Junior Problems

J541. Solve in positive real numbers the system of equations

$$
\left\{\begin{array}{l}
(x-\sqrt{x y})(x+3 y)=8(9+8 \sqrt{3}) \\
(y-\sqrt{x y})(3 x+y)=8(9-8 \sqrt{3}) .
\end{array}\right.
$$

Proposed by Adrian Andreescu, University of Texas at Dallas, USA
J542. Let $A B C D$ be a unit square. Points M and N lie on sides $B C$ and $C D$, respectively, such that $\angle M A N=45^{\circ}$. Prove that

$$
1 \leq M C+N C \leq 4-2 \sqrt{2}
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

J543. Let a and b be positive real numbers. Prove that

$$
\left|a^{5}-b^{5}\right|=a b \max \left(a^{3}, b^{3}\right)
$$

if and only if

$$
\left|a^{3}-b^{3}\right|=a b \min (a, b) .
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
J544. Let a, b, c, x, y, z be positive real numbers such that $x+y+z=3$. Prove that

$$
\frac{a}{a+2 b x}+\frac{b}{b+2 c y}+\frac{c}{c+2 a z} \geq 1 .
$$

Proposed by An Zhenping, Xianyang Normal University, China
J545. Let a, b, c be distinct positive real numbers such that

$$
\left(a+\frac{b^{2}}{a-b}\right)\left(a+\frac{c^{2}}{a-c}\right)=4 a^{2} .
$$

Prove that $a^{2}>b c$.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

J546. For $m \geq n \geq 0$, let $A M_{n}^{m}$ be the AwesomeMath figure of degree (m, n), formed by two equilateral triangles of side m, overlapping in an equilateral triangle of side n. Assume that the triangles are subdivided into equilateral triangles of side 1 . Count the number of parallelograms in $A M_{n}^{m}$.

Proposed by Li Zhou, Polk State College, Winter Haven, USA

Senior Problems

S541. Prove that for each positive integer n the number

$$
3^{3^{n+1}+3}+3^{3^{n}+2}+1
$$

is composite.

Proposed by Adrian Andreescu, University of Texas at Dallas, USA

S542. Let $A B C$ be a triangle with $A B \neq A C$ and let I be its incenter. Points D and E are taken on side $B C$ such that $\angle D A B=\angle E A C$. Lines $A D$ and $B I$ intersect in F, lines $A E$ and $C I$ intersect in G, and lines $B C$ and $F G$ intersect in P. Prove that $A P \perp A I$.

Proposed by Mihai Miculiţa, Oradea, România

S543. Let a, b, c be positive real numbers such that $a+b+c=3$. Prove that

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{2 a b c}{a b+b c+c a} \geq \frac{11}{3}
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

S544. Let $A B C$ be a triangle. Prove that

$$
\frac{\cos A}{\sin ^{2} A}+\frac{\cos B}{\sin ^{2} B}+\frac{\cos C}{\sin ^{2} C} \geq \frac{R}{r}
$$

Proposed by An Zhenping, Xianyang Normal University, China
$\mathbf{S 5 4 5}$. Let x, y, z be nonnegative real numbers such that $x^{2}+y^{2}+z^{2}+x y z=4$. Prove that

$$
\frac{1}{(x+y)^{2}}+\frac{1}{(y+z)^{2}}+\frac{1}{(z+x)^{2}} \geq \frac{1}{4}+\frac{4}{(x+y)(y+z)(z+x)}
$$

Proposed by Marius Stănean, Zalău, România

S546. Solve in real numbers the system of equations

$$
\begin{aligned}
x^{3}-2 x y z+y^{3} & =\frac{1}{2} \\
y^{3}-2 x y z+z^{3} & =1 \\
z^{3}-2 x y z+x^{3} & =-\frac{3}{2}
\end{aligned}
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Undergraduate Problems

U541. Let R be a (not necessarily commutative) ring which contains \mathbb{Q} as a subring and in which every noninvertible element is a divisor of zero. Assume that x and y are elements of R such that $x y=y x$ and $x^{m}=y^{n}=1$, where m and n are relatively prime positive integers. Prove that $1+x+y$ is invertible in R.

Proposed by Mircea Becheanu, Canada

U542. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{2}}+\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}+\sqrt{2}}\right)
$$

Proposed by Toyesh Prakash Sharma, Agra, India

U543. Let n be a positive integer. Evaluate

$$
\lim _{x \rightarrow 0} \frac{1}{x^{n+1}}\left(\int_{0}^{x} e^{t^{n}} \mathrm{~d} t-x\right) .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
U544. Find all real numbers x such that the sequence $\left(\cos 2^{n} x\right)_{n \geq 1}$ converges.
Proposed by Mihaela Berindeanu, Bucharest, România

U545. Prove that

$$
\int_{e}^{4 e} \frac{d x}{\ln x-\ln 2} \geq \frac{90 e}{34 \ln 2+15}
$$

Proposed by Olimjon Jalilov, Tashkent, Uzbekistan
U546. Let p be an odd prime and let $n>2$ be an integer. For any permutation f of the set $\{1,2, \ldots, n\}$, $I(f)$ denote the number of inversions of f. Let A_{j} denotes the number of permutations f such that $I(f) \equiv j(\bmod p)$, for all $0 \leq j \leq p-1$. Prove that $A_{1}=A_{2}=\cdots=A_{p-1}$ if and only if $p \leq n$. (Note: An inversion of f is a pair (i, j) such that $i>j$ and $f(i)<f(j)$.)

Proposed by Shubhrajit Bhattacharya, Chennai Mathematical Institute, India

Olympiad Problems

O541. Let a, b, c be the side-lengths triangle and let S be its area. Let R and r be the circumradius and the inradius of the triangle, respectively. Prove that

$$
\cot ^{2} A+\cot ^{2} B+\cot ^{2} C \geq \frac{1}{5}\left(31-52 \frac{r}{R}\right) .
$$

Proposed by Titu Andreescu, USA and Marius Stănean, România
O542. Let x, y, z be positive real numbers such that $x+y+z=1$. Prove that

$$
\frac{1}{x^{3}+y^{3}+z^{3}}+\frac{24}{x y+y z+z x} \geq 81
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

O543. Let $A B C$ be a triangle. Point M is the midpoint of side $A B$ and D lies inside the triangle. Let E be the reflection of D with respect to M. Inside triangle $A B C$ a point P is chosen such that $D P$ and $A C$ are parallel and $\angle C B P=\angle D A C$. Prove that $\angle A C P=\angle B C E$.

Proposed by Waldemar Pompe, Warsaw, Poland

O544. Find all triples of positive integers (a, b, p), with p prime, such that

$$
\frac{2^{a}+2^{b}}{a+b}=a^{p}+b^{p}
$$

Proposed by Karthik Vedula, James S.Rickards High School, Tallahassee, USA
O545. Let a and b be integers with $a>2$ and $\operatorname{gcd}(a, b)=1$. Prove that for any positive integer n there are infinitely many positive integers k such that $(a k+b)^{n}$ divides $\binom{2 k}{k}$.

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

O546. Let a, b, c be real numbers such that $a^{2}+b^{2}+c^{2}=6$. Find all possible values of the expression:

$$
\left(\frac{a+b+c}{3}-a\right)^{5}+\left(\frac{a+b+c}{3}-b\right)^{5}+\left(\frac{a+b+c}{3}-c\right)^{5} .
$$

Proposed by Marius Stănean, Zalău, România

