Junior Problems

J583. Let m and n be positive integers. Prove that

$$
27^{2 m+n+1}+27^{m+2 n+1}-27^{m+n+1}+1
$$

has a factor greater than $6 \cdot 27^{\min (m, n)}$.
Proposed by Adrian Andreescu, University of Texas at Dallas, USA
J584. Let x, y, z be rational numbers such that

$$
3 x^{2}+2022 y z-2016 z x, 3 y^{2}+2022 x z-2016 x y, z^{2}+674 x y-672 y z
$$

are all squares of rational numbers. Prove that $x=y=z=0$.
Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran
J585. Let $a, b, c>1$ be real numbers such that

$$
\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}=1 .
$$

Prove that

$$
a b c+44 \geq 9(a+b+c)
$$

Proposed by Marius Stănean, Zalău, Romania
J586. Let $A B C$ be a triangle with $A C=B C$ and altitudes $A D, B E, C F$. The circle with diameter $B D$ cuts $A B$ in M and $B E$ in N. Line $M N$ cuts $A C$ in Q and $C F$ in P. Let S denote the midpoint of segment $D C$. Show that $S Q P$ is an isosceles triangle.

Proposed by Mihaela Berindeanu, Bucharest, Romania
J587. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$
\frac{a^{2}}{a^{2}+b c}+\frac{b^{2}}{b^{2}+c a}+\frac{c^{2}}{c^{2}+a b}+\frac{a^{3}+b^{3}+c^{3}+9 a b c}{(a+b)(b+c)(c+a)} \geq 3 .
$$

When does the equality occur?
Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
J588. Find all nonnegative integers x, y, z such that

$$
4^{x}+3^{y}=z^{2} .
$$

Proposed by Mihaela Berindeanu, Bucharest, Romania

Senior Problems

S583. Solve in integers the equation

$$
\left(2 x^{2}-10 x+50\right)\left(2 y^{2}-10 y+50\right)=2022^{2} .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
S584. Prove that in any triangle $A B C$,

$$
(b+c) m_{a}+(c+a) m_{b}+(a+b) m_{c} \geq 3 \sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}} .
$$

Proposed by Marius Stănean, Zalău, Romania
S585. Let $A B C$ be a scalene triangle with circumcircle Γ and let N be the center of its nine-point circle. Line $A N$ intersects circle Γ at D. Let N_{1} be the center of the nine-point circle of $\triangle B C D$. Prove that A, N, N_{1}, D are collinear and $A D=2 N N_{1}$.

Proposed by Todor Zaharinov, Sofia, Bulgaria
S586. Prove that in any triangle,

$$
\left(s^{2}+r^{2}+10 R r\right)(4 R+r) \leq 8 R s^{2} .
$$

Proposed by Mihaly Bencze and Neculai Stanciu, Romania
S587. Diagonals $A C$ and $B D$ of a convex quadrilateral $A B C D$ meet at E. Points M and N are the midpoints of sides $A B$ and $C D$, respectively. Segment $M N$ meets diagonals $A C$ and $B D$ at P and Q, respectively. Prove that

$$
\frac{P Q}{M N}=\frac{|[B C E]-[A D E]|}{[A B C D]},
$$

were $[X Y Z]$ denotes the area of $X Y Z$.
Proposed by Waldemar Pompe, Warsaw, Poland
S588. Find all triples (a, b, c) of nonnegative integers such that

$$
2^{a} 3^{b}+7=c^{3} .
$$

Proposed by Prodromos Fotiadis, Nikiforos High School, Drama, Greece

Undergraduate Problems

U583. Let $k \geq 1$ be a fixed integer and let

$$
P_{n}(x)=x^{n}\left(x^{k}-x^{k-1}-\cdots-x-1\right)-1 .
$$

Prove that each polynomial $P_{n}(x)$ has a single positive root, r_{n}, and the sequence $r_{1}, r_{2}, \ldots, r_{n}$ is decreasing.

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran
U584. Let m, n, p be positive integers greater than 1 . Let A be a $p \times p$ real matrix such that $A^{m} B=B A^{m}$ and $A^{n} B=B A^{n}$ for all $p \times p$ real matrices B. Prove that if $\operatorname{det}(A) \neq 0$ and $\operatorname{gcd}(m, n)=1$ then $A B=B A$ for all $p \times p$ real matrices B.

Proposed by Mircea Becheanu, Canada
U585. Evaluate

$$
\sum_{n=1}^{\infty}\left[n^{2}\left(\zeta(2)-1-\frac{1}{2^{2}}-\cdots-\frac{1}{n^{2}}\right)-n+\frac{1}{2}-\frac{1}{6 n}\right] .
$$

Proposed by Ovidiu Furdui and Alina Sîntămărian, Cluj-Napoca, Romania
U586. Find all functions $f, g: \mathbb{Q} \rightarrow \mathbb{R}$ such that

$$
f(x) f(x+y)=f(y)^{2} f(x-y)^{2} g(y)
$$

for all $x, y \in \mathbb{Q}$.
Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran
U587. For $x, y \geq 5$ show that

$$
\left(\frac{1}{x}\right)^{\frac{1}{x}}\left(\frac{1}{y}\right)^{\frac{1}{y}} \leq\left(\frac{4}{x^{2}+y^{2}}\right)^{\frac{2}{x+y}}
$$

Proposed by Toyesh Prakash Sharma, Agra College, India
U588. Prove that

$$
\lim _{n \rightarrow \infty} \beta^{-\frac{1}{n}}(n \pi, n \pi)=4^{\pi},
$$

where $\beta(x, y)$ is the Euler integral of the first kind.

Olympiad Problems

O583. Let a, b, c be real numbers. Prove that

$$
a^{3}+b^{3}+c^{3}-3 a b c \leq\left(a^{2}+b^{2}+c^{2}+2\right)^{3 / 2}-3(a+b+c),
$$

with equality if and only if $a b+b c+c a=1$.

> Proposed by Florin Pop, USA and Gigi Stoica, Canada

O584. Let $A B C D$ be a circumscriptible quadrilateral and let $\{O\}=A C \cap B D$. Let $r_{1}, r_{2}, r_{3}, r_{4}$ be the inradii and $R_{1}, R_{2}, R_{3}, R_{4}$ be the radii of O-excircles of triangles $A O B, B O C, C O D, D O A$, respectively. Prove that

$$
\frac{A B}{1-\frac{r_{1}}{R_{1}}}+\frac{C D}{1-\frac{r_{3}}{R_{3}}}=\frac{B C}{1-\frac{r_{2}}{R_{2}}}+\frac{D A}{1-\frac{r_{4}}{R_{4}}} .
$$

Proposed by Marius Stănean, Zalău, Romania
O585. Prove that in any triangle $A B C$

$$
\frac{9}{16}\left(\frac{12 r^{2}}{R^{2}}-1\right) \leq \sum_{c y c} \cos A \sin B \sin C \leq \frac{9}{4}\left(\frac{3}{4}-\frac{r^{2}}{R^{2}}\right)
$$

Proposed by Marian Ursărescu, Roman, Romania
O586. Diagonals $A C$ and $B D$ of convex quadrilateral $A B C D$ intersect at point E. Triangles $A B P$ and $C D Q$ are constructed outside of the quadrilateral $A B C D$, such that

$$
\begin{aligned}
& \angle P A B=\angle D A E, \quad \angle P B A=\angle C B E \\
& \angle Q D C=\angle A D E, \angle Q C D=\angle B C E
\end{aligned}
$$

Prove that P, E, Q are collinear.
Proposed by Waldemar Pompe, Warsaw, Poland
O587. Let a, b, c, d be positive real numbers. Prove that

$$
22 a+25 b+30 c+30 d \geq 360 \sqrt[3]{\frac{a b c d}{2 a+5 b+10 c+30 d}}
$$

When does equality hold?

> Proposed by An Zhenping, Xianyang Normal University, China

O588. Let a, b, c, d be positive real numbers such that

$$
\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}=1 .
$$

Prove that

$$
a b+a c+a d+b c+b d+c d+18 \geq 6(a+b+c+d)
$$

Proposed by Marius Stănean, Zalău, Romania

