescu, USA, and Marian Tetiva, România
U496. Prove that the polynomial $X^{7}-4 X^{6}+4$ is irreducible in $\mathbb{Z}[X]$.
Proposed by Mircea Becheanu, Montreal, Canada

U497. Evaluate

$$
\int_{0}^{1}\left(2 x^{3}-3 x^{2}+x\right)^{2019} d x
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
U498. Let $f:[0,1] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)=x \arctan x-\ln \left(1+x^{2}\right) .
$$

Prove that

$$
\int_{\frac{1}{2}}^{1} f(x) \mathrm{d} x \geq 3 \int_{0}^{\frac{1}{2}} f(x) \mathrm{d} x
$$

Proposed by Mihaela Berindeanu, Bucharest, România

Olympiad Problems

O493. Let x, y, z be positive real numbers such that $x y+y z+z x=3$. Prove that

$$
\frac{1}{x^{2}+5}+\frac{1}{y^{2}+5}+\frac{1}{z^{2}+5} \leq \frac{1}{2} .
$$

Proposed by Titu Andreescu, USA, and Marius Stănean, România
O494. Positive real numbers a and b satisfy the following system of equations:

$$
\begin{gathered}
a^{2}+b=1 \\
a b+b^{2}=1
\end{gathered}
$$

Prove that there is a triangle with side lengths a, a, b, and find the measures of the angles of that triangle.

Proposed by Waldemar Pompe, Warsaw, Poland
O495. Let $A B C$ be an acute triangle. Prove that

$$
\frac{h_{b} h_{c}}{a^{2}}+\frac{h_{c} h_{a}}{b^{2}}+\frac{h_{a} h_{b}}{c^{2}} \leq 1+\frac{r}{R}+\frac{1}{3}\left(1+\frac{r}{R}\right)^{2} .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

O496. Let M be the set of points with integer coordinates in the plane. Every point (a, b) in M is connected by an edge to all points $(a b, c)$ in M with $c>a b$. Prove that no matter how the points in M are colored with finitely many colors, there is an edge with its endpoints colored with the same color.

Proposed by Titu Andreescu, USA and Marian Tetiva, România
O497. Let $A_{1} A_{2} \ldots A_{2 n+1}$ be a regular (2n+1)-gon with center O. Line l passes through O and meets line $A_{i} A_{i+1}$ at point $X_{i}\left(i=1,2, \ldots, 2 n+1, A_{2 n+2}=A_{1}\right)$. Prove that

$$
\sum_{i=1}^{2 n+1} \frac{\overrightarrow{1}}{\frac{O X_{i}}{}}=0
$$

Here, $\frac{\overrightarrow{1}}{O X_{i}}$ is the vector having the orientation of $\overrightarrow{O X_{i}}$ and the size $\frac{1}{O X_{i}}$.
Proposed by Waldemar Pompe, Warsaw, Poland
O498. In triangle $A B C$, let D, E, F be the feet of the altitudes from A, B, C respectively. Let H be the orthocenter of triangle $A B C, M$ be the midpoint of the segment $A H$, and N be the intersection point of lines $A D$ and $E F$. The line through A and parallel to $B M$ intersects $B C$ at P. Prove that the midpoint of the segment $N P$ lies on $A B$.

Proposed by Titu Andreescu, USA, and Marius Stănean, România

