Junior Problems

J577. Let a and b be positive real numbers such that $a+b=1$. Prove that

$$
\left(\frac{1}{a^{2}}-b-1\right)\left(\frac{1}{b^{2}}-a-1\right) \geq \frac{25}{4}
$$

Proposed by An Zhenping, Xianyang Normal University, China
J578. Let a be a positive real number and let $f(x)=a^{x}+\frac{1}{a^{x}}$. Given that $f\left(\frac{2}{3}\right)=1+2 \sqrt{2}$, find $f\left(\frac{3}{2}\right)$.
Proposed by Adrian Andreescu, University of Texas at Dallas, USA

J579. Find all pairs (x, y) of integers such that

$$
3 x^{2}+10 x+5=9 \cdot 2^{y}
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

J580. Solve in real numbers the equation

$$
\sqrt[3]{x^{2}+4}=\sqrt{x^{3}-4}
$$

Proposed by Alessandro Ventullo, Milan, Italy

J581. Let a, b, c, d be real numbers such that $a b+a c+a d+b c+b d+c d-a b c d=11$. Prove that

$$
\left(a^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right)\left(d^{2}+1\right) \geq 100
$$

Proposed by An Zhenping, Xianyang Normal University, China
J582. Let $A B C D$ be a quadrilateral inscribed in a circle Γ with center O. Lines $A C$ and $B D$ intersect at X and Γ_{1} is the circumcircle of triangle $X A B$. Lines $A D$ and $B C$ intersect Γ_{1} at N and M, respectively. We know that the area of the concave polygon $O N D X C M$ is $D C \cdot A B$. Find the measure of $\angle A X B$.

Senior Problems

S577. Let k, m, n be integers such that $k+m+n=1$. Prove that

$$
\left(k^{2}+m^{2}+n^{2}+7\right)^{2}+(k m n-4)^{2}
$$

is not the square of an odd integer.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

S578. Let a, b, c be positive real numbers such that $a b+b c+c a=1$. Prove that

$$
\frac{1}{1+a^{2}+b^{2}}+\frac{1}{1+b^{2}+c^{2}}+\frac{1}{1+c^{2}+a^{2}} \leq \frac{9}{5}
$$

Proposed by An Zhenping, Xianyang Normal University, China
S579. Let a, b, c be the side-lengths of a triangle with area S, and let α, β, γ be positive real numbers such that

$$
\frac{1}{\alpha+1}+\frac{1}{\beta+1}+\frac{1}{\gamma+1}=2 .
$$

Prove that

$$
\alpha b^{2} c^{2}+\beta c^{2} a^{2}+\gamma a^{2} b^{2} \geq 8 S^{2}
$$

Proposed by Marius Stănean, Zalău, România

S580. Prove that there are no positive integers a, b, c such that

$$
a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}-3 a b c=2022 .
$$

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran
S581. Let p be a prime such that $p \equiv 1(\bmod 4)$. Prove that there is a positive integer a such that

$$
a^{2}+2^{a} \equiv 0(\bmod 2 p) .
$$

Proposed by Nguyen Tanh Chuong, Hanoi, Vietnam

S582. . Let $a_{1}, a_{2}, a_{3}, \ldots$ be the sequence defined by $a_{1}=1, a_{2}=2$ and

$$
a_{n+2}=(n+2) a_{n+1}-n a_{n}+2 n+1, \text { for all } n \geq 1
$$

Find all n for which there exists $m \in \mathbb{N}$ such that $a_{n}=m$!.

Undergraduate Problems

U577. For positive integers n, evaluate

$$
\lim _{n \rightarrow \infty}\left\{\sqrt{4 n^{2}+3 n+2}\right\}
$$

where $\{a\}$ denotes the fractional part of a.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
U578. Evaluate

$$
\iint_{D} \frac{y \sqrt{x^{2}+y^{2}}}{x^{2}} e^{\sqrt{x^{2}+y^{2}} / 2} d x d y
$$

where $D=\left\{(x-1)^{2}+y^{2} \leq 1, y \geq 0\right\}$.
Proposed by Paolo Perfetti, Roma, Italy
U579. Let x_{0} be an integer and $P(x)$ be a polynomial with integer coefficients. The sequence $\left(x_{n}\right)_{n \geq 0}$ is defined by

$$
x_{n}=x_{n-1}^{n}+P(n), \text { for all } n \geq 1 .
$$

Prove that for any positive integer $m \geq 2$ there is a positive integer T such that

$$
x_{n+T} \equiv x_{n}(\bmod m),
$$

for all sufficiently large n.
Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran
U580. Two mutually tangent circles of radius 1 lie on a common tangent line. The circle on the left is colored white and the circle on the right is colored gray. A third, smaller circle, is tangent to both of the larger circles and the line, and it is also colored gray. An infinite sequence of gray circles are inserted as follows: Each subsequent circle is tangent to the preceding circle, to the largest gray circle, and to the white circle. What is the total area bounded by the gray circles?

Proposed by Brian Bradie, Christopher Newport University, Virginia, USA
U581. Let $r>s$ be two positive integers which are relatively prime and let $P(x)$ and $Q(x)$ be distinct nonconstant polynomials with complex coefficients such that

$$
P(x)^{r}-P(x)^{s}=Q(x)^{r}-Q(x)^{s} .
$$

Prove that $r=2$ and $s=1$.
Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran
U582. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a twice differentiable function and let $u: \mathbb{R}^{n} \longrightarrow \mathbb{R}, u(x)=f(\|x\|)$. Denote by $\nabla^{2}(u)$ the Hessian of u. Evaluate in terms of f

$$
\operatorname{det}\left(\nabla^{2}(u)\right)
$$

Olympiad Problems

O577. Let a, b, c be positive numbers such that $a b c=4$ and $a, b, c>1$. Prove the inequality

$$
(a-1)(b-1)(c-1)\left(\frac{a+b+c}{3}-1\right) \leq(\sqrt[3]{4}-1)^{4}
$$

Proposed by Marian Tetiva, România

O578. Solve in positive integers the equation

$$
\frac{x^{3}+y^{3}}{6}=2022 \sqrt{x y-4}
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

O579. Let a, b, c be positive real numbers such that $a+b+c=3$. Prove that

$$
(b+c-a)(c+a-b)(a+b-c)+\frac{48}{a b+b c+c a} \geq 17
$$

Proposed by An Zhenping, Xianyang Normal University, China
O580. Prove that in any triangle $A B C$

$$
\frac{R}{r}+\frac{r}{R}+\frac{3}{2} \geq \frac{(a+b)(b+c)(c+a)}{2 a b c}
$$

Proposed by Marius Stănean, Zalău, România

O581. Let $A B C$ be a scalene, non-right triangle with altitudes $A D, B E, C F$ and midpoints M_{a}, M_{b}, M_{c} of sides $B C, C A, A B$, respectively. Let G be the centroid of the triangle and let N be the center of the nine-point circle. Let P be the intersection of $E F$ and $M_{b} M_{c}$ and let $P G \cap B C=Q$. Knowing that $A N$ and $E F$ are parallel, prove that $O Q$ is parallel to the Euler line of triangle $D E F$.

Proposed by Todor Zaharinov, Sofia, Bulgaria
O582. Let P be a point in the interior of a triangle $A B C$ and let Q be its isogonal conjugate with respect to $A B C$. Let M and N be the projections of P and Q on $B C$, and P^{\prime} and Q^{\prime} be the second intersections of lines $A P$ and $A Q$ with the circumcircle of $A B C$. Prove that lines $M P^{\prime}$ and $N Q^{\prime}$ intersect on $P Q$.

Proposed by Marius Stănean, Zalău, România

