Junior Problems

J547. Find all primes p such that

$$
\frac{2^{p+2}-1}{p}
$$

is a prime.
Proposed by Adrian Andreescu, University of Texas at Dallas, USA
J548. Let a, b, c, x, y be positive real numbers such that $x+y=1$. Prove that

$$
\sqrt{\frac{a^{3}}{x a+y b}}+\sqrt{\frac{b^{3}}{x b+y c}}+\sqrt{\frac{c^{3}}{x c+y a}} \geq a+b+c
$$

Proposed by Mircea Becheanu, Canada
J549. Let a, b, c be positive real numbers. Prove that

$$
\frac{b+c}{a^{2}}+\frac{c+a}{b^{2}}+\frac{a+b}{c^{2}}-\frac{9}{a+b+c} \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}
$$

Proposed by Adrian Andreescu, University of Texas at Dallas, USA
J550. Let a, b, c be real numbers with $a, b \leq c$, such that $a b c=1$ and $a b+b c+c a=0$. Find the greatest real number k such that

$$
|a+b| \geq k|c|
$$

Proposed by Ayashi Jain, Gurgaon, Haryana, India
J551. Let $A B C D$ be a square and let M be a point on side $C D$. The lines $A M$ and $B D$ intersect in E. The perpendicular in E on $A M$ intersects $B C$ in N and $A N$ intersects $B D$ in F. Let K be the intersection point of $E N$ and $F M$. Prove that $A K$ is perpendicular to $M N$.

Proposed by Mircea Becheanu, Canada
J552. Let x, y, z be positive real numbers with $x y+x z+y z+x y z=4$. Prove that

$$
2(\sqrt{x+1}+\sqrt{y+1}+\sqrt{z+1}) \leq 3 \sqrt{(x+1)(y+1)(z+1)}
$$

Proposed by Mihaela Berindeanu, Bucharest, România

Senior Problems

S547. Let a and b be postive real numbers less than 2 such that $a b=2$. Solve in real numbers the equation

$$
4\left(x^{2}+a x+b\right)\left(x^{2}+b x+a\right)+a^{3}+b^{3}=9 .
$$

Proposed by Adrian Andreescu, University of Texas at Dallas, USA

S548. Let a, b, c, d be nonnegative real numbers such that $a+b+c+d=10$. Prove that

$$
6 a+2 a b+a b c+a b c d \leq 96 .
$$

Proposed by An Zhenping, Xianyang Normal University, China

S549. Let a, b, c be positive real numbers such that $a+b+c+a b c=4$. Prove that

$$
a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b} \leq \sqrt{1+4 a-a^{2}}+\sqrt{1+4 b-b^{2}}+\sqrt{1+4 c-c^{2}} \leq a b+b c+c a+3 .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
S550. Let a, b, c be positive real numbers. Prove that

$$
\sqrt{a^{2}+2 a b}+\sqrt{b^{2}+2 b c}+\sqrt{c^{2}+2 c a} \geq \sqrt{3 a b}+\sqrt{3 b c}+\sqrt{3 c a} .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

S551. Let a, b, c be the side lengths of a triangle with inradius r and circumradius R. Prove that

$$
\frac{R}{r}+(1+\sqrt{5}) \geq(3+\sqrt{5}) \cdot \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}
$$

When does equality hold?

S552. Find all triangles $A B C$ with $A B=8$ for which there is an interior point P such that $P B=5$, $P C, A C, B C$ is an arithmetic sequence with common difference 2 and $\angle B P C=2 \angle B A C$.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Undergraduate Problems

U547. Let a, b, c, d be real numbers such that all solutions to the equation

$$
x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+1022=0
$$

are real numbers less than -1 . Pove that $a+c<b+d$.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

U548. Evaluate

$$
\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} x}{1+\tan ^{n} x}
$$

where n is a positive integer.
Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

U549. Evaluate

$$
\sum_{n=1}^{\infty} \frac{4 n-1}{n^{2}(2 n-1)^{2}}
$$

Proposed by Toyesh Prakash Sharma, St.C.F. Andrews School, Agra, India
U550. Let

$$
f_{n}(x)=\left(x^{2}-x+1\right)\left(x^{4}-x^{2}+1\right)\left(x^{8}-x^{4}+1\right) \cdots\left(x^{2^{n}}-x^{2^{n-1}}+1\right) .
$$

Prove that for $|x|<1$

$$
\frac{1}{3}<\lim _{n \rightarrow \infty} f_{n}(x) \leq \frac{4}{3}
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
U551. Let $P(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d}$ be a polynomial with positive coefficients such that $a_{k}^{2}>9 a_{k-1} a_{k+1}$, for all $k=1, \ldots, d-1$. Prove that $P(x)$ has d distinct real roots.

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran
U552. Find all polynomials $P(x)$ with real coefficients for which

$$
P(P(a+b))-4 a b P(a+b)+4 a^{2} b^{2} \geq P\left(a^{2}\right)+P\left(b^{2}\right) \geq P\left(a^{2}+b^{2}\right)-P(\sqrt{2} a b)
$$

Proposed by Karthik Vedula, James S. Rickards High School, Tallahassee, USA

Olympiad Problems

O547. Let a, b, c be the side lengths of a triangle and let R and r be the circumradius and inradius, respectively. Prove that:

$$
\left(\frac{a}{b+c}\right)^{2}+\left(\frac{b}{c+a}\right)^{2}+\left(\frac{c}{a+b}\right)^{2}+\frac{17 r}{18 R} \geq \frac{11}{9}
$$

Proposed by Titu Andreescu, USA and Marius Stănean, România

O548. Let $m, n, p \geq 2$ be positive integers. Find the number of $n \times p$ matrices with entries in the set $\{1,2, \ldots, m\}$ such that every element of the matrix is distinct from its row and column neighbors.

Proposed by Mircea Becheanu, Canada

O549. Let $A B C$ be a triangle. Prove that

$$
\frac{\cos A}{\sin ^{2} A}+\frac{\cos B}{\sin ^{2} B}+\frac{\cos C}{\sin ^{2} C} \geq \frac{7}{4}\left(\frac{R}{r}+\frac{r}{R}\right)-\frac{19}{8} \geq \frac{1}{16}\left(21 \frac{R}{r}-10\right) \geq \frac{R}{r}
$$

(An improvement of inequality S544.)
Proposed by Marius Stănean, Zalău, România
O550. Let $A B C$ be a triangle. Incircle with radius r touches $B C$ at D. Point X lies inside angle $B A C$ and outside triangle and satisfies the following conditions:

$$
B D \cdot B X=C D \cdot C X \quad \text { and } \quad \tan \frac{1}{2} \angle C X B=\frac{r}{B C} .
$$

Prove that X lies on the A-excircle.

Proposed by Dominik Burek, Krakow, Poland

O551. Let $A B C$ be a triangle and let Δ be its area. Prove that

$$
a(s-a) \cos \frac{B-C}{4}+b(s-b) \cos \frac{C-A}{4}+c(s-c) \cos \frac{A-B}{4} \geq 2 \sqrt{3} \Delta .
$$

Proposed by An Zhenping, Xianyang Normal University, China
O552. Let $A B C$ be a triangle with incenter I. The incircle is tangent to $B C, C A, A B$ at points D, E, F, respectively. Denote by A_{1}, B_{1}, C_{1} the orthocenters of the triangles $A E F, B F D, C D E$, respectively.
(1) Prove that circle $\left(D B_{1} C_{1}\right)$ passes through the foot of the altitude from A of triangle $A B C$.
(2) Prove that circles $\left(D B_{1} C_{1}\right),\left(E C_{1} A_{1}\right),\left(F A_{1} B_{1}\right)$ have a common point and this point is the Feuerbach point of triangle $A B C$.

