Junior Problems

J511. Let a, b, c be positive real numbers such that $a+b+c \leq 3 \sqrt[3]{3 a b c}$. Prove that

$$
9(a+b+c)^{3}<\left(a+3 b+3 c+\frac{2 b c}{a}\right)\left(3 a+b+3 c+\frac{2 c a}{b}\right)\left(3 a+3 b+c+\frac{2 a b}{c}\right)
$$

Proposed by Adrian Andreescu, University of Texas at Dallas, USA
J512. Let $A B C$ be a triangle with $A C=B C$ and let a be a positive real number. Consider two variable circles with radii r_{1} and r_{2} lying inside the triangle such that the first circle is tangent to segments $A B$, $A C$, the second one to segments $A B, B C$, and $r_{1}+r_{2}=a$. Prove that the common external tangents to these circles, different from line $A B$, are all tangent to a fixed circle.

Proposed by Waldemar Pompe, Warsaw, Poland
J513. Let a, b, c be distinct positive real numbers such that $a b+b c+c a=1$. Prove that

$$
\sum_{c y c} \frac{(a+b)(a+c)-b c}{(b-c)\left(b^{3}-c^{3}\right)} \geq\left(\sum_{c y c} \frac{a}{|b-c|}\right)^{2}
$$

Proposed by Adrian Andreescu, University of Texas at Dallas, USA
J514. Let a, b, c be nonnegative real numbers such that

$$
\left(a^{2}-a+1\right)\left(b^{2}-b+1\right)\left(c^{2}-c+1\right)=1 .
$$

Prove that

$$
\begin{aligned}
& \left(a^{2}+a b+b^{2}\right)\left(b^{2}+b c+c^{2}\right)\left(c^{2}+c a+a^{2}\right) \leq 27 \\
& \quad \text { Proposed by Marius Stănean, Zalău, Romania }
\end{aligned}
$$

J515. Let a, b, c be complex numbers such that $a+b+c=3$. Prove that any two of the equalities

$$
a^{3}-9=b c(a-9) ; b^{3}-9=c a(b-9) ; c^{3}-9=a b(c-9)
$$

imply the third.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
J516. Let a, b, c be positive real numbers. Prove that

$$
\frac{a}{\sqrt{b+c}}+\frac{b}{\sqrt{c+a}}+\frac{c}{\sqrt{a+b}} \geq \sqrt{\frac{3(a+b+c)}{2}}
$$

Proposed by Mircea Becheanu, Montreal, Canada

Senior Problems

S511. Let a, b, c be positive real numbers such that $a b+b c+c a=3$. Prove that

$$
(\sqrt{a}+\sqrt{b}+\sqrt{c}+1)^{2} \leq 2(a+b)(b+c)(c+a)
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
S512. Let a, b, c be positive real numbers. Prove that

$$
\frac{a^{3}}{\sqrt{b^{2}-b c+c^{2}}}+\frac{b^{3}}{\sqrt{c^{2}-c a+a^{2}}}+\frac{c^{3}}{\sqrt{a^{2}-a b+b^{2}}} \geq a^{2}+b^{2}+c^{2} .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
S513. Solve the equation

$$
16\{x\}(x+2020\{x\})=[x]^{2},
$$

where $[x]$ and $\{x\}$ are the greatest integer less than or equal to x and the fractional part of x, respectively.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
S514. Let a, b, c be positive numbers. Prove that

$$
\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b} \geq \frac{4\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+b a}+2 .
$$

Proposed by An Zhenping, Xianyang Normal University, China
S515. Let a, b, c be positive real numbers such that $a b c=1$. Prove that

$$
(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c})^{6} \geq 27(a+2)(b+2)(c+2)
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
S516. Let a, b, c be nonnegative real numbers such that

$$
(a+b)(b+c)(c+a)=2 .
$$

Prove that

$$
\left(a^{2}+b c\right)\left(b^{2}+c a\right)\left(c^{2}+a b\right)+8 a^{2} b^{2} c^{2} \leq 1 .
$$

Proposed by Marius Stănean, Zalău, Romania

Undergraduate Problems

U511. Let A and B be $n \times n$ matrices such that $A B=A+B$. Prove that

$$
\operatorname{rank}\left(A^{2}\right)+\operatorname{rank}\left(B^{2}\right) \leq 2 \operatorname{rank}(A B) .
$$

Proposed by Konstantinos Metaxas, Athens, Greece
U512. Consider the polynomial $P(x)=x^{6}+4 x^{5}+8 x^{4}+12 x^{3}+16 x^{2}+16 x+8$. Evaluate

$$
\int \frac{x^{9}+16 x}{P(x) P(-x)} d x
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
U513. Let n be a positive integer. Prove that the polynomial

$$
X^{n}+2\binom{n}{1} X^{n-1}+\cdots+2\binom{n}{k} X^{n-k}+\cdots+2\binom{n}{n-1} X+1
$$

is divisible by $X^{2}+5 X+1$, if and only if $n=3$.
Proposed by Mircea Becheanu, Montreal, Canada
U514. Let $A, B, C \in(-\pi / 2, \pi / 2)$ be such that

$$
x^{3}+\frac{1}{6} x^{2}-\frac{1}{3} x-\frac{1}{15}=(x-\sin A)(x-\sin B)(x-\sin C) .
$$

Evaluate $391 T^{4}-216 T^{2}-32 T$, where $T=|\tan A \tan B|+|\tan B \tan C|+|\tan C \tan A|$.
Proposed by Li Zhou, Polk State College, USA
U515. Prove that for every positive integer n,

$$
\left(1+\frac{1}{1^{2}}+\frac{1}{2^{2}}\right)\left(1+\frac{1}{2^{2}}+\frac{1}{3^{2}}\right) \cdots\left(1+\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}\right)<\frac{37}{5} .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
U516. Evaluate

$$
\lim _{n \rightarrow \infty}\left(\frac{1+\frac{1}{2}+\cdots+\frac{1}{n}}{\ln n}\right)^{\ln n}
$$

Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Olympiad Problems

O511. Find all 5 -tuples (v, w, x, y, z) of integers satisfying the system of equations

$$
\begin{aligned}
x^{2}+x y-2 y z+3 z x & =2020 \\
y^{2}+y z-2 z x+3 x y & =v \\
z^{2}+z x-2 x y+3 y z & =w \\
v+w & =5 .
\end{aligned}
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
O512. Let $A B C$ be a triangle. Points P and Q lie on sides $B C$ and $A B$, respectively, such that

$$
\angle P A B=\angle C Q A=90^{\circ}-\frac{1}{2} \angle A C B .
$$

Prove that if $A P=2 C P$, then the inradii of triangles $A C Q$ and $B C Q$ are equal.
Proposed by Waldemar Pompe, Warsaw, Poland.
O513. Let x, y, z be positive real numbers such that

$$
(x+y+z)^{9}=9^{5} x^{3} y^{3} z^{3}
$$

Prove that

$$
\left(\frac{3(x+y)}{z}+\frac{z^{2}}{x y}+2\right)\left(\frac{3(y+z)}{x}+\frac{x^{2}}{y z}+2\right)\left(\frac{3(z+x)}{y}+\frac{y^{2}}{z x}+2\right)<3^{7} .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
O514. Find all pairs of integers (m, n) such that $6(m+1)(n-1),(m-1)(n+1)+6$ and $(m+2)(n-2)$ are simultaneously perfect cubes.

Proposed by Alessandro Ventullo, Milan, Italy
O515. Let a and b be real numbers. Find the extreme values of the expression

$$
\frac{(1-a)(1-b)(1-a b)}{\left(1+a^{2}\right)\left(1+b^{2}\right)} .
$$

Proposed by Marius Stănean, Zalău, Romania
O516. Let $A B C$ be a triangle and let Δ be its area. Prove that

$$
a^{2} \tan \frac{A}{2}+b^{2} \tan \frac{B}{2}+c^{2} \tan \frac{C}{2} \geq 2 \frac{R}{r} \Delta
$$

Proposed by An Zhenping, Xianyang Normal University, China

