Junior Problems

J481. Find all triples (p, q, r) of primes such that

$$
\begin{aligned}
& \qquad p^{2}+2 q^{2}+r^{2}=3 p q r . \\
& \text { Proposed by Adrian Andreescu, University of Texas at Austin, USA }
\end{aligned}
$$

J482. Find all positive integers less than 10,000 which are palindromic both in base 10 and base 11 .

Proposed by Mircea Becheanu, Montreal, Canada
J483. Let a, b, c be real numbers such that $13 a+41 b+13 c=2019$ and

$$
\max \left(\left|\frac{41}{13} a-b\right|,\left|\frac{13}{41} b-c\right|,|c-a|\right) \leq 1
$$

Prove that $2019 \leq a^{2}+b^{2}+c^{2} \leq 2020$.
Proposed by Titu Andreescu, University of Texas at Dallas, USA

J484. Let a and b positive real numbers such that $a^{2}+b^{2}=1$. Find the minimum value of

$$
\frac{a+b}{1+a b}
$$

Proposed by Marius Stănean, Zalău, Romania

J485. Find the maximum and minimum of

$$
\frac{1}{\sin ^{4} x+\cos ^{2} x}+\frac{1}{\sin ^{2} x+\cos ^{4} x}
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
J486. Let a, b, c be positive numbers. Prove that

$$
\frac{b c}{(2 a+b)(2 a+c)}+\frac{c a}{(2 b+c)(2 b+a)}+\frac{a b}{(2 c+a)(2 c+b)} \geq \frac{1}{3}
$$

Proposed by An Zhenping, Xianyang Normal University, China

Senior Problems

S481. Let n be a positive integer. Evaluate

$$
\sum_{k=1}^{n} \frac{(n+k)^{4}}{n^{3}+k^{3}}
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

S482. Prove that in any regular 31 -gon $A_{0} A_{1} \ldots A_{30}$ the following equality holds:

$$
\frac{1}{A_{0} A_{1}}=\frac{1}{A_{0} A_{2}}+\frac{1}{A_{0} A_{4}}+\frac{1}{A_{0} A_{8}}+\frac{1}{A_{0} A_{15}}
$$

Proposed by Dragoljub Milošević, Gornji Milanovac, Serbia

S483. For any real number a let $\lfloor a\rfloor$ and $\{a\}$ be the greatest integer less than or equal to a and the fractional part of a, respectively. Solve the equation

$$
16 x\lfloor x\rfloor-10\{x\}=2019 .
$$

Proposed by Adrian Andreescu, University of Texas at Austin, USA

S484. Let a, b, c be positive real numbers such that $a+b+c=2$. Prove that

$$
a^{2}\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)+b^{2}\left(\frac{1}{c}-1\right)\left(\frac{1}{a}-1\right)+c^{2}\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right) \geq \frac{1}{3}
$$

Proposed by An Zhenping, Xianyang Normal University, China

S485. Find all positive integers n for which there is a real constant c such that

$$
(c+1)\left(\sin ^{2 n} x+\cos ^{2 n} x\right)-c\left(\sin ^{2(n+1)} x+\cos ^{2(n+1)} x\right)=1,
$$

for all real numbers x.

Proposed by Titu Andreescu, University of Texas at Dallas, USA
S486. Let $A B C$ be an acute triangle. Let B_{1}, C_{1} be the midpoint of $A C$ and $A B$, respectively and B_{2}, C_{2} be the foot of altitude from B, C, respectively. Let B_{3}, C_{3} be the reflection of B_{2}, C_{2} across the line $B_{1} C_{1}$. The lines $B B_{3}$ and $C C_{3}$ intersect in X. Prove that $X B=X C$.

Undergraduate Problems

U481. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\left\lfloor e^{\frac{1}{n}}\right\rfloor+\left\lfloor e^{\frac{2}{n}}\right\rfloor+\cdots+\left\lfloor e^{\frac{n}{n}}\right\rfloor\right)
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

U482. For any positive integer n consider the polynomial $f_{n}=x^{2 n}+x^{n}+1$. Prove that for any positive integer m there is a positive integer n such that f_{n} has exactly m irreducible factors in $\mathbb{Z}[X]$.

Proposed by Dorin Andrica, Babeş-Bolyai University, Cluj-Napoca, Romania

U483. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{1 \leq i<j<k \leq n} \cot ^{-1}\left(\frac{i}{n}\right) \cot ^{-1}\left(\frac{j}{n}\right) \cot ^{-1}\left(\frac{k}{n}\right)
$$

Proposed by Nicuşor Zlota, Focşani, Romania

U484. Find all polynomials $P(x)$ for which:

$$
P(a+b)=6(P(a)+P(b))+15 a^{2} b^{2}(a+b),
$$

for all complex numbers a and b such that $a^{2}+b^{2}=a b$.
Proposed by Titu Andreescu, USA and Mircea Becheanu, Canada

U485. Let $f:[0,1] \longrightarrow(0, \infty)$ be a continuous function and let A be the set of all positive integers n for which there is a real number x_{n} such that

$$
\int_{x_{n}}^{1} f(t) \mathrm{d} t=\frac{1}{n} .
$$

Prove that the set $\left\{x_{n}\right\}_{n \in A}$ is an infinite sequence and find

$$
\lim _{n \rightarrow \infty} n\left(x_{n}-1\right) .
$$

Proposed by Florin Rotaru, Focşani, Romania

U486. Let $\lfloor x\rfloor$ be the floor function and let $k \geq 3$ be a positive integer. Evaluate

$$
\int_{0}^{\infty} \frac{\lfloor x\rfloor}{x^{k}} d x
$$

Proposed by Metin Can Aydemir, Ankara, Turkey

Olympiad Problems

O481. Prove that

$$
\prod_{k=1}^{n}\left(1-4 \sin \frac{\pi}{5^{k}} \sin \frac{3 \pi}{5^{k}}\right)=-\sec \frac{\pi}{5^{n}}
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
O482. Let a, b, c be positive real numbers such that $a^{2}+b^{2}+c^{2}=1$. Prove that

$$
\frac{a^{2}}{c^{3}}+\frac{b^{2}}{a^{3}}+\frac{c^{2}}{b^{3}} \geq(a+b+c)^{3}
$$

Proposed by Dragoljub Milošević, Gornji Milanovac, Serbia
O483. Find all integers n for which $\left(4 n^{2}-1\right)\left(n^{2}+n\right)+2019$ is a perfect square.

Proposed by Titu Andreescu, University of Texas at Dallas, USA
O484. Let $A B C$ be a triangle with $A B=A C$. Points E and F lie on $A B$ and $A C$, respectively so that $E F$ passes through the circumcenter of $A B C$. Let M be the midpoint of $A B$, let N be the midpoint of $A C$ and set $P=F M \cap E N$. Prove that the lines $A P$ and $E F$ are perpendicular.

Proposed by Tovi Wen, USA
O485. Prove that any infinite set of positive integers contains two numbers whose sum has a prime divisor greater than 10^{2020}.

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

O486. Let a, b, c be positive real numbers. Prove that

$$
a^{2}+b^{2}+c^{2} \geq a \sqrt[3]{\frac{b^{3}+c^{3}}{2}}+b \sqrt[3]{\frac{c^{3}+a^{3}}{2}}+c \sqrt[3]{\frac{a^{3}+b^{3}}{2}}
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

