Junior Problems

J517. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of positive real numbers such that $a_{1}=1, a_{2}=2$ and

$$
\frac{a_{n+1}^{3}+a_{n-1}^{3}}{9 a_{n}}+a_{n+1} a_{n-1}=3 a_{n}^{2} .
$$

Find a_{n} in a closed form.

Proposed by Adrian Andreescu, University of Texas at Dallas, USA

J518. Find all real numbers x, y, z such that

$$
x(y+z)^{2}=y(z+x)^{2}=z(x+y)^{2}=108 .
$$

J519. Let x, y, z be positive numbers such that $x y z(x+y+z)=3$. Prove that

$$
\left(2 x^{2}-x y+2 y^{2}\right)\left(2 y^{2}-y z+2 z^{2}\right)\left(2 z^{2}-z x+2 x^{2}\right) \geq 27
$$

Proposed by Hoang Le Nhat Tung, Hanoi, Vietnam

J520. Find all positive integers n for which $2^{3 n-1} 5^{n+1}+96$ is a perfect square.

Proposed by Adrian Andreescu, University of Texas at Dallas, USA
J521. Is it possible to write the integers $1,2, \ldots, 2020$ in a row so that the sum of any eleven neighboring numbers is divisible by 5 ?

Proposed by Li Zhou, Polk State College, Florida, USA
J522. Let a, b, c be nonnegative real numbers. Prove that

$$
\left(a^{2}+4 b^{2}\right)\left(b^{2}+4 c^{2}\right)\left(c^{2}+4 a^{2}\right) \geq 64 a b c(2 a-b)(2 b-c)(2 c-a) .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Senior Problems

S517. Let a, b, c be real numbers such that

$$
a^{3}+b^{3}+c^{3}-1=3(a-1)(b-1)(c-1) .
$$

Prove that $a+b+c \leq 2$.

Proposed by Titu Andreescu, University of Texas at Dallas, USA
S518. Let $A B C$ be a triangle with $B C=a, A B=A C=b$ and $a^{3}-b^{3}=3 a b^{2}$. Calculate $\angle B A C$.

Proposed by Dragoljub Milošević, Gornji Milanovac, Serbia
S519. Prove that in any triangle $A B C$

$$
2 \sqrt{3} \leq \operatorname{cosec} A+\operatorname{cosec} B+\operatorname{cosec} C \leq \frac{2 \sqrt{3}}{9}\left(1+\frac{R}{r}\right)^{2}
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
S520. Let a, b, c be the side lengths of a triangle $A B C$ with inradius r and circumradius R. Prove that

$$
\frac{a}{2 a+b}+\frac{b}{2 b+c}+\frac{c}{2 c+a} \geq \frac{2 r}{R} .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

S521. Let a, b, c be positive real numbers. Prove that

$$
\begin{gathered}
\left(\frac{8 a^{3}}{(b+c)^{3}}+\frac{b+c}{a}\right)\left(\frac{8 b^{3}}{(c+a)^{3}}+\frac{c+a}{b}\right)\left(\frac{8 c^{3}}{(a+b)^{3}}+\frac{a+b}{c}\right) \geq \\
\frac{143(a+b)(b+c)(c+a)}{8 a b c}-116 .
\end{gathered}
$$

S522. Let a_{1}, \ldots, a_{n} and $x_{1}, \ldots, x_{n},(n \geq 2)$, be positive real numbers such that

$$
\prod_{i=1}^{n} a_{i}=1 \quad \text { and } \quad \sum_{i=1}^{n} x_{i}=n
$$

Prove that

$$
\sum_{i=1}^{n} \frac{1}{(n-1) a_{i} x_{i}+1} \geq 1
$$

Proposed by An Zhenping, Xianyang Normal University, China

Undergraduate Problems

U517. We say that the polynomial $a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ with real coefficients is powerful if

$$
\left|a_{n}\right|+\cdots+\left|a_{1}\right|=\left|a_{0}\right| .
$$

Prove that if $P(x)$ is a polynomial with nonzero real coefficients of degree d, such that $P(x)(x-1)^{s}(x+1)^{t}$ is powerfull for some nonnegative integers s and t, then either $P(x)$ or $(-1)^{d} P(-x)$ has non increasing coefficients.

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran
U518. Evaluate

$$
\lim _{n \rightarrow \infty}\left(\frac{1^{2}}{n^{3}+n^{2}+1}+\frac{2^{2}}{n^{3}+n^{2}+2}+\cdots+\frac{n^{2}}{n^{3}+n^{2}+n}\right)
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
U519. Let k be a fixed integer. Evaluate

$$
\sum_{n=k+1}^{\infty} \frac{1}{n\left(n^{2}-1^{2}\right)^{2}\left(n^{2}-2^{2}\right)^{2} \ldots\left(n^{2}-k^{2}\right)^{2}}
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

U520. Evaluate

$$
\lim _{x \rightarrow 0} \frac{(1-\cos x)(1-\cos 2 x) \cdots(1-\cos n x)}{\sin ^{2 n} x} .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

U521. Find all automorphisms of the group $S_{3} \times \mathbb{Z}_{3}$.

U522. Let $f:(0, \infty) \longrightarrow(0, \infty)$ be a continuous function. For any positive integer n we denote $t_{n}=n \sqrt[n]{n}$. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{t_{n}}^{t_{n+1}} f\left(\frac{x}{n}\right) d x
$$

Olympiad Problems

O517. Prove that for any positive real numbers a, b, c

$$
\sqrt{\frac{2 a b}{a^{2}+b^{2}}}+\sqrt{\frac{2 b c}{b^{2}+c^{2}}}+\sqrt{\frac{2 c a}{c^{2}+a^{2}}}+\frac{3\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+c a} \geq 6 .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

O518. Let p be a prime congruent to 3 modulo 4. Alice and Bob have just filled in the cells of a table of size $2 \times p$ (2 rows, p columns). They proceeded thus: for every $m \in\{0,1, \ldots, p-1\}$, in the m-th cell of the first row of the table Alice wrote the remainder that m^{2} leaves when it is divided by p; for every $n \in\{0,1, \ldots, p-1\}$, in the n-th cell of the second row of the table Bob wrote the remainder that n^{4} leaves when it is divided by p. Prove that both rows of Alice and Bob's table contain the same numbers with the same multiplicities.

Proposed by José Hernández Santiago, Matemáticas UAGro

O519. Let a, b, c be positive numbers such that $a+b+c=a b+b c+c a$. Prove that

$$
\frac{3}{1+a}+\frac{3}{1+b}+\frac{3}{1+c}-\frac{4}{(1+a)(1+b)(1+c)} \geq 4
$$

Proposed by An Zhenping, Xianyang Normal University, China
O520. Let x, y, z be positive integers such that

$$
\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=6
$$

and $\operatorname{gcd}(z, x)=1$. Find the maximum value of $x+y+z$.
Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

O521. In the triangle $A B C$ we denote by m_{a}, m_{b}, m_{c} the lengths of its medians and by w_{a}, w_{b}, w_{c} the lengths of the angle bisectors. Prove that

$$
\frac{m_{a}}{w_{a}}+\frac{m_{b}}{w_{b}}+\frac{m_{c}}{w_{c}} \leq 1+\frac{R}{r}
$$

Proposed by Dragoljub Milošević, Gornji Milanovac, Serbia
O522. Let a, b, c be positive real numbers. Prove that

$$
\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}+\frac{27 a b c}{4\left(a^{3}+b^{3}+c^{3}\right)} \geq \frac{21}{4} .
$$

Proposed by Marius Stănean, Zalău, Romania

