Junior Problems

J553. Solve in real numbers the equation

$$
\left(x^{2}-2 \sqrt{2} x\right)\left(x^{2}-2\right)=2021
$$

Proposed by Adrian Andreescu, University of Texas at Dallas, USA
J554. Let x, y, z be positive real numbers such that $x+y+z=x y z$. Prove that

$$
\frac{1}{1+x^{2}}+\frac{1}{1+y^{2}}+\frac{1}{1+z^{2}} \geq \frac{1}{1+x y}+\frac{1}{1+y z}+\frac{1}{1+z x}
$$

Proposed by An Zhenping, Xianyang Normal University, China
J555. Let a, b, c be real numbers such that

$$
\frac{1}{a+2+\sqrt{a^{2}+8}}+\frac{1}{b+2+\sqrt{b^{2}+8}}+\frac{1}{c+2+\sqrt{c^{2}+8}} \leq \frac{1}{2} .
$$

Prove that $a+b+c \geq 3$. When does the equality occur?
Proposed by Titu Andreescu, University of Texas at Dallas, USA
J556. Let $A B C$ be a triangle with circumcircle Γ and circumcenter O. The tangents in B and C to Γ intersect in D and $A D$ intersects Γ in E. The parallel through A to $B C$ intersects Γ in F. Prove that $E F$ bisects side $B C$.

Proposed by Mihaela Berindeanu, Bucharest, România
J557. Let $A B C D$ be a parallelogram with $A B \neq A D$ and $\angle B A D>90^{\circ}$. We denote by M, N, P the orthogonal projections of A on $B C, C D, B D$, respectively, and let O be the intersection of diagonals $A C$ and $B D$. Prove that points M, N, O, P lie on a circle.

Proposed by Mihai Miculiţa, Oradea, România
J558. Let $A B C D E$ be a convex pentagon with $B C=C D, D E=E A$ and $\angle B C D+\angle D E A=180^{\circ}$. Knowing that $\angle B C D=\alpha$ and $E C=a$, determine the area of the pentagon.

Proposed by Waldemar Pompe, Warsaw, Poland

S553. Solve in real numbers the equation

$$
\left(x^{3}-3 x\right)^{2}+\left(x^{2}-2\right)^{2}=4 .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
S554. Let a, b, c, x, y, z be positive real numbers such that

$$
\frac{x}{b^{2}+c^{2}+x}+\frac{y}{c^{2}+a^{2}+y}+\frac{z}{a^{2}+b^{2}+z} \geq 1 .
$$

Prove that

$$
\begin{aligned}
& a b+b c+c a \leq x+y+z \\
& \text { Proposed by An Zhenping, Xianyang Normal University, China }
\end{aligned}
$$

S555. Let $A B C$ be a scalene triangle. We construct externally to $\triangle A B C$ the isosceles triangles $X A B, Y A C$ and $Z B C$ such that: $\angle A X B=\angle A Y C=90^{\circ}$ and $\angle Z B C=\angle Z C B=\angle B A C$. Knowing that $B Y, C X$ and $A Z$ are concurrent, find $\angle B A C$.

Proposed by Mihaela Berindeanu, Bucharest, România

S556. Let a, b, c be positive real numbers such that $a+b \leq 3 c$. Find the maximum possible value of

$$
\left(\frac{a}{6 b+c}+\frac{a}{b+6 c}\right)\left(\frac{b}{6 c+a}+\frac{b}{c+6 a}\right) .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

S557. Let a, b, c be positive real numbers such that $a b+b c+c a=3$. Prove that

$$
\frac{8 a^{2}}{b+c+2}+\frac{8 b^{2}}{c+a+2}+\frac{8 c^{2}}{a+b+2}+33 \geq 13(a+b+c) .
$$

Proposed by Marius Stănean, Zalău, România

S558. Let $A B C$ be a scalene triangle and let N be the center of its nine-point circle. Let A_{1} be the symmetric of A with respect to N. Knowing that A_{1} lies on the circumcircle of $\triangle A B C$, evaluate $\angle B A C$.

Undergraduate Problems

U553. Let A be an $n \times n$ matrix such that $A^{4}=I_{n}$. Prove that $A^{2}+\left(A+I_{n}\right)^{2}$ and $A^{2}+\left(A-I_{n}\right)^{2}$ are invertible.

Proposed by Adrian Andreescu, University of Texas at Dallas
U554. Evaluate

$$
\int_{a}^{b}\left\{\frac{x^{2}+1}{x^{2}-x+1}\right\} \mathrm{d} x
$$

in terms of a and b where $a<0<b$ and $\{t\}$ denotes the fractional part of t.
Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

U555. Let $f:[0,+\infty) \longrightarrow[0, \infty)$ be a differentiable function such that $f(x) e^{f(x)}=x$, for all $x \geq 0$. Evaluate

$$
\int_{0}^{e} f(x) d x
$$

Proposed by Prithvijit Chatraborty, Kolkata, India
U556. Find the volume of the solid obtained by rotating a unit cube about an axis connecting opposite vertices.
Proposed by Li Zhou, Polk State College
U557. Evaluate

$$
\int_{2}^{3} x e^{x}(\ln x+1) d x
$$

Proposed by Toyesh Prakash Sharma, St.C.F. Andrews School, Agra, India
U558. For every polynomial $P(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}$ define its reciprocal $\tilde{P}(x)$ by $\tilde{P}(x)=c_{0} x^{n}+c_{1} x^{n-1}+$ $\cdots+c_{n}$. Let $f(x)=a_{r} x^{d_{r}}+\cdots+a_{0} x^{d_{0}}$ be a polynomial with integer coefficients and $n=d_{r}>$ $d_{r-1}>\cdots>d_{0}=0$. Let $g(x)=b_{s} x^{e_{s}}+\cdots+b_{0}$ be a polynomial with positive integer coefficients and $n=e_{s}>e_{s-1}>\cdots>e_{0}=0$. Prove that if $f(x) \tilde{f}(x)=g(x) \tilde{g}(x)$ and $a_{0}=a_{1}=\cdots=a_{r}=1$, then $r=s$ and $b_{0}=b_{1}=\cdots=b_{s}=1$.

Olympiad Problems

O553. Let $A B C$ be a triangle with $A B=A C$ and let M be the midpoint of $B C$. Circle ω is tangent to $B C$ at M and lies outside triangle $A B C$. Circle Ω passes through A, is internally tangent to ω, and its center lies on $A M$. Circle γ is internally tangent to circle Ω, touches segment $B C$ and the extention of line $A C$. Through A tangents to ω and γ are drawn intersecting segment $M C$ at points K and L, respectively. Prove that the inradius of triangle $A B L$ is twice the inradius of triangle $A K C$.

Proposed by Waldemar Pompe, Warzaw, Poland

O554. Let a, b, c, d be real numbers such that $|a|,|b|,|c|,|d| \geq 1$ and

$$
a+b+c+d+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=0
$$

Prove that

$$
a+b+c+d \leq 2 \sqrt{2} .
$$

Proposed by Marius Stănean, Zalău, România

O555. Let $A B C D$ be a square of side length 1. Point X lies on the smaller arc $D A$ of the circumcircle of square $A B C D$. Let $r_{1}, r_{2}, r_{3}, r_{4}$ be the inradii of triangles $X D A, X A B, X B C, X C D$, respectively. Determine all possible values of

$$
\frac{1}{r_{1}}-\frac{1}{r_{2}}+\frac{1}{r_{3}}-\frac{1}{r_{4}}
$$

as X varies on the smaller arc $D A$ of the circumcircle of square $A B C D$.
Proposed by Waldemar Pompe, Warzaw, Poland

O556. Let a, b, c be the sidelengths of a triangle $A B C$. Prove that

$$
\left(a^{2}-b c\right) \cos \frac{B-C}{2}+\left(b^{2}-c a\right) \cos \frac{C-A}{2}+\left(c^{2}-a b\right) \cos \frac{A-B}{2} \geq 0
$$

Proposed by Marius Stănean, Zalău, România

O557. Evaluate

$$
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{(-1)^{k}}{2 k+1}\binom{n}{2 k}
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

O558. Let $\{x\}$ be the fractional part of the real number x. Prove that for all positive integers n there are pairwise distinct rational numbers $x_{1}, \ldots, x_{n}>n$ such that $\left\{x_{i} x_{j}\right\} \in\left(\frac{1}{2}, \frac{5}{6}\right)$ for $1 \leq i, j \leq n$.

Proposed by Titu Andreescu, Dallas, USA and Navid Safaei, Tehran, Iran

