Junior Problems

J523. Let a, b, c be real numbers. Prove that

$$
(a-1)^{2}+(b-1)^{2}+(c-1)^{2} \geq \frac{a b+b c+c a}{2}-3 .
$$

Proposed by Adrian Andreescu, University of Texas at Dallas, USA

J524. Prove that

$$
\sum_{1 \leq i<j \leq n} \frac{i+2 i j+j}{\sqrt{(i+1)(j+1)}}<\frac{n\left(n^{2}-1\right)}{2}
$$

Proposed by Mihaly Bencze, Braşov, România
J525. Prove that positive integers a, b, c are consecutive in some order if and only if

$$
a^{3}+b^{3}+c^{3}=3(a+b+c+a b c) .
$$

Proposed by Adrian Andreescu, University of Texas at Dallas, USA

J526. Let $A B C$ be a triangle with circumcenter O, incenter I, and excenters I_{a}, I_{b}, I_{c}. Prove that

$$
O I^{2}+\left(O I_{a}\right)^{2}+\left(O I_{b}\right)^{2}+\left(O I_{c}\right)^{2}=12 R^{2}
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
J527. ind all n for which $2 \ldots 225$ (n twos) is a perfect square.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
J528. Let a, b, c be positive real numbers such that $a b+b c+c a=3$. Prove that

$$
\sum_{c y c} \frac{a^{2}+b^{2}}{a+b+2} \geq \frac{3(a+b+c-1)}{4}
$$

Proposed by Mihaela Berindeanu, Bucharest, România

S523. Let a, b, c in $[1,8]$. Prove that

$$
\left(2-\frac{a}{b^{2}}\right)\left(2-\frac{b}{c^{2}}\right)\left(2-\frac{c}{a^{2}}\right) \leq a b c .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

S524. Find all systems (x, y, z, t) of real numbers such that

$$
x(y+z+t)^{2}=y(x+z+t)^{2}=z(x+y+t)^{2}=t(x+y+z)^{2} .
$$

Proposed by Mircea Becheanu, Montreal, Canada
S525. Find the maximum of $(x-2)(y+1)$ over all real numbers x and y satisfying $3 x^{2}+4 x y+5 y^{2}=1$.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

S526. Let x, y, z be nonnegative real numbers. Prove that

$$
\sqrt{3}\left(x^{3}+y^{3}+z^{3}\right) \geq \sqrt{\prod_{c y c}\left(2 x^{2}-x y+2 y^{2}\right)} \geq \sqrt{3} \sum_{c y c} x y(x+y)-3 \sqrt{3} x y z .
$$

Proposed by Marius Stănean, Zalău, România
S527. Let $A B C$ be a triangle with $A B=A C$ and $\angle A=90^{\circ}$. Points E and F are given inside the angle $\angle B A C$ such that $\angle E A F=\angle E A B+\angle F A C$ and $B E \| C F$. Prove that

$$
E F^{2}=B E^{2}+C F^{2} .
$$

Proposed by Mihai Miculiţa, Oradea, România

S528. Let a, b, c be positive real numbers such that

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{11}{a+b+c} .
$$

Find the minimum of

$$
\left(a^{4}+b^{4}+c^{4}\right)\left(\frac{1}{a^{4}}+\frac{1}{b^{4}}+\frac{1}{c^{4}}\right) .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Undergraduate Problems

U523. Prove that for each nonegative integer n,

$$
\prod_{k=0}^{10^{n}-1}\left(\frac{4(2 k+1)}{2 k^{2}-2 k+1}+1\right)
$$

is a positive integer whose sum of digits is 5 .

Proposed by Titu Andreescu, Unversity of Texas at Dallas, USA

U524. Prove that for all integers $n>2$,

$$
2-\frac{1}{n!}<\left(1+\frac{1}{2!}\right)\left(1+\frac{2}{3!}\right) \cdots\left(1+\frac{n-1}{n!}\right)<3 .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
U525. Let $P(x)$ be a polynomial of degree d with integer coefficients and let d_{1}, \ldots, d_{k} be distinct integers. Prove that for any positive integer $k \leq d$ there are unique integers a_{1}, \ldots, a_{k}, not all zero, with $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=1$ and such that the polynomial $a_{1} P\left(x+d_{1}\right)+\cdots+a_{k} P\left(x+d_{k}\right)$ has degree $d-k+1$.

> Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

U526. Evaluate

$$
\int_{0}^{2} \frac{1}{t} \arctan \frac{3 t}{t^{2}+4} d t
$$

Proposed by Olimjon Jalilov, Tashkent, Uzbekistan
U527. Find the smallest constant C such that

$$
\sum_{k=1}^{n} \frac{k}{k^{4}+4}<C
$$

holds for all positive integer n.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
U528. Consider the double sequence

$$
s(m, n)=\frac{m-1}{n} \sum_{k=1}^{n} \frac{\left\lfloor\frac{3 k}{n}(m-1)\right\rfloor+3}{\left\lfloor 1+\frac{k}{n}(m-1)\right\rfloor!}
$$

Find $\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} s(m, n)$ and $\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} s(m, n)$.
Proposed by Besfort Shala, University of Primorska, Koper, Slovenia

Olympiad Problems

O523. Let Γ_{1}, Γ_{2} be two disks of center O_{1}, O_{2} and radius r_{1}, r_{2}, respectively. Line $O_{1} O_{2}$ intersects the circumference of Γ_{1} at a point A and $d=O_{1} O_{2}-\left(r_{1}+r_{2}\right) \geq 0$. Prove that for any points $M \in \Gamma_{1}$ and $N \in \Gamma_{2}$ the inequality $M N \geq M A$ holds true if and only if

$$
r_{1} r_{2}^{2} \leq d\left(d+r_{2}\right)\left(d+2 r_{2}\right)
$$

Proposed by Oleg Muskarov, Sofia, Bulgaria
O524. Let x, y, z be positive real numbers such that $x^{4}+y^{4}+z^{4}=3$. Prove that

$$
\sqrt{\frac{y z}{7-2 x}}+\sqrt{\frac{z x}{7-2 y}}+\sqrt{\frac{x y}{7-2 z}} \leq \frac{3 \sqrt{5}}{5}
$$

Proposed by Hoang Le Nhat Tung, Hanoi, Vietnam

O525. For any two number sets A and B define their sum as $A+B=\{a+b \mid a \in A$ and $b \in B\}$, and their difference by $A-B=\{a-b \mid a \in A$ and $b \in B\}$. Let $P=\{2,3,5,7,11, \ldots\}$ be the set of primes and $S=\{0,1,8,16,27,64,81,125,216,256, \ldots\}$ be the set of perfect cubes and fourth powers. Prove whether or not there are infinitely many positive integers not in

$$
(P+S) \cup(P-S) \cup(S-P)
$$

Proposed by Li Zhou, Polk State College, USA

O526. Let x, y, z be nonnegative real numbers such that $x y+y z+z x=3$. Prove that

$$
\left(x^{2}+y^{2}+z^{2}+1\right)^{3} \geq\left(x^{3}+y^{3}+z^{3}+5 x y z\right)^{2} .
$$

Proposed by Marius Stănean, Zalău, România
O527. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a nonconstant function such that

$$
\max \{f(x+y), f(x-y)\}=f(x) f(y)
$$

for all $x, y \in \mathbb{R}$. Prove that $f(x) \geq 1$ for all $x \in \mathbb{R}$.
Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran
O528. Find all functions $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that $f(1) \mid f(m)$ and

$$
f(m n) f(\operatorname{gcd}(m, n))=\operatorname{gcd}(m, n) f(m) f(n)
$$

for all $m, n \in \mathbb{N}$.

Proposed by Besfort Shala, University of Primorska, Koper, Slovenia

