Junior Problems

J505. Solve the equation

$$
2 x^{3}+x\{x\}+2\{x\}^{3}=\frac{1}{108},
$$

where $\{x\}$ denotes the fractional part of x.

Proposed by Adrian Andreescu, University of Texas at Austin, USA
J506. Prove that any integer $n>6$ can be written as $n=p+m$, where p is a prime less than $n / 2$ and p does not divide m.

Proposed by Li Zhou, Polk State College, USA
J507. Consider a real number a,

$$
b=\left(a^{2}+2 a+2\right)\left(a^{2}-(1-\sqrt{3}) a+2\right)\left(a^{2}+(1+\sqrt{3}) a+2\right)
$$

and

$$
c=\left(a^{2}-2 a+2\right)\left(a^{2}+(1-\sqrt{3}) a+2\right)\left(a^{2}-(1+\sqrt{3}) a+2\right) .
$$

Find a knowing that $b+c=16$.
Proposed by Adrian Andreescu, University of Texas at Austin, USA

J508. Let a, b, c be positive numbers such that $a+b+c+2=a b c$. Prove that

$$
(1+a b)(1+b c)(1+c a) \geq 125
$$

Proposed by An Zhenping, Xianyang Normal University, China
J509. Find the least 4-digit prime of the form $6 k-1$ that divides $8^{1010} 11^{2020}+1$.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
J510. Let a, b, c be positive real numbers. Prove that

$$
(1+a)(1+b)(1+c) \geq\left(1+\frac{2 a b}{a+b}\right)\left(1+\frac{2 b c}{b+c}\right)\left(1+\frac{2 c a}{c+a}\right)
$$

Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Senior Problems

S505. Find k such that a triangle with sides a, b, c is right if and only if

$$
\begin{aligned}
& \sqrt[6]{a^{6}+b^{6}+c^{6}+3 a^{2} b^{2} c^{2}}=k \max \{a, b, c\} \\
& \quad \text { Proposed by Adrian Andreescu, University of Texas at Austin, USA }
\end{aligned}
$$

S506. Let x, y, z, t be real numbers, $0 \leq x, y, z, t \leq 1$, such that

$$
(1-x)(1-y)(1-z)(1-t)=x y z t .
$$

Prove that

$$
x^{2}+y^{2}+z^{2}+t^{2} \geq 1
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

S507. If a, b, c are real numbers such that $a x^{2}+b x+c \geq 0$ for all real numbers x, prove that $4 a^{3}-b^{3}+4 c^{3} \geq 0$.

> Proposed by Titu Andreescu, University of Texas at Dallas, USA

S508. Prove that in any triangle $A B C$,

$$
\left(\frac{h_{a}}{\ell_{a}}\right)^{2}+\left(\frac{h_{b}}{\ell_{b}}\right)^{2}+\left(\frac{h_{c}}{\ell_{c}}\right)^{2}-2 \frac{h_{a}}{\ell_{a}} \frac{h_{b}}{\ell_{b}} \frac{h_{c}}{\ell_{c}}=1 .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

S509. Solve in integers the equation

$$
2(x y+2)^{2}-6(x+y)^{2}=(x+y-1)^{3}-6 .
$$

Proposed by Alessandro Ventullo, Milan, Italy
S510. Consider an array of 49 consecutive integers whose median is a perfect square. Prove that the sum of the cubes of the 49 integers can be written as a sum of four perfect squares two of which are equal.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Undergraduate Problems

U505. Let K be a field. Prove that the polynomial

$$
X^{n}+X^{2} Y+X Y+X Y^{2}+Y^{n}
$$

is irreducible in the ring $K[X, Y]$, for all $n \geq 2$.
Proposed by Mircea Becheanu, Montreal, Canada

U506. Find all functions $f:(0, \infty) \longrightarrow(0, \infty)$ such that

$$
f(1+x)=1+f(x) \text { and } f\left(\frac{1}{x}\right)=\frac{1}{f(x)}
$$

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran
U507. Evaluate

$$
\int_{-1 / 3}^{1} \frac{1}{2 x+\sqrt{x^{2}+x+2}} d x
$$

Proposed by Titu Andreescu, University of Texas a Dallas, USA

U508. For positive integer n, let $S_{1}, S_{2}, \ldots, S_{2^{n}-1}$ be the nonempty subsets of $\{1,2, \ldots, n\}$ in some order, and let M be the $\left(2^{n}-1\right) \times\left(2^{n}-1\right)$ matrix whose (i, j) entry is $m_{i j}=\left|S_{i} \cup S_{j}\right|$. Find the determinant of $M=\left(m_{i j}\right)$.

Proposed by Li Zhou, Polk State College, USA

U509. Prove that for any $x>1$, the following inequalities hold.

$$
\log \left(\frac{1+x^{2}}{x^{2}-2 x+2}\right)^{\frac{1}{2 x-1}}<\arctan (x)-\arctan (x-1)<\log \left(\frac{1+x^{2}}{x^{2}-2 x+2}\right)^{\frac{1}{2(x-1)}}
$$

Proposed by Besfort Shala, University of Primorska, Slovenia

U510. Evaluate

$$
\int_{0}^{\pi} \frac{x \sin x}{2021+4 \sin ^{2} x} d x
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Olympiad Problems

O505. Let a, b, c, d be positive real numbers such that

$$
a+b+c+d=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d} .
$$

Prove that

$$
\frac{3\left(a^{2}+b^{2}+c^{2}+d^{2}\right)}{a+b+c+d}+1 \geq a+b+c+d
$$

Proposed by Marius Stănean, Zalău, Romania
O506. Let a be a nonnegative integer. Find all pairs (x, y) of nonnegative integers such that

$$
\left(a^{2}+1\right)\left(x^{3}-2 a x y+y^{3}\right)=a^{2}-x y .
$$

Proposed by Mircea Becheanu, Montreal, Canada
O507. Let $a, b, c, d>0$ and $a^{4}+b^{4}+c^{4}+d^{4}=4$. Prove that

$$
\frac{a^{2} b}{a^{4}+b^{3}+c^{2}+d}+\frac{b^{2} c}{b^{4}+c^{3}+d^{2}+a}+\frac{c^{2} d}{c^{4}+d^{3}+a^{2}+b}+\frac{d^{2} a}{d^{4}+a^{3}+b^{2}+c} \leq \frac{16}{(a+b+c+d)^{2}}
$$

Proposed by An Zhenping, Xianyang Normal University, China

O508. Let a, b, c be positive real numbers such that $a+b+c=3$. Prove that

$$
\frac{a}{b(a+5 c)^{2}}+\frac{b}{c(b+5 a)^{2}}+\frac{c}{a(c+5 b)^{2}} \geq \frac{1}{4(\sqrt{a}+\sqrt{b}+\sqrt{c})} .
$$

Proposed by Hoang Le Nhat Tung, Hanoi, Vietnam
O509. Prove that for any positive real numbers a, b, c

$$
(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq \frac{27\left(a^{3}+b^{3}+c^{3}\right)}{(a+b+c)^{3}}+\frac{21}{4}
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
O510. Let $A B C D E$ be a convex pentagon with

$$
\angle B C D=\angle A D E \quad \text { and } \quad \angle B D C=\angle A E D .
$$

The circumcircle of triangle $C D E$ meets lines $D A$ and $D B$ for the second time at points P and Q, respectively. Lines $C P$ and $Q E$ intersect at X. Prove that $A D B X$ is a parallelogram.

