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Shawn Godin



326/ MathemAttic

MATHEMATTIC
No. 27

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by November 30, 2021.

MA131. Proposed by Ed Barbeau.

Determine all sets consisting of an odd number 2m + 1 of consecutive positive
integers, for some integer m ≥ 1 such that the sum of the smallest m+ 1 integers
is equal to the sum of the largest m integers.

MA132. Proposed by Nguyen Viet Hung.

Find all pairs (x, y) of positive integers satisfying the equation

x2 − 2x+ 29 = 7xy.

MA133. If the perimeter of an isosceles right-angled triangle is 8, what is its
area?

MA134.

80 students responded to a survey about sports they played.

30 played basketball.

26 played rugby.

28 played hockey.

12 played basketball and rugby.

8 played hockey and rugby.

x played basketball and hockey only.

4 played all 3 sports.

Twice as many played none of the 3 sports as played basketball and hockey
only.

If a student is picked at random from the whole group, what is the probability
that the student plays only 1 of the 3 sports?
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MA135. Sent in by Ed Barbeau, from correspondence with Harold Reiter.

Solve the alphametic
SETA−ATES = EAST

where S > E > T > A are digits in the 4-digit numbers.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 novembre 2021.

MA131. Proposé par Ed Barbeau.

Déterminer tous les ensembles comprenant un nombre impair 2m + 1 d’entiers
positifs consécutifs, où m est un entier, m ≥ 1, sachant qu’en plus la somme
des m + 1 plus petits éléments de l’ensemble égale la somme des m plus grands
éléments.

MA132. Proposé par Nguyen Viet Hung.

Déterminer toutes les paires d’entiers positifs, (x, y), vérifiant

x2 − 2x+ 29 = 7xy.

MA133. Si le périmètre d’un triangle isocèle rectangle est de 8, quelle en est
sa surface ?

MA134.

80 étudiants répondent un sondage visant connatre leurs activités sportives.

30 jouent au basketball.

26 jouent au rugby.

28 jouent au hockey.

12 jouent au basketball et au rugby.

8 jouent au hockey et au rugby.
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328/ MathemAttic

x jouent au basketball et au hockey, et rien d’autre.

4 jouent au basketball, au rugby, et au hockey.

Enfin, le nombre d’étudiants jouant aucun sport est le double du nombre
d’étudiants qui jouent au basketball et au hockey, et rien d’autre.

Si un étudiant est choisi au hasard, quelle est la probabilité qu’il joue exactement
1 des sports ?

MA135. Envoyé par Ed Barbeau, de la correspondance avec Harold Reiter.

Résoudre le cryptarithme

SETA−ATES = EAST

où S > E > T > A sont les chiffres des nombres à 4 chiffres en question.

Crux Mathematicorum, Vol. 47(7), September 2021
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2021: 47(2), p. 72–73.

MA106. Suppose

N = 1 + 11 + 101 + 1001 + 10001 + · · ·+ 1000 · · · 01,

where there are 50 zeros in the last term. When N is written as a single integer
in decimal form, find the sum of its digits.

Originally Question 27 of 2012 University of Cape Town Mathematics Competition
(Grade 12).

We received 15 submissions of which 12 were correct and complete. We present
the solution by Amir Ali Fayazi.

LetA = 1+10+102+...+1051 andB =

51︷ ︸︸ ︷
1 + · · ·+ 1. It is easy to see thatN = A+B.

By assumption, A =

52︷ ︸︸ ︷
111 . . . 11 and B = 51. Hence, we infer that N =

50︷ ︸︸ ︷
111 . . . 11 62.

This yields that the sum of digits of N is equal to 50× 1 + 6 + 2 = 58.

MA107. A wooden cube is painted red on five of its six sides and then cut
into identical small cubes, of which 52 have exactly two red sides. How many small
cubes have no red sides?

Originally Question 27 of 2013 University of Cape Town Mathematics Competition
(Grade 12).

We received 9 submissions of which 6 were correct and complete. We present the
solution by the Missouri State University Problem Solving Group.

Denote the number of small cubes along an edge of the original cube by n (so
there are a total of n3 small cubes). For concreteness, assume that the unpainted
face of the original cube is the top face. A small cube has exactly two red sides if
it is on one of the four vertical edges, but is not one of the four corner cubes on
the bottom face (there are 4(n− 1) of these) or if it is on one of the edges of the
bottom face, but is not one of the four corner cubes (there are 4(n− 2) of these).
Thus 4(n− 1) + 4(n− 2) = 52 and hence n = 8. A small cube has no paint on it if
it is in the interior of the cube (there are 63 = 216 of these) or it is in the interior
of the top (unpainted) face (there are 62 = 36 of these). This gives a total of 252
unpainted small cubes.

For the record, there are four cubes with three faces painted and 204 cubes with
one face painted.
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MA108. Suppose that a, b, c and d are positive integers that satisfy the
equations

ab+ cd = 38, ac+ bd = 34, ad+ bc = 43.

What is the value of a+ b+ c+ d?

Originally Question 29 of 2013 University of Cape Town Mathematics Competition
(Grade 12).

We received 13 correct solutions and one incomplete submission. Six of the solvers
gave the solution below.

Adding the equations ac + bd = 34 and ad + bc = 43 yields (a + b)(c + d) = 77.
Since each factor on the left side must exceed 1, one of the factors must be 7 and
the other 11. Hence a+ b+ c+ d = 7 + 11 = 18.

Editor’s comment. Strictly speaking, this solution should perhaps be regarded as
incomplete, as it is implicitly assumed the system is viable. The number 38 plays
no role and the numbers 34 and 43 are involved insofar as their sum is 77. They
could have been replaced by other numbers for which the system has no solutions
in positive integers. So a complete solution should indicate that the situation is
possible. However, it might be that the solution given was intended by the poser
of the problem, so we can allow some latitude.

More than half of the solvers made the effort to find all the positive integer solutions
to the system. The more or less efficient ways of narrowing down and checking pos-
sibilities were not sufficiently edifying to include here. They found that (a, b, c, d)
has to be one of (2, 5, 7, 4), (4, 7, 5, 2), (5, 2, 4, 7), (7, 4, 2, 5). Some noted that the
equations remain unchanged under the permutations (ab)(cd), (ac)(bd), (ad)(bc).

A different choice of integers for the right side of the equations makes things more
interesting. Suppose that we ask for the sum a+b+c+d when a, b, c, d are positive
integers for which ab + cd = 34, ac + bd = 46 and ad + bc = 31. In this case, we
find that there are at least two solutions (a, b, c, d) to the system, (1, 6, 4, 7) and
(2, 5, 3, 8), both of which yield 18 as the desired sum.

Competitors in the essay contest introduced in issue 5 might consider the situation
when the three numbers 38, 34 and 43 are replaced by p, q and r. When does the
system admit a solution? How many values of the sum a+ b+ c+ d are possible?

MA109. Ten equal spheres are stacked to form a regular tetrahedron. How
many points of contact are there between the spheres?

Originally Question 26 of 2016 University of Cape Town Mathematics Competition
(Grade 12).

We received 7 submissions, of which 6 were correct and complete. We present the
solution by Richard Hess, modified by the editor.

Each of the four corner spheres touches three other spheres and each of the six
edge spheres touches six other spheres. This gives a total of 48 touches. Each
point of contact is counted twice, therefore the number of points of contact is 24.
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MA110. In the figure, ABCDEF is a regular hexagon and P is the midpoint
of AB.

Find the ratio
Area(DEQR)

Area(FPQ)
.

Originally Question 28 of 2012 University of Cape Town Mathematics Competition
(Grade 12).

We received 8 solutions, of which 5 were correct. We present the solution by
Dominique Mouchet, modified by the editor.

Sans perte de généralité, on peut supposer que les côtés de l’hexagone sont de
longueur 1. Soit H le pied de la perpendiculaire à la droite FC passant par le
point P . Comme PH est la hauteur du triangle équilatéral ABH, on peut utiliser

le théorème de Pythagore pour montrer que PH =
√
3
2 . De plus, comme PH

correspond à la moitié de la hauteur de 4PED abaissée de P sur ED, on peut se
servir des similitudes des triangles pour montrer que

QR =
ED

2
=

1

2
.
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En reliant maintenant les points Q et R au point milieu de ED, on obtient une
subdivision du 4PED en quatre triangles congrus. L’un d’eux étant 4PQR. Si
l’on se sert des crochets pour désigner l’aire, on a alors

[DEQR] = 3 · [PQR] = 3
1
2 ·
√
3
2

2
=

3
√

3

8
.

Par un simple calcul, on obtient

FQ =
FC −QR

2
=

2− 1
2

2
=

3

4
,

de sorte que

[FQP ] =
FQ · PH

2
=

3
4 ·
√
3
2

2
=

3
√

3

16
.

Ainsi,

[DEQR]

[FPQ]
=

Ä
3
√
3

8

äÄ
3
√
3

16

ä = 2.

Crux Mathematicorum, Vol. 47(7), September 2021



Shawn Godin /333

PROBLEM SOLVING
VIGNETTES

No.18
Shawn Godin

Fun with Mental Math

I recently reread a couple of articles by Martin Gardner [2], specifically, Chapter 6
Calculating Prodigies and Chapter 7 Tricks of Lightning Calculators. Nowadays,
the need to be able to do calculations in our head isn’t that great. Most people
have quick access to a calculator at most times, in their phone, and calculators
are used extensively in school mathematics classes. However, being able to do
some mental calculations is a good exercise and allows us to become closer to our
friends, the numbers. Mental calculations may allow us to recognize some patterns
and possibly even spot an error when something is miskeyed into our calculator.
In this issue we will look at some fun and impressive calculations that you can do
in your head with a little bit of practice.

1 2 is smaller than 5

In general, when doing mental calculations, it is easier to deal with smaller num-
bers. To test this theory out, I want you to do two different computations. Time
yourself for each one to see which one is quicker. Your two computations are:

1. 8317× 5

2. 96510÷ 2

Which one did you do more quickly? If you are pretty good with mental calcula-
tions, they might have been close. If so, try this: have a friend pick two random
numbers with a large number of digits. Time yourself finding the product of the
first and 5 and then add a 0 to the end of the other number and time yourself
dividing it by 2.

What is the point of these computations? Since we generally write numbers in
base 10 = 2 × 5, then we can write 2 = 10 ÷ 5 and 5 = 10 ÷ 2. Thus, our first
example can be rewritten as

8317× 5 = 8317× (10÷ 2) = 8317× 10÷ 2 = 83170÷ 2

in other words, we can turn a problem of multiplying any number by 5 into a
division by 2. Thus, the second computation I gave for you is equivalent to 9651×5.
There are a couple of advantages to this: division by 2 is done quite easily in your
head, and if you are trying to impress someone you can write down the answer
from left to right! Similarly, you could change multiplication by 2 into division

Copyright © Canadian Mathematical Society, 2021
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by 5 but, other than writing the answer from left to right, there isn’t much of an
advantage to this method.

We saw that we can change multiplication by 5 (or 2) into division by 2 (or 5).
Similarly, we can turn division by 5 into multiplication by 2. So now 6874 ÷ 5
becomes 687.4× 2 = 1374.8.

2 Squares and then some

A fairly well known “trick” for squaring a two-digit number that ends in 5 is to
multiply the tens digit by the next integer, write 25 after it and you have your
answer. This is one of the first tricks explained by mathemagician Art Benjamin
in his book on mental math [1]. (If you are interested in mental calculations, this
book is a must read). For example, to calculate 652, since 6 × 7 = 42, our result
is 652 = 4225. Why does this work? A number that we have described is of the
form 10d+ 5 for some positive integer d, less than 10. Squaring yields

(10d+ 5)2 = 100d2 + 100d+ 25

= 100d(d+ 1) + 25

The 100d(d+ 1) yields the product of the tens digit, d with the next integer, d+ 1
followed by two zeros since it is multiplied by 100. Hence, when the 25 is added,
we have our result. Notice, even though I stated that d was a positive integer
less than 10 there is nothing in the derivation that would change if d was just a
positive integer. Thus, since 24 × 25 = 600, the rule gives 2452 = 60025, which
can easily be verified.

This method can be extended to multiplying two two-digit numbers with the same
tens digit and whose units digits add to 10, like 43 and 47. Doing the calculation
we get 43× 47 = 2021, where 4× 5 = 20 and 3× 7 = 21. It looks like our first rule
is a special case of a more general rule. We can show that the new rule works as
well. Our numbers would be 10t + u and 10t + (10 − u), where t is the common
tens digit, u is the units digit of one number and hence 10− u is the units digit of
the other. Multiplying the two numbers yields

(10t+ u)× [10t+ (10− u)] = 100t2 + 100t− 10ut+ 10ut+ u(10− u)

= 100t(t+ 1) + u(10− u)

where 100t(t + 1) is the product of the common tens digit with the next integer,
followed by two zeros, and u(10− u) < 100 is the product of the two units digits.
So to calculate 84× 86, since 8× 9 = 72 and 4× 6 = 24, the result is 7224.

Again, there is nothing that requires t to be a single digit so we can extend the
idea. Since 30× 31 = 930 and 8× 2 = 16, we can deduce that 308× 302 = 93016.

Back to squaring, what if the number doesn’t end with a 5? It turns out we can
use an algebraic identity that should be familiar to most high school students:

Crux Mathematicorum, Vol. 47(7), September 2021
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(a− b)(a+ b) = a2 − b2. Rearranging we can get

a2 = (a− b)(a+ b) + b2.

How is this helpful? If we chose b such that one of the numbers a − b or a + b is
“nice”, our computation becomes easier.

For example, to calculate 972, choosing b = 3 we get

972 = (97 + 3)(97− 3) + 32

= 100× 94 + 32

= 9409

3 Special products

Let’s take a look at some products that you can perform in your head that take
advantage of the number that we are multiplying by. For example, determine the
following product 45× 37. Now, perform the following algorithm:

• add the digits of 45: 4 + 5 = 9,

• create the four-digit number with first and last digits the same as 45 and the
middle two the sum from the last step: 4995,

• divide the last number by three: 4995÷ 3.

Hopefully, you will have calculated 45× 37 = 1665 = 4995÷ 3.

Why does this work? Notice that 37 × 3 = 111. When we multiply by 111 using
the traditional algorithm, we end up with three copies of 45 that have been shifted
over (which corresponds to 45, 450 and 4500). When we add them, two pairs of 4
and 5 get added together, and the last ones “stand alone”.

4 5
× 1 1 1

4 5
4 5

4 5
4 9 9 5

By choosing a number whose digits sum to less than 10 we don’t have to worry
about a carry. As such, we can picture the number 4995 and do the division by
three in our head, as before. Similar to our first tricks, this one turns a multipli-
cation into a division.

45× 37 = 45× 111÷ 3.

We can still use this rule when the digits of the number being multiplied by 37
sum to ten or more. In this case, we will have carries to deal with. We will only
look at the units digit of the sum, and then do as we would in our other algorithm

Copyright © Canadian Mathematical Society, 2021
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except add 1 to the first two digits. For example, to do 84× 37, since 8 + 4 = 12
we would calculate 9324 ÷ 3 = 3108 (where 9 = 8 + 1 and 3 = 2 + 1 come from
carries).

We can accomplish even more impressive feats using 143 × 7 = 1001. Then, to
multiply any three-digit number by 143 we divide the six-digit number formed by
concatinating two copies of the three digit number together and dividing the result
by 7. For example, to calculate 837 × 143 you would do 837 837 ÷ 7 = 119 691
which can be done in your head quite quickly, with practice. On top of that, if
you write

× 143 =

and have a friend fill in the blank, and then instruct them to calculate it so they
can check your answer, you may be done before they can type it into the calculator.

A plethora of special numbers can be found by looking at the factorizations of
numbers that would be easy to multiply by and hoping they have a factor that is
easy to divide by in your head. For example, 10101 = 7× 1443, so multiplication
of a two-digit number by 1443 is accomplished by dividing the six-digit number
formed by concatinating three copies of the number to be multiplied by seven. For
example, 29× 1443 = 292929÷ 7 = 41847.

As we have done elsewhere, we can turn division into multiplication as well. Using
our last example, if we asked someone to multiply any two-digit number by 1443
and give us the answer, you could do the division in your head very quickly.
Suppose they give you number 109 668. If their number was x, then we know that
1443x = 109 668 and hence 7×(1443x) = 10101x. Since their original number was
two-digit we know that this result will be a six-digit number with their number
repeated three times. Therefore, if we start the product 109 668× 7 in our head,
we can stop after the first two digits, and we will have their number.

Have fun developing algorithms of your own!

4 Problems

Here are a few exercises based on what we have discussed:

1. Determine a quick method for multiplying and dividing by 125.

2. Determine an algorithm for multiplying based on 15 873×7 = 111 111. (You
can do a similar one based on 37037 × 3 = 111111, but if you have shown
the first one, this may not be that impressive.)

3. Determine an algorithm for multiplying based on 142 857 143×7 = 1 000 000 001.
(Discussed in [2]).

4. Determine an algorithm for multiplying 8 335 by a three-digit number dis-
covered by Gardner and talked about in [2].
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5. Determine an algorithm for dividing by 87 143. That is, you should be able
to get someone to multiply any number up to four-digits by 87 143 and you
should be able to determine the original number, in your head.

References

[1] Benjamin, Art and Shermer, Michael, Secrets of Mental Math, Three
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The MathemAttic Article Contest

In issue 5 of Volume 47, the editorial staff at MathemAttic announced an article
writing contest. For the competition we are looking for expository articles in
mathematics that would be of interest to the readers of MathemAttic. We will
publish a number of the strongest papers in MathemAttic next year. There will
also be a few prizes from the CMS available for exceptional article.

We are particularly interested in hearing from students (high school or university),
but we will accept articles from anybody (prizes will be limited to students). If
you are a student, please provide us with your grade, age, and school. A word on
credit: make sure you (briefly) acknowledge anybody who helped you significantly
with research or with the overall presentation.

The contest deadline will be November 1, 2021.

Please email your submissions to MathemAttic@cms.math.ca with “MA Article
Contest” in the subject line.

For more details, check issue 5 announcement.
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OLYMPIAD CORNER
No. 395

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by November 30, 2021.

OC541. In a convex quadrilateral ABCD, suppose ∠ABC = ∠ACD and
∠ACB = ∠ADC. Assume that the center O of the circle circumscribed to the
triangle BCD is different from point A. Prove that triangle OAC is a right
triangle.

OC542. Let x1, x2, . . . , xn be positive integers. Assume that in their decimal
representations no xi “is an extension” of another xj . For instance, 123 is an
extension of 12, 459 is an extension of 4, but 134 is not an extension of 123. Prove
that

1

x1
+

1

x2
+ · · ·+ 1

xn
< 3.

OC543. There are 50 cards in a box with the first 100 positive integers
written on them. That is, the first card has number 1 on one side and number 2
on the other side, the second card has number 3 on one side and number 4 on the
other, and so on up to the 50-th card which has number 99 on one side and 100
on the other side. Eliza takes four cards out of the box and calculates the sum of
the eight numbers written on them. How many distinct sums can Eliza get?

OC544. Prove that if n ≥ 2 is an integer, then there exist invertible matrices
A1, A2, . . . , An ∈M2(R) with nonzero entries such that

A−11 +A−12 + · · ·+A−1n = (A1 +A2 + · · ·+An)−1.

OC545. Solve in real numbers the system of equations x2y + 2 = x+ 2yz
y2z + 2 = y + 2zx
z2x+ 2 = z + 2xy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 novembre 2021.

OC541. Un quadrilatère convexe ABCD est tel que ∠ABC = ∠ACD et
∠ACB = ∠ADC. Supposer que A n’est pas égal à O, centre du cercle circonscrit
du triangle BCD. Démontrer que le triangle OAC est rectangle.

OC542. Soient x1, x2, . . . , xn des entiers positifs. Supposer que dans leurs
représentations décimales, aucun xi est un prolongement d’un autre xj . Par ex-
emple, 123 est un prolongement de 12 ; 459 est un prolongement de 4 ; 134 n’est
pas un prolongement de 123. Démontrer que

1

x1
+

1

x2
+ · · ·+ 1

xn
< 3.

OC543. Dans une bôıte se trouvent 50 cartes sur lesquelles sont inscrits les
entiers de 1 à 100, d’une façon un peu spéciale : la première carte a l’entier 1 d’un
côté et 2 de l’autre, la deuxième carte a l’entier 3 d’un côté et 4 de l’autre, et ainsi
de suite jusqu’à la cinquantième carte qui a l’entier 99 d’un côté et 100 de l’autre.
Élise retire quatre cartes de la bôıte et calcule la somme des huit entiers qu’elle y
retrouve. Combien de sommes distinctes Élise peut-elle obtenir ?

OC544. Soit n ≥ 2 un entier. Démontrer qu’il existe des matrices inversibles
A1, A2, . . . , An ∈M2(R) ayant des entrées non nulles, de façon à ce que

A−11 +A−12 + · · ·+A−1n = (A1 +A2 + · · ·+An)−1.

OC545. Déterminer toute solution réelle du système d’équations x2y + 2 = x+ 2yz
y2z + 2 = y + 2zx
z2x+ 2 = z + 2xy

Copyright © Canadian Mathematical Society, 2021
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2021: 47(2), p. 82–83.

OC516. Pasha placed numbers from 1 to 100 in the cells of the square 10×10,
each number exactly once. After that, Dima considered all sorts of squares, with
the sides going along the grid lines, consisting of more than one cell, and painted
in green the largest number in each such square (one number could be coloured
many times). Is it possible that all two-digit numbers are painted green?

Originally from 2019 Caucasus Mathematical Olympiad, Senior, First Day, Ques-
tion 1.

We received 7 correct submissions. We present a typical solution.

We show that this is impossible. First, note that if a number is the largest in some
n× n square with n > 2, then the number must also be the largest in some 2× 2
square inside the n × n square. Therefore, when painting the numbers, we can
consider only the 2 × 2 squares. The count of 2 × 2 squares is 92 = 81, as each
one is uniquely determined by its cell in the bottom left corner. Hence, at most
81 numbers can be painted green. However, we have 100 − 1 − 9 = 90 two-digit
numbers. In conclusion, not all two-digit numbers can be painted green.

OC517. Denote by N the set of positive integers 1, 2, 3, . . . Find all functions
f : N→ N such that n! + f(m)! divides f(n)! + f(m!) for all m, n ∈ N.

Originally from 2019 XXVI Macedonian Mathematical Olympiad FON University,
Problem 4.

We received 6 submissions of which 4 were correct and complete. We present a
typical solution.

Let P (m,n) denote the statement that n! + f(m)! | f(n)! + f(m!). Also, let p
denote a prime number.

P (1, 1) implies that 1 + f(1)! | f(1)! + f(1) and 1 + f(1)! | f(1) − 1. Since
|f(1)− 1| < f(1)! + 1, we deduce f(1) = 1.

P (1, n) yields n! + 1 | f(n)! + 1. This implies n! ≤ f(n)! and n ≤ f(n).

P (1, p − 1) yields (p − 1)! + 1 | f(p − 1)! + 1. However, by Wilson’s Theorem,
p | (p − 1)! + 1 and hence p | f(p − 1)! + 1. We can see that f(p − 1) ≥ p is not
possible, as this would imply that p|1. Therefore, f(p−1) < p and f(p−1) = (p−1)
for any prime number p.

P (m, p−1) yields (p−1)!+f(m)! | (p−1)!+f(m!) and so, (p−1)!+f(m)! | f(m!)−
f(m)! for all primes p. We fix m and take arbitrarily large prime p to conclude
that f(m!) = f(m)! for all m ∈ N.
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P (m,n) can be rewritten as n! + f(m)! | f(n)! + f(m)! and that in turn implies
n! + f(m)! | f(n)!− n! for all m,n ∈ N. We fix n and take arbitrarily large m to
conclude f(n)! = n! and f(n) = n.

It can be easily checked that the identity function, f(n) = n, satisfies the problem
conditions.

OC518. In a triangle ABC with AB 6= AC let M be the midpoint of AB,
let K be the midpoint of the arc BAC in the circumcircle of ABC, and let the
perpendicular bisector of AC meet the bisector of the angle BAC at P . Prove
that A, M , K, P are concyclic.

Originally from 2020 Caucasus Mathematical Olympiad, Senior, Second Day, Ques-
tion 7.

We received 7 submissions of which 6 were correct and complete. We present three
solutions.

Solution 1, submitted independently by UCLan Cyprus Problem Solving Group and
Taes Padhihary.

Let ω be the circumcircle of the triangle AMP and let X be the other point
of intersection of AC with ω. Then ∠PMA = ∠PXC. Since PA is on the
perpendicular bisector of AC, then

∠PCX = ∠PAC = ∠BAC/2 = ∠MAP.

So the triangles PMA and PXC are similar. Since PA = PC, the two triangles
are equal. It follows that MB = MA = XC. Since K is on the perpendicular
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bisector of BC, then KB = KC. Since B,A,K,C are concyclic, then

∠KBM = ∠KBA = ∠KCA = ∠KCX.

It follows that the triangles KMB and KXC are equal.

We now see that ∠KMA = ∠KXA. So K also belongs on ω and therefore
A,M,K,P are concyclic, as required.

Solution 2, by Theo Koupelis.

Let O be the centre and R be the radius of the circumcircle of triangle ABC. Let
L be the midpoint of arc BC. Then LOK is a diameter, ∠LAK = ∠PAK = 90◦,

and ∠ALK = |B−C|
2 . Therefore

AK = 2R · sin |B − C|
2

=
2R

sin A
2

· sin |B − C|
2

cos
B + C

2

=
2R

2 sin A
2

· | sinB − sinC| = |b− c|
2 sin A

2

.

Let D be the foot of the perpendicular from P on AB. Then, because P is on

the angle bisector of ∠BAC, we have AD = AE = b/2 and MD = |b−c|
2 . Also,

DP = EP = AP sin A
2 . Thus,

MD

DP
=

|b− c|
2 ·AP sin A

2

=
AK

AP
.
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Therefore the right trianglesMDP and KAP are similar. Thus ∠AKP = ∠DMP,
and A,M,K,P are concyclic.

Solution 3, submitted independently by Corneliu Manescu-Avram and Ivko Dim-
itrić.

Choose a complex system of coordinates with the circumcircle of triangle ABC
as unit circle. Let A(a2), B(b2), C(c2), where a, b, c are complex numbers with
|a| = |b| = |c| = 1. Denote the complex coordinates of the other points by the
same small letters. Then k = bc and m = (a2 + b2)/2.

The equation of the perpendicular bisector of AC is z = a2c2z̄ and the equation
of the angle bisector of ∠BAC is z − a2bcz̄ = a2 − bc, so that

p =
c(a2 − bc)
c− b .

From

(a2 −m)(k − p)
(a2 − p)(k −m)

=
c(a2 − b2)

b(c2 − a2)
=
c(a2 − b2)

b(c2 − a2)
=

(a2 −m)(k − p)
(a2 − p)(k −m)

we deduce that the points A, M , K, and P are concyclic.

OC519. Show that the number x is rational if and only if three distinct terms
that form a geometric progression can be chosen from the sequence:

x, x+ 1, x+ 2, x+ 3, . . .

Originally from 1993 Canadian Mathematical Olympiad.

We received 16 submissions, all of which were correct and complete. We present
a typical solution.

Suppose there exists three distinct terms x+ i, x+ j, x+ k that form a geometric
progression. Without loss of generality, we can assume (x+ i)(x+ k) = (x+ j)2.
This implies x(i + k − 2j) = j2 − ik. If i + k = 2j, then ik = j2 and i = k = j.
This is a contradiction since x + i, x + j, x + k are assumed to be distinct. Thus
i+ k 6= 2j and x = (j2 − ik)/(i+ k − 2j) is rational.

Suppose the converse, namely x = p/q is rational, for some integers p and q. More-
over, q 6= 0 and without loss of generality, we can assume q > 0. We distinguish
the following three cases.

If p = 0, then x = 0 and x+ 1, x+ 2, x+ 4 trivially form a geometric progression.

If p > 0 we consider x, x+ p, x+ p(q + 2). This is a geometric progression as

x(x+ p(q + 2)) =
p

q
· p+ pq(q + 2)

q
=

Å
p(q + 1)

q

ã2
= (x+ p)2 .
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If p < 0, then we select n such that x + n > 0. Then we can find three distinct
terms of x+ n, x+ n+ 1, x+ n+ 2 . . . which form a geometric progression. These
three terms are in the original sequence, as well.

OC520. Larry and Rob are two robots travelling in one car from Argovia
to Zillis. Both robots have control over the steering and steer according to the
following algorithm: Larry makes a 90◦ left turn after every l kilometers driving
from start; Rob makes a 90◦ right turn after every r kilometers driving from
start, where l and r are relatively prime positive integers. In the event of both
turns occurring simultaneously, the car will keep going without changing direction.
Assume that the ground is flat and the car can move in any direction. Let the car
start from Argovia facing towards Zillis. For which choices of the pair (l, r) is the
car guaranteed to reach Zillis, regardless of how far it is from Argovia?

Originally from 2009 Asian Pacific Mathematics Olympiad, Problem 5.

We received 2 correct submissions. We present the solution by Oliver Geupel.

We show that the coprime numbers ` and r satisfy the required condition if and
only if either ` ≡ r ≡ 1 (mod 4) or ` ≡ r ≡ 3 (mod 4).

Consider the car after having driven the first `r kilometers of the route. It will have
made r left turns and ` right turns. If ` ≡ r + 2 (mod 4), then it faces opposite
to its direction at start; whence it will return to Argovia after driving `r more
kilometers. If ` ≡ r ± 1 (mod 4), then the car faces to the right or left relative
to its direction at start. Then, its positions at start, after `r kilometers, after 2`r
kilometers, and after 3`r kilometers will form the vertices of a square, and it will
return to Argovia after 4`r kilometers. But if the car returns to Argovia after a
multiple of `r kilometers, then its route is periodic, and the car cannot reach Zillis
if it is sufficiently far away.

It remains to consider ` ≡ r (mod 4). Consider the route in the complex plane
with unit length 1 kilometer, where the coordinates of Argovia and Zillis are 0 and
a positive real number, respectively. Let i be the complex number

√
−1. After `r

kilometers from start, the position of the car is

p =
`r−1∑
k=0

ibk/`c(1/i)bk/rc =
`r−1∑
k=0

ibk/`c−bk/rc.

For 0 ≤ k < `r, let sk = k − `bk/`c and tk = k − rbk/rc.

In the case ` ≡ r ≡ 1 (mod 4), we compute

p =
`r−1∑
k=0

ibk/`c−bk/rc =
`r−1∑
k=0

i(k−sk)−(k−tk) =
`r−1∑
k=0

itk−sk .

The map k 7→ (sk, tk) constitutes a bijection between the sets {0, 1, . . . , `r − 1}
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and {0, 1, . . . , `− 1} × {0, 1, . . . , r − 1} by the Chinese remainder theorem. Hence

p =
`r−1∑
k=0

itk−sk =

(
r−1∑
j=0

ij

)(
`−1∑
k=0

i−k

)
= 1 · 1 = 1.

Similarly, in the case ` ≡ r ≡ 3 (mod 4), we obtain

p =
`r−1∑
k=0

ibk/`c−bk/rc =
`r−1∑
k=0

i(sk−k)−(tk−k) =
`r−1∑
k=0

isk−tk =

(
`−1∑
j=0

ij

)(
r−1∑
k=0

i−k

)

= i · 1

i
= 1.

Hence, for every natural number n, after n`r kilometers from start, the car is at
position n facing towards the positive real axis. Consequently, it will eventually
reach Zillis.
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Michel Bataille
Examples of algebraic identities

Introduction

Problem 2976 [2004 : 429,432] asked for a proof of the following inequality that
holds for all real numbers a, b, c:

(a2 + ab+ b2)(b2 + bc+ c2)(c2 + ca+ a2) ≥ (ab+ bc+ ca)3.

Kee-Wai Lau’s solution was amazingly short: the inequality follows from the iden-
tity ∏

cyclic

(a2 + ab+ b2)− (ab+ bc+ ca)3

=
1

6

[
2(ab+ bc+ ca)2

∑
cyclic

(a− b)2 + (a+ b+ c)2
∑
cyclic

a2(b− c)2
]
.

In comparison, my own solution – one-page long, distinguishing several cases –
looked very laborious! This problem reinforced my idea of noting down the inter-
esting identities as I met them. This number offers a selection of these identities,
with the hope that they will be useful to the beginner and perhaps encourage
her/him to start a collection. The chosen ones are among those appearing fre-
quently in solutions and examples of their interventions will also be given.

Checking the identities is an exercise left to the reader.

About the polynomial p(x, y, z) = x3 + y3 + z3 − 3xyz

The identity to be remembered is

x3 + y3 + z3 − 3xyz = (x+ y + z)[x2 + y2 + z2 − (xy + yz + zx)]. (1)

The difference x2 + y2 + z2 − (xy + yz + zx) can also be written as

1

2
[(x− y)2 + (y − z)2 + (z − x)2] or

(x+ y + z)2 − 3(xy + yz + zx) or

1

2
[3(x2 + y2 + z2)− (x+ y + z)2].

Also (1) shows that the inequality x3+y3+z3 ≥ 3xyz holds as soon as x+y+z ≥ 0.

This versatile identity (1) is well-known and of frequent use. Here are a few
examples, starting with one in solid geometry:
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Prove that the surface with equation x3 + y3 + z3 − 3xyz = 1 is a
surface of revolution.

If M0(x0, y0, z0) is on the surface, then the circle through M0 whose axis is the line
(`) x = y = z is the intersection of the sphere centered at the origin O with radius
OM0 and the plane through M0 perpendicular to (`). Thus, a point M(x, y, z) of
this circle satisfies

x2 + y2 + z2 = x20 + y20 + z20 and x+ y + z = x0 + y0 + z0.

From (1), we obtain that

x3 + y3 + z3 − 3xyz = x30 + y30 + z30 − 3x0y0z0 = 1

and M is on the surface. The result follows.

The following problem, extracted from 95.I proposed in The Mathematical Gazette
in 2011, leads to another application.

Let ABC and A′B′C ′ be triangles with a = BC, b = CA, c = AB and
B′C ′ =

√
a, C ′A′ =

√
b, A′B′ =

√
c. Prove that

sin2 1

2
A+ sin2 1

2
B + sin2 1

2
C = cos2A′ + cos2B′ + cos2 C ′.

Let s =
a+ b+ c

2
. Since sin

1

2
A =

…
(s− b)(s− c)

bc
and cosA′ =

s− a√
bc

(from the

Law of Cosines in ∆A′B′C ′), we readily find that it is sufficient to prove X = 0
where

X = a(s−a)2+b(s−b)2+c(s−c)2−(a(s−b)(s−c)+b(s−c)(s−a)+c(s−a)(s−b)).

Expanding yields

X = −2s(a2 + b2 + c2) + a3 + b3 + c3 + 2s(ab+ bc+ ca)− 3abc

and X = 0 follows at once from (1).

Of course, (1) often appears in inequality problems. Problem 929 of The College
Mathematics Journal required to prove that a3 + b3 + c3 + 3abc ≤ 6 whenever
a, b, c > 0 and a2 + b2 + c2 = 3. We show that the following improvement holds:

(a3 + b3 + c3 + 3abc)(a+ b+ c) ≤ 9 + 3(ab+ bc+ ca) ≤ 6(a+ b+ c).

The easy proof of the right inequality is left to the reader. Setting m = ab+bc+ca
and using (1) we obtain that the left inequality can be written as

6abc(a+ b+ c) + (a+ b+ c)2(3−m) ≤ 9 + 3m,

which is successively equivalent to

6abc(a+ b+ c) + (3 + 2m)(3−m) ≤ 9 + 3m,
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6abc(a+ b+ c) ≤ 2m2,

0 ≤ c2(b− a)2 + b2(a− c)2 + a2(c− b)2,

and the latter clearly holds. In passing, note the interesting identity:

2[(xy + yz + zx)2 − 3xyz(x+ y + z)] = x2(y − z)2 + y2(z − x)2 + z2(x− y)2.

The factorization

p(x, y, z) = (x+ y + z)(x+ wy + w2z)(x+ w2y + wz),

where w = exp(2πi/3) is easily checked (using w3 = 1 and 1 + w + w2 = 0) and
is worth remembering. For example, it leads to a quick solution to problem 2481
[1999 : 430 ; 2000 : 504]:

Suppose that A,B,C are 2× 2 real commutative matrices. Prove that

det((A+B + C)(A3 +B3 + C3 − 3ABC)) ≥ 0.

Since A,B,C are commutative matrices, we see that

(A+B+C)(A3+B3+C3−3ABC) = (A+B+C)2(A+wB+w2C)(A+w2B+wC).

Because A,B,C are real and w2 = w, we have

det(A+ w2B + wC) = det((A+ wB + w2C)

and therefore

det((A+B+C)(A3+B3+C3−3ABC)) = (det(A+B+C))2|det((A+wB+w2C)|2 ≥ 0.

To close this section, we warmly recommend the nice article [1], in which the
reader will find plenty of applications of (1).

About S(x, y, z) = xy2 + x2y + yz2 + y2z + zx2 + z2x

The two identities to be known are

S(x, y, z) = (x+ y + z)(xy + yz + zx)− 3xyz and

S(x, y, z) = (x+ y)(y + z)(z + x)− 2xyz.

As an immediate application, we consider problem 4196 [2016 : 445 ; 2017 : 453].

Show that for all positive real numbers a, b and c, we have

1 ≤ a

a+ b
+

b

b+ c
+

c

c+ a
≤ 2.
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The following solution is as short as the featured one: The central expression X
writes as

X =
a2b+ b2c+ c2a+ (ab+ bc+ ca)(a+ b+ c)

(a+ b)(b+ c)(c+ a)
=
a2b+ b2c+ c2a+ S + 3abc

S + 2abc

= 1 +
a2b+ b2c+ c2a+ abc

S + 2abc
,

where S = S(a, b, c). Thus, we haveX > 1 and alsoX < 2 since S > a2b+b2c+c2a.

Here are two related identities:

S(x, y, z)− 6xyz = x(y − z)2 + y(z − x)2 + z(x− y)2, (2)

S(x, y, z) = x3 + y3 + z3 + 2xyz + (x+ y − z)(y + z − x)(z + x− y). (3)

In some way, the first one explains why S(x, y, z) ≥ 6xyz for positive x, y, z in-
dependently of the arithmetic mean-geometric mean inequality! The second one
suggests applications to inequalities for the triangle. An example is the following
variant of solution to problem 4019 [2015 : 74 ; 2016 : 88]:

A triangle with side lengths a, b, c has perimeter 3. Prove that

a3 + b3 + c3 + a4 + b4 + c4 ≥ 2(a2b2 + c2a2 + a2b2).

Let F denote the area of the triangle. We know that

16F 2 = 2(a2b2+b2c2+c2a2)−(a4+b4+c4) = (a+b+c)(a+b−c)(b+c−a)(c+a−b).

Therefore the inequality is equivalent to a3 +b3 +c3 ≥ 16F 2 or, since a+b+c = 3,

(a3 + b3 + c3)(a+ b+ c) ≥ 48F 2.

Now, from (2) and (3) we deduce that

a3+b3+c3+(a+b−c)(b+c−a)(c+a−b) = S(a, b, c)−2abc ≥ 6abc−2abc = 4abc,

hence
(a3 + b3 + c3)(a+ b+ c) + 16F 2 ≥ 4abc(a+ b+ c).

Recalling that abc = 4RF = 4Rrs and a+ b+ c = 2s where R, r and s denote the
circumradius, the inradius and the semiperimeter of the triangle, respectively, we
obtain

4abc(a+ b+ c) = 32sRF ≥ 64rsF = 64F 2

(using Euler’s inequality R ≥ 2r).

Thus,
(a3 + b3 + c3)(a+ b+ c) + 16F 2 ≥ 64F 2

and the desired inequality follows.
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About D(x, y, z) = (x− y)(y − z)(z − x)

Quite a number of identities involve D(x, y, z). We start with several of them, all
of degree 3.

x2(y − z) + y2(z − x) + z2(x− y) = −D(x, y, z)

2(xy2 + yz2 + zx2 − 3xyz) = x(y − z)2 + y(z − x)2 + z(x− y)2 +D(x, y, z) (4)

and exchanging x and y,

2(x2y + y2z + z2x− 3xyz) = x(y − z)2 + y(z − x)2 + z(x− y)2 −D(x, y, z). (5)

By difference, we obtain

xy2 + yz2 + zx2 − (x2y + y2z + z2x) = D(x, y, z) (6)

We can now present a problem close to problem 1171 of The College Mathematics
Journal (proposed in March 2020) offering a good opportunity to use some of the
identities already seen.

Let a, b, c be the roots of the equation x3 − 2x2 − x + 1 = 0 with
a > b > c. Find the value of the expression ab2 + bc2 + ca2.

Note that a+ b+ c = 2, ab+ bc+ ca = −1, abc = −1.

Let A = ab2+bc2+ca2 and B = a2b+b2c+c2a. From an identity about S(x, y, z),
we readily obtain

A+B = (a+ b+ c)(ab+ bc+ ca)− 3abc = 2(−1)− 3(−1) = 1.

On the other hand, a simple calculation gives

AB = (ab)3 + (bc)3 + (ca)3 + abc(a3 + b3 + c3) + 3(abc)2.

From an identity about p(x, y, z), we deduce that a3 +b3 +c3 = −3+2(4+3) = 11
and

(ab)3 + (bc)3 + (ca)3 = 3(abc)2 + (ab+ bc+ ca)[(ab+ bc+ ca)2 − 3abc(a+ b+ c)]

= 3− [1 + 3× 2] = −4.

Thus, AB = −4−11+3 = −12 and thereforeA,B are the solutions to the quadratic
equationX2−X−12 = 0, which are−3 and 4. Since A−B = (a−b)(b−c)(c−a) < 0
(from (6) and because a > b > c), we conclude that A = −3.

For an application to inequalities, we consider 4036 [2015 : 171 ; 2016 : 182], of
which we offer another solution.

Let a, b and c be non-negative real numbers. Prove that for any real
k ≥ 11

24 we have

k(ab+ bc+ ca)(a+ b+ c)− (a2c+ b2a+ c2b) ≤ (3k − 1)(a+ b+ c)3

9
.
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Using an identity about p(x, y, z), we can arrange the given inequality as

(a3+b3+c3)−6(ab2+bc2+ca2)+3(a2b+b2c+c2a)+6abc ≤ 3k(a3+b3+c3−3abc).
(7)

Since a3 + b3 + c3 − 3abc ≥ 0, it is enough to show (7) when k = 11
24 , that is, after

some simple transformations,

a3 + b3 + c3 + 16(ab2 + bc2 + ca2) ≥ 8(a2b+ b2c+ c2a) + 27abc. (8)

With the help of (4) and (5), and, again, an identity about p(x, y, z), (8) is trans-
formed into

(9a+b+c)(b−c)2+(a+9b+c)(c−a)2+(a+b+9c)(a−b)2 ≥ 24(a−b)(b−c)(a−c). (9)

Now, suppose without loss of generality that c = min(a, b, c) and let L(a, b, c) be
the left-hand side of (9) and R(a, b, c) = −24D(a, b, c) be its right-hand side. If
a1 = a − c, b1 = b − c, and c1 = 0, then a1, b1, c1 are non-negative real numbers
and a1−b1 = a−b, b1−c1 = b−c, a1−c1 = a−c, hence R(a1, b1, c1) = R(a, b, c).
On the other hand, we calculate

L(a, b, c)− L(a1, b1, c1) = 11c((b− c)2 + (c− a)2 + (a− b)2)

hence L(a, b, c) ≥ L(a1, b1, c1). So it is sufficient to prove L(a1, b1, c1) ≥ R(a1, b1, c1).
Recalling that c1 = 0, this inequality is equivalent to a31 + b31 + 16a1b

2
1 ≥ 8a21b1.

We are done since a31 + 16a1b
2
1 ≥ 2

√
a31 · 16a1b21 = 8a21b1.

For the benefit of the reader, here is a list of beautiful identities involvingD(x, y, z):

x3(y − z) + y3(z − x) + z3(x− y) = −(x+ y + z)D(x, y, z)

x4(y − z) + y4(z − x) + z4(x− y) = −(x2 + y2 + z2 + xy + yz + zx)D(x, y, z)

(y + z)(z + x)(x− y) + (z + x)(x+ y)(y − z) + (x+ y)(y + z)(z − x) = −D(x, y, z)

x3(y2 − z2) + y3(z2 − x2) + z3(x2 − y2) = −(xy + yz + zx)D(x, y, z)

(x− y)5 + (y − z)5 + (z − x)5 = 5(x2 + y2 + z2 − xy − yz − zx)D(x, y, z)

(x− y)7 + (y − z)7 + (z − x)7

= 7[(x− y)2(y − z)2 + (y − z)2(z − x)2 + (z − x)2(x− y)2]D(x, y, z)

Note that the last two come in addition to (x−y)3+(y−z)3+(z−x)3 = 3D(x, y, z),
which directly follows from p(x− y, y − z, z − x) = 0. Also, checking the last one
is made easier by setting a = y − z, b = z − x, c = x− y (so that a+ b+ c = 0).

Reference

[1] Desmond MacHale, My Favourite Polynomial, The Mathematical Gazette, Vol.
75, No 472, June 1991, p. 157-165
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by November 30, 2021.

4661. Proposed by Mihaela Berindeanu.

Let ABC be a triangle with the point M ∈ BC such that

MC −MB =
AC2 −AB2

2BC
.

The centroids of triangles AMB and AMC are G1 and G2, respectively. Prove
that A,G1,M,C are concyclic points if and only if A,B,M,G2 are also concyclic
points.

4662. Proposed by Michel Bataille.

Let A and B be complex p × p matrices such that AB = BA and A3B = A and
let m,n be integers with m ≥ n ≥ 1 and m 6= 2n. Show that AmBn is equal to a
power of A or a power of AB.

4663. Proposed by Vijay Dasari.

Let M be any point in the plane of an acute triangle ABC with sides a, b, c. Prove
that

AM2

b2 + c2 − a2 +
BM2

c2 + a2 − b2 +
CM2

a2 + b2 − c2 ≥ 1,

with equality when M is the orthocenter.

4664. Proposed by Marian Cucoanes and Lorian Saceanu.

Let ABCDEF be a convex cyclic hexagon that respects the following rules:

a) The lines AD, BE, CF are concurrent;

b) (1/3)(AF +BC +DE) = AB = CD = EF .

Prove that ABCDEF is a regular hexagon.

4665. Proposed by Daniel Sitaru.

Find

lim
n→∞

(∫ π
2

π
6

cosx

sinx(1 + sinn x)
dx

)
.

Crux Mathematicorum, Vol. 47(7), September 2021

https://publications.cms.math.ca/cruxbox/


Problems /353

4666. Proposed by Dong Luu.

Let ABC be a triangle and let the circle I be tangent to BC, CA and AB at
points D, E and F , respectively. Let M , N be the points on the line EF such
that BM is parallel to AC and CN is parallel to AB. Let P and Q be points
on DM and DN , respectively such that BP is parallel to CQ. Denote by S the
intersection point of PF and QE. Prove that S lies on the circle I.

4667. Proposed by Conar Goran.

Let x1, . . . , xn > 0 be real numbers and s =
∑n
i=1 xi. Prove

n∏
i=1

xxii ≤
(

1

s

n∑
i=1

x2i

)s
.

When does equality occur?

4668. Proposed by Jiahao Chen.

Let Γ be the inscribed circle of triangle ABC, and I is the center of Γ. Suppose
Γ touches BC, CA and AB at D,E and F , respectively. Let X be an arbitrary
point on the smaller arc DF , and the line perpendicular to XE passing through I
intersects line BX in point Y . Show that IY is the external angle bisector of the
angle AY C.

4669. Proposed by Warut Suksompong.

For a given positive integer n, a 4n×4n table is partitioned into 16n2 unit squares,
each of which is coloured in one of 4 given colours. A set of four cells is called
colourful if the centers of the cells form a rectangle with sides parallel to the sides
of the table, and the cells are coloured in all four different colours. Determine the
maximum number of colourful sets.

4670. Proposed by Nguyen Viet Hung.

Let a, b, c be real numbers such that (a+ b)(b+ c)(c+ a) 6= 0. Prove thatÅ
a

a+ b

ã2
+

Å
b

b+ c

ã2
+

Å
c

c+ a

ã2
+

4abc

(a+ b)(b+ c)(c+ a)
≥ 1.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 novembre 2021.

4661. Proposé par Mihaela Berindeanu.

Soit ABC un triangle et M un point tel que M ∈ BC et

MC −MB =
AC2 −AB2

2BC
.

Les centröıdes des trianglesAMB etAMC sontG1 etG2 respectivement. Démontrer
que A, G1, M et C sont cocycliques si et seulement si A, B, M , G2 sont cocy-
cliques.

4662. Proposé par Michel Bataille.

Soient A et B des matrices complexes de taille p × p telles que AB = BA et
A3B = A; de plus, soient m et n des entiers tels que m ≥ n ≥ 1 et m 6= 2n.
Démontrer que AmBn est égal à une puissance de A ou à une puissance de AB.

4663. Proposé par Vijay Dasari.

Soit M un point dans le plan du triangle acutangle ABC de côtés a, b et c.
Démontrer que

AM2

b2 + c2 − a2 +
BM2

c2 + a2 − b2 +
CM2

a2 + b2 − c2 ≥ 1,

l’égalité ayant lieu lorsque M est l’orthocentre de ABC.

4664. Proposé par Marian Cucoanes et Lorian Saceanu.

Soit ABCDEF un hexagone convexe et cyclique tel que

a) les lignes AD, BE et CF sont concourantes;

b) (1/3)(AF +BC +DE) = AB = CD = EF .

Démontrer que ABCDEF est un hexagone régulier.
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4665. Proposé par Daniel Sitaru.

Déterminer

lim
n→∞

(∫ π
2

π
6

cosx

sinx(1 + sinn x)
dx

)
.

4666. Proposé par Dong Luu.

Soit ABC un triangle et I le centre de son cercle inscrit, tangent à BC, CA et
AB aux points D, E et F respectivement. Soient M et N des points sur la ligne
EF tels que BM est parallèle à AC et CN est parallèle à AB. Enfin, soient P
et Q des points sur DM et DN respectivement tels que BP est parallèle à CQ.
Démontrer que S, l’intersection de PF et QE, se trouve sur I.

4667. Proposé par Conar Goran.

Soient x1, . . . , xn > 0 des nombres reels où s =
∑n
i=1 xi. Démontrer que

n∏
i=1

xxii ≤
(

1

s

n∑
i=1

x2i

)s
.

Quand l’égalité tient-elle ?

4668. Proposé par Jiahao Chen.

Soit I le centre du cercle inscrit Γ pour le triangle ABC, où Γ touche BC, CA
et AB en D, E et F respectivement. Soit X un point arbitraire sur le plus petit
arc DF et supposer que la ligne perpendiculaire à XE et passant par I intersecte
la ligne BX au point Y . Démontrer que IY est la bissectrice externe de l’angle
AY C.

4669. Proposé par Warut Suksompong.

Pour un entier positif n, un tableau de taille 4n × 4n est formé de 16n2 petits
carrés, chacun étant coloré utilisant l’une ou l’autre des 4 couleurs disponibles.
Un ensemble de 4 petits carrés est dit flamboyant s’ils sont colorés utilisant toutes
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les 4 couleurs et si leurs centres forment un rectangle avec côtés parallèles aux
côtés du tableau. Déterminer le nombre maximal d’ensembles flamboyants.

4670. Proposé par Nguyen Viet Hung.

Soient a, b, c des nombres réels tels que (a+ b)(b+ c)(c+ a) 6= 0. Démontrer queÅ
a

a+ b

ã2
+

Å
b

b+ c

ã2
+

Å
c

c+ a

ã2
+

4abc

(a+ b)(b+ c)(c+ a)
≥ 1.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2021: 47(2), p. 97–100.

4611. Proposed by Nguyen Viet Hung.

Evaluate
1

sin4 π
14

+
1

sin4 3π
14

+
1

sin4 5π
14

.

We received 24 solutions, one of which was incorrect. We present the solution by
Brian Beasley.

Let a = sin π
14 = cos 3π

7 , b = sin 3π
14 = − cos 5π

7 , and c = sin 5π
14 = cos π7 . To apply

the multiple-angle identity

cos 7θ = 64 cos7 θ − 112 cos5 θ + 56 cos3 θ − 7 cos θ,

we let

f(x) = 64x7 − 112x5 + 56x3 − 7x+ 1 = (x+ 1)(8x3 − 4x2 − 4x+ 1)2

and note that the three zeros of 8x3 − 4x2 − 4x + 1 are a, −b, and c. Then
a− b+ c = 1

2 , −ab− bc+ ca = − 1
2 , and abc = 1

8 . This yields

1

4
= (a− b+ c)2 = (a2 + b2 + c2) + 2(−ab− bc+ ca) = a2 + b2 + c2 − 1,

so a2 + b2 + c2 = 5
4 . Similarly, we obtain

1

4
= (−ab− bc+ ca)2

= [(ab)2 + (bc)2 + (ca)2] + 2abc(−a+ b− c)

= (ab)2 + (bc)2 + (ca)2 − 1

8
,

so (ab)2 + (bc)2 + (ca)2 = 3
8 . Finally, we have

9

64
= [(ab)2 + (bc)2 + (ca)2]2 = [(ab)4 + (bc)4 + (ca)4] + 2(abc)2(a2 + b2 + c2)

and hence (ab)4 + (bc)4 + (ca)4 = 13
128 . We conclude that

1

a4
+

1

b4
+

1

c4
=

(ab)4 + (bc)4 + (ca)4

(abc)4
=

13
128

( 1
8 )4

= 416.
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4612. Proposed by Mihaela Berindeanu.

In the convex quadrilateral ABCD, we have

] (BAC) = ] (CAD) and ] (CDA) = ] (BCA) .

Denote O ∈ AC, X ∈ BC, Y ∈ CD such that OA = OC, AX ⊥ BC and
AY ⊥ CD. The perpendicular line from A to XY cuts BD at Z. Show that−→
OZ =

−→
OA+

−−→
OX +

−−→
OY .

We received 8 submissions, all of which were correct; we feature the solution by
the UCLan Cyprus Problem Solving Group, modified by the editor.

We have
−→
OA+

−−→
OX =

−−→
CO +

−−→
OX =

−−→
CX and

−→
OZ −−−→OY =

−−→
Y Z. So it is enough to

show that Y Z is parallel and equal to CX; that is, we are to show that XCY Z is
a parallelogram.

Let us write α, β, γ for the angles of the triangle ABC. Since ∠CAD = α and
∠CDA = γ, then the triangles ABC and ACD are similar.

Since ∠AXC = ∠AY C = 90◦, A,X,C, Y are concyclic on the circle with diameter
AC, call it ω. So we get ∠AXY = ∠ACY = β and ∠AYX = ∠ACX = γ. Thus
the triangle AXY is also similar to triangle ABC.

Let H be the orthocenter of triangle AXY . Then Y H (the altitude) and CX
(given) are both perpendicular to AX, so they must be parallel. Similarly, XH
and CY are parallel because both are perpendicular to AY . So XCYH is a
parallelogram, and the problem reduces to showing that Z = H; specifically we
show that the orthocenter H of triangle AXY lies on BD. To that end we let Y ′
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be the other point of intersection of ω with the perpendicular from Y to AX, and
X ′ be the other point of intersection of ω with the perpendicular from X to AY .
Because the inscribed angles Y Y ′A and Y XA are equal, and we know that the
latter equals β = ∠CBA, we have Y ′ lies on the line AB. Similarly, X ′ lies on
the line AD. Pascal’s theorem applied to the inscribed hexagon AY ′Y CXX ′ says
that the points of intersection of AY ′ with CX (namely B), of Y ′Y with XX ′

(namely H), and of Y C with X ′A (namely D) are collinear. This concludes the
argument.

Editor’s Comments. Walther Janous observed that the convexity of the quadri-
lateral ABCD is not needed: we used only that the triangles ABC and ACD are
similar. C.R. Pranesachar motivated his solution by referring to the familiar result
that the circumcenter O and orthocenter H of an arbitrary triangle AXY satisfies

−→
OA+

−−→
OX +

−−→
OY =

−−→
OH.

This result was used implicitly in the first step of the featured solution.

4613. Proposed by Daniel Sitaru.

Let A and B be n×n real matrices with n ∈ N, n ≥ 2 such that AB = BA. Show
that

det(4(A2 +B2) +AB + 3(A+B) + In) ≥ 0.

We received 13 submissions, all correct. We present the solution provided by
Marie-Nicole Gras.

Multiplying the given expression by 16, we get

M = 64A2 + 64B2 + 16AB + 48A+ 48B + 16In.

Since AB = BA, we can compute (as with real numbers):

M = (8A+B + 3In)2 −B2 − 6B − 9In + 64B2 + 48B + 16In

= (8A+B + 3In)2 + 63B2 + 42B + 7In

= (8A+B + 3In)2 + (3
√

7B +
√

7In)2 =: C2 +D2.

In the complex numbers field C, we have

det(M) = det(C2 +D2)

= det
(
(C + iD)(C − iD)

)
= det(C + iD) det(C − iD).

Then, det(M) is the product of two conjugate complex numbers. Therefore it
follows that det(M) ≥ 0.
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4614. Proposed by Florin Stanescu.

Let k be a given natural number and let (an)n≥1 be a sequence such that

lim
n→∞

1

nk

(a1
1

+
a2
2

+ · · ·+ an
n

)
= 1.

Prove that the sequence
(a1 + a2 + · · ·+ an

nk+1

)
n≥1

is convergent by finding its limit.

We received 7 submissions, of which 6 were correct. We present the solution by
Michel Bataille.

For each n ≥ 1, let An = a1
1 + a2

2 + · · ·+ an
n . Then we have

a1 + a2 + · · ·+ an = 1 ·A1 + 2(A2 −A1) + · · ·+ (n− 1)(An−1 −An−2) + n(An −An−1)

= −A1 −A2 − · · · −An−1 + nAn

= (n+ 1)An − (A1 +A2 + · · ·+An).

It follows that

a1 + a2 + · · ·+ an
nk+1

=
n+ 1

nk+1
·An −

A1 +A2 + · · ·+An
nk+1

.

By the given condition, we have

lim
n→∞

n+ 1

nk+1
·An = lim

n→∞

Å
n+ 1

n
· An
nk

ã
= 1 · 1 = 1.

In addition, since An ∼ nk > 0 as n → ∞ and
∑
n≥1

nk is a divergent series,

application of Stolz-Cesaro’s Theorem gives

n∑
j=1

Aj ∼
n∑
j=1

jk.

Next, note that the sum Sn = 1
n

Ä(
1
n

)k
+
(
2
n

)k
+ · · ·+

(
n
n

)kä
is a Riemann sum

for the function f(x) = xk on [0, 1], so limn→∞ Sn =
∫ 1

0
xkdx = 1

k+1 .

Hence

lim
n→∞

1

n

ÇÅ
1

n

ãk
+

Å
2

n

ãk
+ · · ·+

(n
n

)kå
=

1

k + 1
,

so limn→∞
1

nk+1

∑n
j=1 j

k = 1
k+1 , so

n∑
j=1

Aj ∼ ∑n
j=1 j

k ∼ nk+1

k+1 as n → ∞.

Therefore

lim
n→∞

1

nk+1
(A1 +A2 + · · ·+An) =

1

k + 1
,

from which we can deduce that the sequence
(a1 + a2 + · · ·+ an

nk+1

)
n≥1

is conver-

gent and its limit is 1− 1
k+1 = k

k+1 .
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4615. Proposed by Anthony Garcia.

Let f be a twice differentiable function on [0, 1] such that
∫ 1

0
f(x)dx = f(1)

2 . Prove
that ∫ 1

0

(f ′′(x))2dx ≥ 30(f(0))2.

We received 11 solutions, all of which were correct. We present the solution by
Henry Ricardo.

The Cauchy-Schwarz inequality gives usÇ∫ 1

0

(x− x2)f ′′(x) dx

å2

≤
∫ 1

0

(x− x2)2dx ·
∫ 1

0

(f ′′(x))
2
dx. (1)

Integration by parts yields∫ 1

0

(x− x2)f ′′(x) dx = −
∫ 1

0

(1− 2x)f ′(x) dx

= f(1) + f(0)− 2

∫ 1

0

f(x)dx = f(0), (2)

and a simple calculation results in∫ 1

0

(x− x2)2 dx =
1

30
. (3)

Substituting (2) and (3) in (1), we get

(f(0))
2 ≤ 1

30

∫ 1

0

(f ′′(x))
2
dx,

which is the desired result.

4616. Proposed by Marius Drăgan, modified by the Editorial Board.

For each suitable point N on side AC of ∆ABC define P to be the point where
the line parallel to AB meets the side BC, and M to be the point on side AB for
which ∠MNA = ∠B. If the area of ∆ABC equals 1, determine the maximum
area of triangle MPN .

We received 14 solutions, all of which were correct, albeit not all interpreted the
problem the same way. Five solutions (including that of the proposer) implicitly
required the points M , N , and P to be on the segments AB, AC, BC, respectively,
resulting in two cases for the value of the maximum. The remaining nine solutions
implicitly allowed the points M , N , and P to be anywhere on the corresponding
lines, resulting in a single case for the maximum. We feature one solution of each
type.
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Solution 1, by UCLan Cyprus Problem Solving Group.

Let a, b, c be the side lengths of the triangle. We denote the area of a triangle
XY Z by [XY Z].

Assume NC = λb. Since NP is parallel to AB, then PC = λa and [PNC] = λ2.

We also have AN = (1 − λ)b. Since ANM is similar to ABC (angle criterion)
then AM = (1− λ)2b2/c and [AMN ] = (1− λ)2b2/c2.

We also have BM = c− (1−λ)b2
c and BP = (1− λ)a. So

[BMP ] =
1

2
(BM)(BP ) sin(∠ABC) =

(BM)(BP )

ac
= (1− λ)

Å
1− (1− λ)b2

c2

ã
.

We get

[MNP ] = 1− ([PNC] + [AMN ] + [BMP ]) = λ− λ2 =
1

4
−
Å

1

2
− λ
ã2

.

So the area of MNP is maximized when λ is as close to 1/2 as possible.

We observe that if λ cannot take all possible values in [0, 1], then its smallest
possible value occurs when M = B. In this case we have

c = AB = AM =
(1− λ)b2

c
.

This gives λ > 1− c2

b2 .

So the maximum possible area of MPN is 1/4 if c > b
√

2/2 andÅ
1− c2

b2

ã
c2

b2
=
c2(b2 − c2)

b4

otherwise.
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Solution 2, by Michel Bataille.

In barycentric coordinates relative to (A,B,C), we have N = (t : 0 : 1 − t) for
some real t ∈ [0, 1]. The parallel to AB through N also passes through the point
at infinity (1 : −1 : 0) of AB, hence its equation is (1− t)(x+ y) = tz. This yields
P = (0 : t : 1− t).
Since M is on the side AB, we have M = (u : 1 − u : 0) for some real u ∈ [0, 1]
and since the area of ∆ABC is 1, the area [MPN ] of ∆MPN is |δ| where

δ =

∣∣∣∣∣∣
u 0 t

1− u t 0
0 1− t 1− t

∣∣∣∣∣∣ = t(1− t)[u+ 1− u] = t(1− t).

Thus,

[MPN ] = t(1− t) ≤ 1

4

with equality if and only if t = 1
2 .

In conclusion the desired maximum is 1
4 attained when N is the midpoint of AC.

4617. Proposed by Nermin Hodzic, Adnan Ali and Salem Malikic.

Let a, b, c be positive real numbers such that

a

b+ c
+

b

c+ a
+

c

a+ b
= 2.

Show that max(a, b, c) ≥ 3
√

9abc.

We received 10 submissions, of which 8 were correct and complete. We present
the solution by UCLan Cyprus Problem Solving Group.

By symmetry and homogeneity we may assume that a > b > c = 1. We then must
prove that a > 3

√
9ab, which is equivalent to a2 > 9b.

If b > 9 then a2 > b2 > 9b.

Hence, we can assume 1 6 b < 9. Since c = 1, the constraint becomes

a

1 + b
+

b

1 + a
+

c

a+ b
= 2,

which is equivalent to

a3 − (b+ 1)a2 − (b2 + b+ 1)a+ (b3 − b2 − b+ 1) = 0

and leads us to define

f(x) = x3 − (b+ 1)x2 − (b2 + b+ 1)x+ (b3 − b2 − b+ 1)

so that a is a zero of f(x).
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If b = 1 then f(x) = x(x− 3)(x+ 1), whose only positive zero is when x = 3. So
a = 3 and a2 > 9b as required.

If 1 < b < 9, note that f(0) = b3 − b2 − b + 1 = (b − 1)2(b + 1) > 0 and
f(b) = 1 − 3b2 − 2b < 0. Hence, the monic, cubic polynomial, f(x), has one
negative zero, one zero in the interval (0, b), and one zero greater than b. Thus, a
is the unique zero of f(x) which is greater than b.

To see that a2 > 9b, we will show that 3
√
b < a.

Since 1 < b < 9 we have
√
b < 3 and so, b < 3

√
b. Since f(x) > 0 for x > b only

when x > a, to see that 3
√
b < a, it suffices to show that f(3

√
b) < 0 .

We have

f(3
√
b) = 27b3/2 − 9b2 − 9b− 3b5/2 − 3b3/2 − 3b1/2 + b3 − b2 − b+ 1 = g(

√
b)

where

g(x) = x6 − 3x5 − 10x4 + 24x3 − 10x2 − 3x+ 1

= (x− 1)(x5 − 2x4 − 12x3 + 12x2 + 2x− 1)

= (x− 1)2(x4 − x3 − 13x2 − x+ 1) .

Letting h(x) = x4 − x3 − 13x2 − x + 1, it remains to show that h(x) < 0 for
x ∈ (1, 3). In fact,

h(x) = (x3−1)(x−1)−13x2 = (x−1)2(x2+x+1)−13x2 < 13(x−1)2−13x2 < 0 .

We note that equality holds if and only if (a, b, c) ∈ {(3t, t, t), (t, 3t, t), (t, t, 3t)} for
some t > 0.

4618. Proposed by Cherng-tiao Perng.

Let C be a nondegenerate conic and L be a line. Let O,P be two distinct points
such that O,P /∈ L and P ∈ C. Denote the alternative intersection of OP and C
by Q0. Furthermore let P ′ be a point on OP such that P ′ /∈ L. For any Q on C
other than Q0, let

QP ∩ L = {D} and DP ′ ∩QO = {Q′}.

Prove that when Q varies on C, Q′ moves on a fixed conic through P ′.

We received 4 solutions for this problem. We present the solution by Theo Koupelis.

Without loss of generality, we consider a coordinate system where P is at the origin
and the x-axis is the line OP. Then P = (0, 0), O = (x0, 0), and P ′ = (x

P ′ , 0).
Also, let Q = (x

Q
, y

Q
), and D be the point of intersection between the line PQ

and L. For Q 6≡ P, the equation of the line PQ is given by y
PQ

=
y
Q

x
Q

· x. Also, let
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the equation of line L be yL = mx + b. Then the coordinates of the point D are
given by

(x
D
, y

D
) =

Ç
bx

Q

y
Q
−mx

Q

,
by
Q

y
Q
−mx

Q

å
.

Now the equations for the lines DP ′ and OQ are given by

y
DP ′ =

−by
Q

x
P ′ (yQ −mxQ)− bx

Q

· (x− x
P ′ ), and y

OQ
=

y
Q

x
Q
− x0

· (x− x0),

and therefore the coordinates of their intersection point Q′ are

(x
Q′ , yQ′ ) =

Ç
x0 +

b(x
P ′ − x0)(x

Q
− x0)

x
P ′ (yQ −mxQ)− bx0

,
by
Q

(x
P ′ − x0)

x
P ′ (yQ −mxQ)− bx0

å
. (1)

We can now write the coordinates of the point Q in terms of the coordinates of
the points Q′, P ′, P, and O as

x
Q

=
−bx0 · xQ′ − x0xP ′ · yQ′ + bx0xP ′

mx
P ′ · xQ′ − xP ′ · yQ′ + b(x

P ′ − x0)−mx0xP ′

,

y
Q

=
−x0(b+mx

P ′ ) · yQ′

mx
P ′ · xQ′ − xP ′ · yQ′ + b(x

P ′ − x0)−mx0xP ′

.

Simplifying we have

(x
Q
, y

Q
) =

Ç
ax

Q′ + b̄y
Q′ + c

dx
Q′ + ey

Q′ + f
,

gy
Q′

dx
Q′ + ey

Q′ + f

å
, (2)

where a = −bx0, b̄ = −x0xP ′ , c = bx0xP ′ , d = mx
P ′ , e = −x

P ′ , f = b(x
P ′ − x0)−

mx0xP ′ , and g = −x0(b+mx
P ′ ) are constants.

Because the point Q belongs to a conic, its coordinates (x
Q
, y

Q
) satisfy an equation

of the form

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0, (3)

where A,B,C,D,E, and F are given constants. Of course, in our case, because
P = (0, 0) is on the same conic, we have F = 0. By direct substitution into (3),
we see now that using the transformation shown in (2) the coordinates (x

Q′ , yQ′ )
also satisfy an equation of the form

A′x2 +B′xy + C ′y2 +D′x+ E′y + F ′ = 0,

where the coefficients A′, B′, C ′, D′, E′, and F ′ depend on the constants A, B, C,
D, E, m, b, x0, and x

P ′ . Therefore, when Q varies on C, Q′ moves on a fixed conic.
This new conic does go through point P ′; indeed, when Q→ P, then x

Q
→ 0 and

y
Q
→ 0 and therefore from (1) we get (x

Q′ , yQ′ )→ (x
P ′ , 0) and thus Q′ → P ′.

An example is shown below.
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4619. Proposed by D. M. Bătineţu-Giurgiu and Neculai Stanciu.

Consider the sequences an and bn such that an =
∑n
k=1

1

k2
and bn =

∑n
k=1

1

(2k − 1)2
.

Compute lim
n→∞

Å
π4

48
− anbn

ã
n.

We received 20 solutions, all correct. We present two different solutions.

Solution 1, based on similar arguments by Theo Koupelis and UCLan Cyprus Prob-
lem Solving Group (done independently).

Let Sn =

Å
π4

48
− anbn

ã
n.

It is well known that
∑∞
k=1

1

k2
=
π2

6
and

∑∞
k=1

1

(2k − 1)2
=
π2

8
, so

an =
π2

6
−

∞∑
k=n+1

1

k2
, and bn =

π2

8
−

∞∑
k=n+1

1

(2k − 1)2
.

Substituting we get

Sn =
nπ2

48
− n

(
π2

6
−

∞∑
k=n+1

1

k2

)(
π2

8
−

∞∑
k=n+1

1

(2k − 1)2

)

=
π2

6

(
n

∞∑
k=n+1

1

(2k − 1)2
+

3n

4

∞∑
k=n+1

1

k2
− 6n

π2

∞∑
k=n+1

1

(2k − 1)2
·
∞∑

k=n+1

1

k2

)
.

Next by straightforward computations we have

1

2

Å
1

2k + 2
− 1

2k + 4

ã
<

1

(2k + 1)2
<

1

2

Å
1

2k
− 1

2k + 2

ã
,
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and

1

k + 1
− 1

k + 2
=

1

(k + 1)(k + 2)
<

1

(k + 1)2
<

1

k
− 1

k + 1
.

Summing from k = n to infinity in the two inequalities above, we the obtain:

1

4(n+ 1)
<

∞∑
k=n+1

1

(2k − 1)2
<

1

4n
and

1

n+ 1
<

∞∑
k=n+1

1

k2
<

1

n
.

Therefore

π2

6

Å
n

4(n+ 1)
+

3n

4(n+ 1)
− 6n

4n2π2

ã
< Sn <

π2

6

Å
n

4n
+

3n

4n
− 6n

4(n+ 1)2π2

ã
,

or

π2

6

Å
1− 1

n+ 1
− 6

4nπ2

ã
< Sn <

π2

6

Å
1− 3n

2(n+ 1)2π2

ã
.

Therefore, by the Squeeze Theorem, it follows that lim
n→∞

Sn =
π2

6
.

Solution 2, by Corneliu Manescu-Avram, slightly enhanced by the editor.

It is well known that limn→∞ an =
π2

6
and

lim
n→∞

bn = lim
n→∞

(a2n −
1

4
an) =

π2

6
− π2

24
=
π2

8
.

Let xn =
π2

48
− anbn and yn =

1

n
. Then xn+1 − xn = anbn − an+1bn+1 and

yn+1 − yn =
1

n+ 1
− 1

n
=

−1

n(n+ 1)
. Hence

lim
n→∞

xn+1 − xn
yn+1 − yn

= lim
n→∞

n(n+ 1)(an+1bn+1 − anbn). (1)

Since an+1 = an +
1

(n+ 1)2
and bn+1 = bn +

1

(2n+ 1)2
, we have

an+1bn+1 − anbn =
an

(2n+ 1)2
+

bn
(n+ 1)2

+
1

(n+ 1)2(2n+ 1)2
. (2)

From (1) and (2), we obtain

lim
n→∞

xn+1 − xn
yn+1 − yn

= lim
n→∞

n(n+ 1)

(2n+ 1)2
an + lim

n→∞

n

n+ 1
bn + lim

n→∞

n

(n+ 1)(2n+ 1)2

=
π2

24
+
π2

8
=
π2

6
.
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Hence by the Stolz-Cèsaro Theorem for the ( 0
0 ) case, we conclude that

lim
n→∞

Å
π2

24
− anbn

ã
n = lim

n→∞

xn+1 − xn
yn+1 − yn

=
π2

6
.

4620. Proposed by Alpaslan Ceran.

Consider three semicircles in the configuration below:

Prove that
1

x
=

1

a
+

1

b
.

We received 28 solutions, of which 20 were correct. We present the solution by
Theo Koupelis.

Let BM be the common internal tangent of the circles with diameters AB and BC,
where M is on the line EK. Similarly, let CN be the common internal tangent of
the circles with diameters BC and CD, where N is on the line EK. By the fact
that different tangent segments from the same point to the same circle have the
same length, we find that

ME = MB = MF =
a

2
, NF = NC = NK =

b

2
.

Moreover, BM ‖ HF ‖ CN . Let F1 be the foot of the perpendicular from M
to HF , and let N1 be the foot of the perpendicular from F to CN . Then the
right triangles MF1F and FN1N are similar because ∠MFF1 = ∠FNN1. Also,
HF1 = BM and CN1 = HF = x because BMF1H and HFN1C are rectangles.
Therefore,

MF

FF1
=

FN

NN1
=⇒

a
2

x− a
2

=
b
2

b
2 − x

=⇒ x(a+ b) = ab =⇒ 1

x
=

1

a
+

1

b
.
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