Junior Problems

J487. Let $A B C D$ be a cyclic kite. Prove that $3 \angle A=\angle C$ or $\angle A=\angle 3 C$ if and only if

$$
\frac{A C}{B D}-\frac{B D}{A C}=\frac{1}{\sqrt{2}} .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

J488. Let a and b be positive real numbers such that $a b=a+b$. Prove that

$$
\sqrt{1+a^{2}}+\sqrt{1+b^{2}} \geq \sqrt{20+(a-b)^{2}}
$$

Proposed by An Zhenping, Xianyang Normal University, China
J489. Prove that in any triangle $A B C$

$$
8 r(R-2 r) \sqrt{r(16 R-5 r)} \leq a^{3}+b^{3}+c^{3}-3 a b c \leq 8 R(R-2 r) \sqrt{(2 R+r)^{2}+2 r^{2}}
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

J490. Let a, b, c be positive real numbers. Prove that

$$
\frac{a^{3}}{1+a b^{2}}+\frac{b^{3}}{1+b c^{2}}+\frac{c^{3}}{1+c a^{2}} \geq \frac{3 a b c}{1+a b c}
$$

Proposed by An Zhenping, Xianyang and Li Xin, Wugong, China
J491. Find all triples (x, y, z) of positive integers such that

$$
5\left(x^{2}+2 y^{2}+z^{2}\right)=2(5 x y-y z+4 z x)
$$

and at least one of x, y, z is a prime.
Proposed by Adrian Andreescu, University of Texas at Austin, USA

J492. Let $n>1$ be an integer and let a, b, c be positive real numbers such that $a^{n}+b^{n}+c^{n}=3$. Prove that

$$
\frac{1}{a^{n+1}+n}+\frac{1}{b^{n+1}+n}+\frac{1}{c^{n+1}+n} \geq \frac{3}{n+1}
$$

Proposed by Dragoljub Milošević, Gornji Milanovac, Serbia

Senior Problems

S487. Find all primes $a \geq b \geq c \geq d$ such that

$$
a^{2}+2 b^{2}+c^{2}+2 d^{2}=2(a b+b c-c d+d a) .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

S488. Let a, b, c be positive real numbers such that $a+b+c=3$. Prove that

$$
\frac{1}{a^{3}+b^{3}+a b c}+\frac{1}{b^{3}+c^{3}+a b c}+\frac{1}{c^{3}+a^{3}+a b c}+\frac{1}{3}\left(\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}\right) \geq 2 .
$$

Proposed by Hoang Le Nhat Tung, Hanoi, Vietnam
S489. Find all pairs (m, n) of positive integers with $m+n=2019$ for which there is a prime p such that

$$
\frac{4}{m+3}+\frac{4}{n+3}=\frac{1}{p} .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
S490. Prove that there is a real function f for which there is no a real function g such that $f(x)=g(g(x))$ for all $x \in \mathbb{R}$.

Proposed by Pavel Gadzinski, Bielsko-Biala, Poland

S491. Prove that in any acute triangle $A B C$ the following inequality holds:

$$
\frac{1}{\left(\cos \frac{A}{2}+\cos \frac{B}{2}\right)^{2}}+\frac{1}{\left(\cos \frac{B}{2}+\cos \frac{C}{2}\right)^{2}}+\frac{1}{\left(\cos \frac{C}{2}+\cos \frac{A}{2}\right)^{2}} \geq 1 .
$$

Proposed by Florin Rotaru, Focşani, România

S492. Find the greatest real constant C such that the inequality

$$
\left(a^{2}+2\right)\left(b^{2}+2\right)\left(c^{2}+2\right)-(a b c-1)^{2} \geq C(a+b+c)^{2}
$$

holds for all positive real numbers a, b, c.
Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Undergraduate Problems

U487. Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that the following conditions hold simultaneously:
(a) $f(f(x))=x$ for all $x \in \mathbb{R}$,
(b) $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$,
(c) $\lim _{x \rightarrow \infty} f(x)=-\infty$.

Proposed by Vincelot Ravoson, Lycée Henry IV, Paris, France

U488. Let a and b be positive real numbers. Evaluate

$$
\int_{a^{-b}}^{a^{b}} \frac{\arctan x}{x} d x
$$

Proposed by Michele Caselli, University of Modena, Italy
U489. Find all continuous functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
f(f(f(x)))-3 f(f(x))+3 f(x)-x=0
$$

for all $x \in \mathbb{R}$.

Proposed by Titu Andreescu, USA, and Marian Tetiva, România

U490. Find the greatest real number k such that the inequality

$$
\frac{a^{2}}{b}+\frac{b^{2}}{a} \geq \frac{2\left(a^{k+1}+b^{k+1}\right)}{a^{k}+b^{k}}
$$

holds for all positive real numbers a and b.

Proposed by Nguyen Viet Hung and Vo Quoc Ba Can, Hanoi, Vietnam

U491. Find all polynomials P with complex coefficients such that

$$
P(a)+P(b)=2 P(a+b),
$$

whenever a and b are complex numbers satisfying $a^{2}+5 a b+b^{2}=0$.

Proposed by Titu Andreescu, USA and Mircea Becheanu, Canada
U492. Let C be an arbitrary positive real number and let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers such that $x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=n$. Prove that

$$
\sum_{i=1}^{n} \frac{x_{i}}{x_{i}+C} \leq \frac{n}{C+1}
$$

Proposed by Angel Plaza, University of Las Palmas de Gran Canaria. Spain

Olympiad Problems

O487. Find all n and all distinct positive integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\binom{a_{1}}{3}+\cdots+\binom{a_{n}}{3}=\frac{1}{3}\binom{a_{1}+\cdots+a_{n}-n}{2}
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

O488. Let $m, n>1$ be integers with m even. Find the number of ordered systems $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ of integers such that:
(i) $0 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{m} \leq n$,
(ii) $a_{1}+a_{3}+\cdots \equiv a_{2}+a_{4}+\cdots \bmod (n+1)$.

Proposed by Virgil Domocos, Montreal, Canada

O489. In triangle $A B C, \angle A \geq \angle B \geq 60^{\circ}$. Prove that

$$
\frac{a}{b}+\frac{b}{a} \leq \frac{1}{3}\left(\frac{2 R}{r}+\frac{2 r}{R}+1\right)
$$

and

$$
\frac{a}{c}+\frac{c}{a} \geq \frac{1}{3}\left(7-\frac{2 r}{R}\right)
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

O490. Let $A B C$ be a triangle with incenter I and A-excenter I_{A}. The line through I perpendicular to $B I$ meets $A C$ at X, while the line through I perpendicular to $C I$ meets $A B$ at Y. Prove that X, I_{A}, Y are collinear if and only if $A B+A C=3 B C$.

Proposed by Tovi Wen, USA
O491. If a, b, c are real numbers greater than -1 such that $a+b+c+a b c=4$, prove that

$$
\sqrt[3]{(a+3)(b+3)(c+3)}+\sqrt[3]{\left(a^{2}+3\right)\left(b^{2}+3\right)\left(c^{2}+3\right)} \geq 2 \sqrt{a b+b c+c a+13} .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
O492. Let a, b, c, x, y, z be positive real numbers such that

$$
(a+b+c)(x+y+z)=\left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)=4 .
$$

Prove that

$$
\sqrt{a b c x y z} \leq \frac{4}{27}
$$

Proposed by Marius Stănean, Zalău, România

