Junior Problems

J583. Let m and n be positive integers. Prove that

$$27^{2m+n+1} + 27^{m+2n+1} - 27^{m+n+1} + 1$$

has a factor greater than $6 \cdot 27^{\min(m,n)}$.

Proposed by Adrian Andreescu, University of Texas at Dallas, USA

J584. Let x, y, z be rational numbers such that

$$3x^2 + 2022yz - 2016zx, \ 3y^2 + 2022xz - 2016xy, \ z^2 + 674xy - 672yz$$

are all squares of rational numbers. Prove that x = y = z = 0.

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

J585. Let a, b, c > 1 be real numbers such that

$$\frac{1}{a-1} + \frac{1}{b-1} + \frac{1}{c-1} = 1.$$

Prove that

$$abc + 44 \ge 9(a + b + c).$$

Proposed by Marius Stănean, Zalău, Romania

J586. Let ABC be a triangle with AC = BC and altitudes AD, BE, CF. The circle with diameter BD cuts AB in M and BE in N. Line MN cuts AC in Q and CF in P. Let S denote the midpoint of segment DC. Show that SQP is an isosceles triangle.

Proposed by Mihaela Berindeanu, Bucharest, Romania

J587. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{a^2}{a^2 + bc} + \frac{b^2}{b^2 + ca} + \frac{c^2}{c^2 + ab} + \frac{a^3 + b^3 + c^3 + 9abc}{(a+b)(b+c)(c+a)} \ge 3.$$

When does the equality occur?

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

J588. Find all nonnegative integers x, y, z such that

 $4^x + 3^y = z^2.$

Proposed by Mihaela Berindeanu, Bucharest, Romania

Senior Problems

S583. Solve in integers the equation

$$(2x^2 - 10x + 50)(2y^2 - 10y + 50) = 2022^2.$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

S584. Prove that in any triangle ABC,

$$(b+c)m_a + (c+a)m_b + (a+b)m_c \ge 3\sqrt{a^2b^2 + b^2c^2 + c^2a^2}.$$

Proposed by Marius Stănean, Zalău, Romania

S585. Let ABC be a scalene triangle with circumcircle Γ and let N be the center of its nine-point circle. Line AN intersects circle Γ at D. Let N_1 be the center of the nine-point circle of $\triangle BCD$. Prove that A, N, N_1, D are collinear and $AD = 2NN_1$.

Proposed by Todor Zaharinov, Sofia, Bulgaria

S586. Prove that in any triangle,

$$(s^2 + r^2 + 10Rr)(4R + r) \le 8Rs^2.$$

Proposed by Mihaly Bencze and Neculai Stanciu, Romania

S587. Diagonals AC and BD of a convex quadrilateral ABCD meet at E. Points M and N are the midpoints of sides AB and CD, respectively. Segment MN meets diagonals AC and BD at P and Q, respectively. Prove that

$$\frac{PQ}{MN} = \frac{|[BCE] - [ADE]|}{[ABCD]},$$

were [XYZ] denotes the area of XYZ.

Proposed by Waldemar Pompe, Warsaw, Poland

S588. Find all triples (a, b, c) of nonnegative integers such that

$$2^a 3^b + 7 = c^3.$$

Proposed by Prodromos Fotiadis, Nikiforos High School, Drama, Greece

Undergraduate Problems

U583. Let $k \ge 1$ be a fixed integer and let

$$P_n(x) = x^n (x^k - x^{k-1} - \dots - x - 1) - 1.$$

Prove that each polynomial $P_n(x)$ has a single positive root, r_n , and the sequence r_1, r_2, \ldots, r_n is decreasing.

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

U584. Let m, n, p be positive integers greater than 1. Let A be a $p \times p$ real matrix such that $A^m B = BA^m$ and $A^n B = BA^n$ for all $p \times p$ real matrices B. Prove that if $\det(A) \neq 0$ and $\gcd(m, n) = 1$ then AB = BA for all $p \times p$ real matrices B.

Proposed by Mircea Becheanu, Canada

U585. Evaluate

$$\sum_{n=1}^{\infty} \left[n^2 \left(\zeta(2) - 1 - \frac{1}{2^2} - \dots - \frac{1}{n^2} \right) - n + \frac{1}{2} - \frac{1}{6n} \right].$$

Proposed by Ovidiu Furdui and Alina Sîntămărian, Cluj-Napoca, Romania

U586. Find all functions $f, g : \mathbb{Q} \to \mathbb{R}$ such that

$$f(x)f(x+y) = f(y)^2 f(x-y)^2 g(y)$$

for all $x, y \in \mathbb{Q}$.

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

U587. For $x, y \ge 5$ show that

$$\left(\frac{1}{x}\right)^{\frac{1}{x}} \left(\frac{1}{y}\right)^{\frac{1}{y}} \le \left(\frac{4}{x^2 + y^2}\right)^{\frac{2}{x+y}}$$

Proposed by Toyesh Prakash Sharma, Agra College, India

U588. Prove that

$$\lim_{n \to \infty} \beta^{-\frac{1}{n}}(n\pi, n\pi) = 4^{\pi},$$

where $\beta(x, y)$ is the Euler integral of the first kind.

Proposed by Ankush Kumar Parcha, India

Olympiad Problems

O583. Let a, b, c be real numbers. Prove that

$$a^{3} + b^{3} + c^{3} - 3abc \le (a^{2} + b^{2} + c^{2} + 2)^{3/2} - 3(a + b + c),$$

with equality if and only if ab + bc + ca = 1.

Proposed by Florin Pop, USA and Gigi Stoica, Canada

O584. Let ABCD be a circumscriptible quadrilateral and let $\{O\} = AC \cap BD$. Let r_1, r_2, r_3, r_4 be the inradii and R_1, R_2, R_3, R_4 be the radii of *O*-excircles of triangles AOB, BOC, COD, DOA, respectively. Prove that

$$\frac{AB}{1 - \frac{r_1}{R_1}} + \frac{CD}{1 - \frac{r_3}{R_3}} = \frac{BC}{1 - \frac{r_2}{R_2}} + \frac{DA}{1 - \frac{r_4}{R_4}}$$

Proposed by Marius Stănean, Zalău, Romania

O585. Prove that in any triangle ABC

$$\frac{9}{16} \left(\frac{12r^2}{R^2} - 1 \right) \le \sum_{cyc} \cos A \sin B \sin C \le \frac{9}{4} \left(\frac{3}{4} - \frac{r^2}{R^2} \right)$$

Proposed by Marian Ursărescu, Roman, Romania

O586. Diagonals AC and BD of convex quadrilateral ABCD intersect at point E. Triangles ABP and CDQ are constructed outside of the quadrilateral ABCD, such that

$$\angle PAB = \angle DAE, \ \angle PBA = \angle CBE$$

 $\angle QDC = \angle ADE, \ \angle QCD = \angle BCE.$

Prove that P, E, Q are collinear.

Proposed by Waldemar Pompe, Warsaw, Poland

O587. Let a, b, c, d be positive real numbers. Prove that

$$22a + 25b + 30c + 30d \ge 360\sqrt[3]{\frac{abcd}{2a + 5b + 10c + 30d}}.$$

When does equality hold?

Proposed by An Zhenping, Xianyang Normal University, China

O588. Let a, b, c, d be positive real numbers such that

$$\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} + \frac{1}{1+d} = 1.$$

Prove that

$$ab + ac + ad + bc + bd + cd + 18 \ge 6(a + b + c + d)$$

Proposed by Marius Stănean, Zalău, Romania