Junior Problems

J469. Let a and b be distinct real numbers. Prove that

$$
(3 a+1)(3 b+1)=3 a^{2} b^{2}+1
$$

if and only if

$$
(\sqrt[3]{a}+\sqrt[3]{b})^{3}=a^{2} b^{2}
$$

Proposed by Adrian Andreescu, University of Texas at Austin, USA
J470. Solve in real numbers the equation

$$
\left(x^{3}-2\right)^{3}+\left(x^{2}-2\right)^{2}=0
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

J471. Find all real numbers a for which the equation

$$
\left(\frac{x}{x-1}\right)^{2}+\left(\frac{x}{x+1}\right)^{2}=a
$$

has four distinct real roots.

Proposed by Adrian Andreescu, University of Texas at Austin, USA
J472. Let a, b, c be positive numbers such that $a b+b c+c a=1$. Prove that

$$
a \sqrt{b^{2}+1}+b \sqrt{c^{2}+1}+c \sqrt{a^{2}+1} \geq 2
$$

Proposed by An Zhenping, Xianyang Normal University, China

J473. Let a, b, c be distinct real numbers. Prove that

$$
\left(\frac{a}{b-a}\right)^{2}+\left(\frac{b}{c-b}\right)^{2}+\left(\frac{c}{a-c}\right)^{2} \geq 1
$$

Proposed by Anish Ray, Institute of Mathematics, Bhubaneswar, India
J474. Let k be a positive integer. Suppose x and y are positive integers such that for every positive integer $n, n>k$,

$$
x^{n-k}+y^{n} \mid x^{n}+y^{n+k} .
$$

Prove that $x=y$.

Senior Problems

S469. Let $A B C D$ be a kite with $\angle A=5 \angle C$ and $A B \cdot B C=B D^{2}$. Find $\angle B$.
Proposed by Titu Andreescu, University of Texas at Dallas, USA

S470. Let x, y, z be positive real numbers such that $x y z(x+y+z)=4$. Prove that

$$
(x+y)^{2}+3(y+z)^{2}+(z+x)^{2} \geq 8 \sqrt{7} .
$$

Proposed by An Zhenping, Xianyang Normal University, China

S471. Prove that the following inequality holds for all positive real numbers a, b, c :

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{9(a+b+c)}{a b+b c+c a} \geq 8\left(\frac{a}{a^{2}+b c}+\frac{b}{b^{2}+c a}+\frac{c}{c^{2}+a b}\right) .
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

S472. Let $A B C$ be a triangle with $\angle B$ and $\angle C$ acute and let D be the foot of the altitude from A. Prove that $\angle A$ is right if and only if

$$
\frac{B D}{A B^{2}}+\frac{C D}{A C^{2}}=\frac{2}{B C}
$$

Proposed by Adrian Andreescu, University of Texas at Austin, USA

S473. Let a, b, c be positive real numbers. Prove that

$$
(a-b)^{4}+(b-c)^{4}+(c-a)^{4} \leq 6\left(a^{4}+b^{4}+c^{4}-a b c(a+b+c)\right) .
$$

Proposed by Nicuşor Zlota, Focşani, Romania
S474. Let a, b, c, d be real numbers such that $a^{2}+b^{2}+c^{2}+d^{2}=12$. Prove that

$$
a^{3}+b^{3}+c^{3}+d^{3}+9(a+b+c+d) \leq 84 .
$$

Proposed by Marius Stănean, Zalău, Romania

Undergraduate Problems

U469. Let $x>y>z>t>1$ be real numbers. Prove that

$$
(x-1)(z-1) \ln y \ln t>(y-1)(t-1) \ln x \ln z .
$$

Proposed by Angel Plaza, University of Las Palmas de Gran Canaria, Spain
U470. Let n be a positive integer. Evaluate

$$
\lim _{x \rightarrow 0} \frac{1-\cos ^{n} x \cos n x}{x^{2}}
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam
U471. Let $f(x)=a x^{2}+b x+c$, where $a<0<b$ and $b \sqrt[3]{c} \geq \frac{3}{8}$. Prove that

$$
f\left(\frac{1}{\Delta^{2}}\right) \geq 0
$$

where $\Delta=b^{2}-4 a c$.

Proposed by Titu Andreescu, University of Texas at Dallas, USA
U472. If $f, g, h: \mathbb{R} \longrightarrow \mathbb{R}$ are derivatives, find whether or not the function $\max \{f, g, h\}$ is the derivative of a function.

Proposed by Dorin Andrica, Babeş-Bolyai University, Cluj-Napoca, Romania
U473. For each continuous function $f:[0,1] \longrightarrow[0, \infty)$, let

$$
I_{f}=\int_{0}^{1}(2 f(x)+3 x) f(x) d x
$$

and

$$
J_{f}=\int_{0}^{1}(4 f(x)+x) \sqrt{x f(x)} d x
$$

Find the minimum of $I_{f}-J_{f}$ over all such functions f.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
U474. Let $f:[0,1] \longrightarrow \mathbb{R}$ be a differentiable function such that $f(1)=0$ and

$$
\int_{0}^{1} x^{n} f(x) d x=1
$$

Prove that

$$
\int_{0}^{1}\left(f^{\prime}(x)\right)^{2} d x \geq(2 n+3)(n+1)^{2} .
$$

When does the equality occur?
Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Olympiad Problems

O469. Find the greatest constant k such that the following inequality holds for all positive real numbers a and b :

$$
\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{k}{a^{3}+b^{3}} \geq \frac{16+4 k}{(a+b)^{3}}
$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

O470. Let a, b, c, x, y, z be nonnegative real numbers such that $a \geq b \geq c, x \geq y \geq z$, and

$$
a+b+c+x+y+z=6 .
$$

Prove that

$$
(a+x)(b+y)(c+z) \leq 6+a b c+x y z
$$

Proposed by Marius Stănean, Zalău, Romania
O471. Let a, b, c be positive real numbers such that $a^{2}+b^{2}+c^{2}+a b c=4$. Prove that for all real numbers x, y, z, the following inequality holds:

$$
a y z+b z x+c x y \leq x^{2}+y^{2}+z^{2} .
$$

Proposed by An Zhenping, Xianyang Normal University, China
O472. Let $A B C$ be an acute triangle and let A_{1}, B_{1}, C_{1} be the tangency points of the incircle of $A B C$ and $B C, C A, A B$, respectively. The circumcircles of triangles $B B_{1} C_{1}$ and $C C_{1} B_{1}$ intersect $B C$ at A_{2} and A_{3}, respectively. The circumcircles of $\triangle A B_{1} A_{1}$ and $B A_{1} B_{1}$ intersect $A B$ at C_{2} and C_{3}, respectively. The circumcircles of triangles $A C_{1} A_{1}$ and $C C_{1} A_{1}$ intersect $A C$ at B_{2} and B_{3}, respectively. Lines $A_{2} B_{1}$ and $A_{3} C_{1}$ meet at point A^{\prime}, lines $B_{2} A_{1}$ and $B_{3} C_{1}$ meet at B^{\prime}, and $C_{2} A_{1}$ and $C_{3} B_{1}$ meet at C^{\prime}. Prove that lines $A_{1} A^{\prime}, B_{1} B^{\prime}$, and $C_{1} C^{\prime}$ are concurrent.

Proposed by Mihaela Berindeanu, Bucharest, Romania
O473. Let x, y, z be positive real numbers such that $x^{6}+y^{6}+z^{6}=3$. Prove that

$$
x+y+z+12 \geq 5\left(x^{6} y^{6}+y^{6} z^{6}+z^{6} x^{6}\right) .
$$

Proposed by Hoan Le Nhat Tung, Hanoi, Vietnam
O474. Let $P(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{2} x^{2}+a_{0}$ be a polynomial with positive integer coefficients of degree $d \geq 2$. We define the sequence $\left(b_{n}\right)_{n \geq 1}$, where $b_{1}=a_{0}$ and $b_{n}=P\left(b_{n-1}\right)$, for all $n \geq 2$. Prove that for all $n \geq 2$, there is a prime p such that $p \mid b_{n}$ and p does not divide $b_{1} \cdots b_{n-1}$.

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

