Junior Problems

J559. Let

$$
a_{n}=1-\frac{2 n^{2}}{1+\sqrt{1+4 n^{4}}}, \quad n=1,2,3, \ldots
$$

Prove that $\sqrt{a_{1}}+2 \sqrt{a_{2}}+\cdots+20 \sqrt{a_{20}}$ is an integer.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
J560. Let a, b, c be positive real numbers. Prove that

$$
\frac{2}{a^{2}}+\frac{5}{b^{2}}+\frac{45}{c^{2}}>\frac{16}{(a+b)^{2}}+\frac{24}{(b+c)^{2}}+\frac{48}{(c+a)^{2}}
$$

Proposed by Kartik Vedula, James S. Rickards High School, Tallahassee, USA
J561. Solve in nonzero real numbers the system of equations:

$$
x-\frac{1}{x}+\frac{2}{y}=y-\frac{1}{y}+\frac{2}{z}=z-\frac{1}{z}+\frac{2}{x}=0 .
$$

Proposed by Adrian Andreescu, University of Texas at Dallas, USA
J562. Let $A B C$ be a triangle and let D, E, F be points on sides $B C, C A, A B$, respectively, such that $A D, B E, C F$ are concurrent in X. Assume that the ratios $\frac{B D}{D C}, \frac{C E}{E A}, \frac{A F}{F B}$ are in the interval $\left[\frac{1}{5}, 5\right]$ and that $\frac{B D}{D C}+\frac{C E}{E A}+\frac{A F}{F B}=\frac{31}{5}$. Evaluate

$$
\frac{A X}{X D}+\frac{B X}{X E}+\frac{C X}{X F}
$$

Proposed by Mohammad Imran, India
J563. Let $a, b, c \geq 0$ be real numbers such that $a b+b c+c a=a+b+c>0$. Prove that

$$
1 \leq \frac{1}{1+2 a}+\frac{1}{1+2 b}+\frac{1}{1+2 c} \leq \frac{7}{5}
$$

Proposed by An Zhenping, Xianyang Normal University, China
J564. Find all complex numbers z such that for each real number a and each positive integer n

$$
(\cos a+z \sin a)^{n}=\cos n a+z \sin n a
$$

Proposed by Adrian Andreescu, University of Texas at Dallas, USA

Senior Problems

S559. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers such that $a_{1}+a_{2}+\cdots+a_{n} \leq n$. Find the minimum of

$$
\frac{1}{a_{1}}+\frac{1}{2 a_{2}^{2}}+\cdots+\frac{1}{n a_{n}^{n}}
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
S560. Let a, b, c be nonnegative real numbers such that $a+b+c=2$. Prove that

$$
\frac{a}{b^{2}+b c+c^{2}}+\frac{b}{c^{2}+c a+a^{2}}+\frac{c}{a^{2}+a b+b^{2}}+8 \geq \frac{10}{a b+b c+c a} .
$$

Proposed by Marius Stănean, Zalău, România
S561. Let p be a prime. Solve in positive integers the equation

$$
\left(x^{2}-y z\right)^{3}+\left(y^{2}-z x\right)^{3}+\left(z^{2}-x y\right)^{3}-3\left(x^{2}-y z\right)\left(y^{2}-z x\right)\left(z^{2}-x y\right)=p^{2} .
$$

Proposed by Alessandro Ventullo, Milan, Italy
S562. Let a, b, c, d be nonnegative real numbers. Prove that

$$
(a+b+c+d)^{3}+9(a b c+a b d+a c d+b c d) \geq 4(a+b+c+d)(a b+a c+a d+b c+b d+c d)
$$

Proposed by An Zhenping, Xianyang Normal University, China
S563. Let a, b, c be distinct positive real numbers. Prove that at least one of the numbers

$$
\left(a+\frac{1}{a}\right)^{2}\left(1-b^{4}\right) ; \quad\left(b+\frac{1}{b}\right)^{2}\left(1-c^{4}\right) ; \quad\left(c+\frac{1}{c}\right)^{2}\left(1-a^{4}\right)
$$

is not equal to 4 .
Proposed by Titu Andreescu, University of Texas at Dallas, USA
S564. Let x, y, z be nonegative real numbers. Prove that

$$
\frac{x^{3}+y^{3}+z^{3}+3 x y z}{\sum_{c y c} x y(x+y)}+\frac{5}{4} \geq(x y+y z+z x)\left[\frac{1}{(x+y)^{2}}+\frac{1}{(y+z)^{2}}+\frac{1}{(z+x)^{2}}\right] .
$$

Proposed by Marius Stănean, Zalău, România

Undergraduate Problems

U559. Evaluate

$$
\int \sqrt{1+\frac{1}{x}} d x
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
U560. Let $1,1,2,3,5,8, \ldots$ be the Fibonacci sequence. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(1+\frac{\cot (1)}{\cot \left(\frac{1}{2}\right)}+\frac{\cot \left(\frac{1}{2}\right)}{\cot \left(\frac{1}{3}\right)}+\frac{\cot \left(\frac{1}{3}\right)}{\cot \left(\frac{1}{5}\right)}++\frac{\cot \left(\frac{1}{5}\right)}{\cot \left(\frac{1}{8}\right)}+\ldots\right)
$$

Proposed by Toyesh Prakash Sharma, St.C.F. Andrews School, Agra, India
U561. The Fibonacci numbers F_{n} are defined as follows:

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

Prove that

$$
2 F_{n} F_{n+1}^{5}-2 F_{n}^{5} F_{n+1}=F_{n}^{6}+F_{n+1}^{6}-F_{n+1}^{2}-F_{n}^{2}
$$

Proposed by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain
U562. Let $A B C D$ be a square. Variable points P and Q are taken on sides $A B$ and $B C$, respectively, such that $\angle P D Q=45^{\circ}$. Find the locus of the orthocenter of triangle $P D Q$.

Proposed by Mircea Becheanu, Canada
U563. Find all polynomials $P(X)$ with real coefficients such that for all real numbers x,

$$
\left(P\left(x^{2}\right)+x\right)\left(P\left(x^{3}\right)-x^{2}\right)=P\left(x^{5}\right)+x .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
U564. Evaluate $\lim _{n \rightarrow+\infty}(-1)^{n+1} \cdot \sin \left(\sum_{k=1}^{4 n} \arctan \frac{k^{4}+3 k^{2}-1}{k^{4}-k^{2}+7}\right)$
Proposed by Paolo Perfetti, Università degli studi di Tor Vergata, Roma, Italy

Olympiad Problems

O559. Let x, y, z be real numbers such that none of them lies in the interval $(-1,1)$ and

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+x+y+z=0 .
$$

Find the minimum of $\frac{z}{x+y}$.
Proposed by Marius Stănean, Zalău, România
O560. Prove that there are infinitely many triples (a, b, c) of integers for which $a b+b c+c a=1$ and that for each such triple $\left(a^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right)$ is a perfect square.

Proposed by Titu Andreescu, University of Texas at Dallas, USA
O561. Let $A B C$ be a triangle. Prove that

$$
\frac{a^{2}}{1+\cos ^{2} B+\cos ^{2} C}+\frac{b^{2}}{1+\cos ^{2} C+\cos ^{2} A}+\frac{c^{2}}{1+\cos ^{2} A+\cos ^{2} B} \leq \frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)
$$

Proposed by An Zhenping, Xianyang Normal University, China
O562. Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
x^{2} f(y)+f\left(y^{2} f(x)\right)=x y f(x+y),
$$

for all real numbers x, y.
Proposed by Prodromos Fotiadis, Nikiforos High School, Drama, Greece
O563. Prove that in any triangle $A B C$,

$$
\sqrt{\frac{m_{a}}{h_{a}}}+\sqrt{\frac{m_{b}}{h_{b}}}+\sqrt{\frac{m_{c}}{h_{c}}}+\frac{6(a b+b c+c a)}{(a+b+c)^{2}} \geq 5 .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
O564. Let $n \geq 3$ be an integer. For every sequence $-1=x_{1}<x_{2}<\cdots<x_{n}=1$ of real numbers and every $k=1,2, \ldots, n$ we define

$$
D_{k}\left(x_{2}, \ldots, x_{n-1}\right)=\left|\left(x_{k}-x_{1}\right) \ldots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \ldots\left(x_{k}-x_{n}\right)\right|
$$

and denote

$$
r_{n}=\max _{x_{2}, \ldots, x_{n-1}} \min _{k} D_{k}\left(x_{2}, \ldots, x_{n-1}\right) .
$$

Assume that r_{n} is achieved at the sequence $-1=a_{1}<a_{2}<\cdots<a_{n}=1$. Prove that

$$
D_{2}\left(a_{2}, \ldots, a_{n-1}\right)=\cdots=D_{n-1}\left(a_{2}, \ldots, a_{n-1}\right) .
$$

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

