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Dedication /333

This issue is dedicated to the memory of Canadian mathematical legend Richard
Guy, who passed away on March 9th, 2020 at the age of 103. We are proud to
present the materials that have been contributed to this issue by Richard’s friends
and colleagues as well as many people that he has inspired mathematically. We
are also featuring a previously unpublished article by Richard Guy and Elwyn
Berlekamp, in memory of both authors.

We celebrate Richard’s legacy with this 103-page issue.

Richard celebrated his 100th birthday with his colleagues at the December Lun-
cheon of Emeritus Association of University of Calgary in 2016. This picture was
taken by Tom Swaddle. Here are some quotes from his colleagues.

“I had several discussions with Richard and his late wife, about what was the
secret of their good health throughout the years, and was informed that consistent
exercise, including dance and love of music were important aspects.” – Dr. Carole-
Lynne Le Navenec, Associate Professor Emerita of Nursing, University of Calgary.

“I, too, once asked Richard about the secret of his longevity. He said, with a
deadpan expression, “I always put my socks on standing up!” He may not have been
joking (hard to tell with Richard). He and I shared a passion for mountaineering;
in fact, it was I who introduced him to the Alpine Club of Canada, in which he
became very active, and we were very conscious of the need to preserve a sense of
balance for climbing.” – Tom Swaddle, Professor Emeritus of Chemistry, University
of Calgary.

Copyright © Canadian Mathematical Society, 2020
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Fibonacci Plays Billiards
Elwyn Berlekamp and Richard Guy

Abstract

A chain is an ordering of the integers 1 to n such that adjacent pairs have sums of a
particular form, such as squares, cubes, triangular numbers, pentagonal numbers,
or Fibonacci numbers. For example 4 1 2 3 5 form a Fibonacci chain while 1 2 8
7 3 12 9 6 4 11 10 5 form a triangular chain. Since 1 + 5 is also triangular, this
latter forms a triangular necklace. A search for such chains and necklaces can be
facilitated by the use of paths of billiard balls on a rectangular or other polygonal
billiard table.

Foreword

This manuscript dating back to 2003 lay dormant in Richard Guy’s files for many
years. Richard resurrected it in the summer of 2017 when, at age 100, he recruited
his last student, Ethan White. Under Richard’s and my joint supervision, Ethan,
then an undergraduate student at the University of Calgary and an NSERC USRA
recipient, conducted research on sum and difference necklaces.

The inaugural Richard and Louise Guy lecture, of the same title as this manuscript,
was delivered in 2006 at the University of Calgary by Elwyn Berlekamp. Following
Berlekamp’s death in April 2019, Richard felt that he owed it to his long-time
friend and collaborator to make this work more widely known. An arXiv version
(https://arxiv.org/abs/2002.03705), augmented with an up-to-date appendix
on square necklaces, was posted less than five weeks before Richard passed away
on March 9.

Richard would be pleased to finally see this work formally published. Given his
life-long delight in playful and recreational mathematics, Crux Mathematicorum
is an ideal home for Fibonacci Plays Billiards.

Renate Scheidler, University of Calgary
September 2020

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

At the 2002 Combinatorial Games Conference in Edmonton we found Yoshiyuki
Kotani looking for values of n which would enable him to arrange the numbers 1
to n in a chain so that adjacent links summed to a perfect cube. Part of such a
chain might be . . . 61 3 5 22 42 . . .. He had seen the corresponding problem
asking for squares. Later Ed Pegg informed us that this problem, with squares
and with n = 15, was proposed by Bernardo Recaman Santos, of Colombia, at the
2000 World Puzzle Championship. More recently it appeared as Puzzle 30 in [6].

(16→)9→7→2←14→11→5→4←12←13→3←6←10←15→1←8(←17)

Figure 1: Solution(s) to Recaman’s problem for n = 15, 16, 17.

Crux Mathematicorum, Vol. 45(8), October 2020
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This inspired Joe Kisenwether to ask for the numbers 1 to 32 to be arranged as a
necklace whose neighboring beads add to squares (Figure 2).

4 21 28 8 1 15 10 26 23
32 2
17 14
19 22
30 27
6 9
3 16
13 20
12 24 25 11 5 31 18 7 29

Figure 2: A necklace with adjacent pairs of beads adding to squares.

The extension to cubes was suggested by Nob Yoshigahara. The least n for such a
chain or necklace may be greater than 300. But it seems certain that such chains
and necklaces can be found for all sufficiently large n, and for any other powers or
polynomials, e.g., figurate numbers of various kinds; see Figure 3.

3
7 12

8 9
2 6

1 5 10 11 4

Figure 3: A necklace with adjacent pairs of beads adding to triangular numbers.

So we asked about more rapidly divergent sequences. For powers of 2, it is not
possible to connect chains of odd numbers to chains of even numbers, and there
are similar difficulties with powers of larger numbers.

However, the corresponding problem with neighbors summing to Fibonacci num-
bers, F0 = 0, F1 = 1, Fk+1 = Fk + Fk−1, has a better balanced solution.

We can draw a graph with the numbers 1 to n as vertices and edges joining pairs
whose sum is a Fibonacci number: for n = 11, this is Figure 4.

9 8
↓ ↓
4 5
↓ ↓
1 3

↙ ↖ ↙ ↖
7 2 10
↖ ↗ ↖ ↗

6 11

Figure 4: Graph whose adjacencies are Fibonacci sums

Copyright © Canadian Mathematical Society, 2020
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The arrows are drawn from the larger to the smaller number to emphasize that
the larger number is not part of the graph unless the smaller is already present.
From the graph we can read off 1 2; 1 2 3; 4 1 2 3; 4 1 2 3 5; 4 1 7 6 2 3 5; 4 1 7
6 2 3 5 8; 9 4 1 7 6 2 3 5 8 and 9 4 1 7 6 2 11 10 3 5 8. We can also verify that 6
and 10 can’t be included in a chain unless some larger number is also present (in
the former case 4, 5 and 6 are monovalent vertices and all three can’t be ends of
the chain; in the latter case, 8, 9 and 10). Evidently the Law of Small Numbers
is at work. Six and ten are the only numbers which are not powers of primes. Is
there some connexion with projective planes? No, but the Law of Small Numbers
is indeed at work, but the villains are 9 and 11.

Theorem 1. There is a chain formed with the numbers 1 to n with each adjacent
pair adding to a Fibonacci number, just if n = 9, 11, or Fk or Fk − 1, where Fk is
a Fibonacci number with k ≥ 4. The chain is essentially unique.

Proof. For n ≤ 11 (k = 4, 5, 6) this follows from Figure 2. If k = 7, then
12 = F7 − 1 can be appended to the 11-chain, forming a 4-circuit; also, F7 = 13
can be appended at the other end, as shown in Figure 5.

4
↙ ↖

(13→) 8→5→3 . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . 1 9
↖ ↗ ↖ ↗ ↖ ↗

10 ← 11 6 ← 7 12

Figure 5: Ball and chain for 12 or 13.

Although 2 is adjacent to 1 and 3, the chain for 12 or 13 is essentially unique,
except that the right tail may be 12 or 4 for either chain. None of the Fibonacci
chains that we have seen will form a necklace; nor will any others.

The rest of the proof is by induction, but the comparatively simple pattern is made
more difficult to describe because only every third Fibonacci number is even.

Balls and chains occur just for F3m+1 − 1 and F3m+1 with m ≥ 1; other cases are
simple chains. The chain 1—2—3 can be thought of as the “zeroth ball” (Fig. 6).

There are no chains for n = 14, 15, 16, 17, 18 or 19, since, when we successively
append these numbers to the graph, the first three are monovalent vertices, as
also is 17 (= 1

2F9), though this last can be accommodated by breaking the ball
and allowing 17 to become an end of the chain. When we adjoin 18 & 19 they
repectively allow 16 & 15 to become bivalent, but a chain is not reachieved until
we append F8 − 1 = 20 at 1 & 14.

Note that all the partitions (5&3, 2&6, 7&1) of F6 = 8 into two distinct parts have
been bypassed by the partitions of F9 = 34 into parts of size less than F8 = 21,
which itself can then be appended to form a new tail to the chain. Because F9 is
even, as is every third Fibonacci number, 1

2F9 = 17 can only be appended to 4
(= 1

2F6).

Crux Mathematicorum, Vol. 45(8), October 2020
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1
2F3 =1

2

↙
4

↖
( 1
2F0 = 0) 2 = 1

2 (F2+F4)
4

↖
5

↗
3
2F3 =3

1
2F3m+3

3m+2

↙
3m+4

↖
F3m+3− 1

2F3m

3m

−→ 1
2F3m

1
2 (F3m+2+F3m+4)

3m+4

↖
3m

↗
3
2F3m+3

Figure 6: Zeroth ball and general ball. Small numbers above the arrows are ranks
of Fibonacci numbers to which pairs of linked numbers sum.

17= 1
2F9

8

↙
4

7

↖
(21

9→)13
8→8

7→5 3
7←10

8←11
7→ 2 6

7← 7 1 9= 1
2 (F5+F7)

8 ↑ ↑ 8 8 ↑ ↑ 8 8 ↑ ↑ 8
7

↖
8

↗
16

9←18 19
9→ 15 14

9← 20 12

Figure 7: Fibonacci chains for F8 − 1 = 20 and F8 = 21.

If we continue, we find that a chain cannot again be achieved until we have replaced
the six partitions of F7 = 13 by links of partitions of F10 = 55 into two parts of
size at most F9 − 1 = 33 (Figure 8).

8 5 3 10 11 2 6 7 1 12 9 4
| | | | | | | | | | | |

26—29 31—24 23—32 28—27 33—22 25—30

Figure 8: Links extending the chain to F9 − 1 = 33.

F9 = 34 can then be appended to 21 = F8 to make a new tail to the chain.

The next chain is for F10 − 1 = 54, obtained by appending links of partitions of
F11 = 89 into parts of size at most 54:

54−−− 35, 53−−− 36, . . . , 45−−− 44

to the ten partitions 1—20, 2—19, . . ., 10—11, of F8 = 21. The chain for F10 = 55
can be formed by appended it at the end F9 = 34.

Copyright © Canadian Mathematical Society, 2020
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Note, that the link —51—38— need not immediately replace the end link —4—17
of the chain, but the latter can remain as part of a new ball, the case m = 2 of
Figure 6, until we wish to append 1

2F12 = 72, which we will do when forming the
88- and 89-chains.

We have seen several stages of the induction. In Figure 5 the numbers between
F5 = 5 and F6 = 8 and F6 itself are appended, as also are the numbers between
F6 = 8 and F7 = 13 and 13 itself. In Figures 7 and 8, the numbers between Fk
and Fk+1 are appended for k = 7 and 8 respectively. Note that in the former
1
2Fk+2 = 17 is appended to 1

2Fk−1 = 4.

Fk+1 Fk+1−i Fk+i 1
2Fk+2

Fk i Fk−1−i 1
2Fk−1

k+2 k+1 k+1 k+1

k+2

Figure 9: Extending Fk−1 and Fk chains to those for Fk+1−1 and Fk+1 The
appendage on the right is required only when k = 3m+ 1.

Generally, as in Figure 9, we append the pairs of numbers Fk + i, Fk+1 − i for
1 ≤ i ≤ 1

2 (Fk−1− 1), except that, when k = 3m+ 1, 1
2 (Fk−1− 1) is not an integer

and we have a new tail, 1
2Fk+2, which is an integer, appended to 1

2Fk−1.

These last numbers are denominators of the convergents to the continued frac-
tion for

√
5, sequence A001076 in Neil Sloane’s Online Encyclopedia of Integer

Sequences [5].

The proof can be made much more perspicuous with billiards diagrams, which will
also throw light on the other kinds of chain in which we are interested.
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Figure 10: Fibonacci plays billiards. The thick upward paths connect 21-sums.
The other upward paths connect 8-sums. The down paths connect 13-sums.
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Figure 10 is equivalent to Figure 5. The ‘ball’ may be achieved by connecting the
Fibonacci sum 1—+—4 = 5.

This billiard table viewpoint is useful for depicting long chains whose adjacent
pair-sums all lie in a set of only three or four elements. If successive corners are
at a, b, c, d, where a < b < c < d, then the semi-perimeter must be c− a = d− b,
and the perimeter is P = 2(c − a) = 2(d − b). One side must be b − a = d − c,
and the other must be c − b = a − d (mod P ). Viewed along the 45 degree path
taken by the billiard ball, each integer along the side of the table has valence 2,
and each integer in a corner has valence 1. Hence, if the corners include 2 integers
(called pockets) and 2 non-integers, then the path beginning at either pocket must
eventually terminate in the other pocket.
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789101112

2120191817
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2
)(12 1

2
)

Figure 11: A billiard table with A = 4, B = 13, C = 25, D = 34 and perimeter
P = 21. The double-sides B −A = 9 and C −B = 12 are not relatively prime.

Figure 11 shows a rectangle of perimeter 21, whose corners are at a = 2, b = 6.5,
c = 12.5, d = 17. The sequence between pockets (thick lines) is 2, 11, 14, 20, 5, 8,
17. This sequence fails to reach many of the other integers along the perimeter,
which lie in the following cycle: 1, 3, 10, 15, 19, 6, 7, 18, 16, 9, 4, 21, 13, 12, 1.
The question of which rectangular billiard tables yield a single covering path and
which yield a degeneracy of this sort is answered by the following lemma.

Lemma. Let A, B, C, D, be positive integers such that A < B < C < D and
C −A = D −B. Let a = A/2; b = B/2; c = C/2, and d = D/2. Further suppose
that exactly two of a, b, c, d are integers, so that the corresponding billiard table
has two corner pockets. Then the 45 degree path between the pockets touches all
of the integers along the perimeter just if the rectangle’s double-sides, B −A and
C −B, are relatively prime.

Note. In Figure 11 the sides are 6.5− 2 = 4.5 and 12.5− 6.5 = 6, so the double-
sides are 9 and 12. They have a common factor of 3. So we could color each
integer of shape 3k + 2 and both pockets would be colored. Every integer along

Copyright © Canadian Mathematical Society, 2020
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the ball’s path would then also be colored. In general, this argument shows that
a degeneracy occurs whenever the double-sides are not relatively prime.

Proof of non-degeneracy. If the double-sides are prime to each other, and
hence to the perimeter P = C −A = D −B, so that, mod P , A ≡ C and D ≡ B,
then consider any two integers separated by exactly one bounce along the ball’s
path. If the bounce is at x, these integers, mod P , are at A − x and B − x, and
the distance between them is B − A ≡ D − C if measured in one direction mod
P , or A− B ≡ C −D ≡ A−D ≡ C − B if measured in the other direction. But
since B − A is a double-side, which is relatively prime to P , it follows that the
sequence, obtained by looking at alternate bounce-points along the ball’s path,
cannot cycle back to itself, mod P , without first reaching a pocket. Since this is
true for all values of x, the ball-path from one pocket to the other must go through
every integer point on the rectangle’s perimeter.

We can take three corners of a rectangle as the halves of any three consecutive
Fibonacci numbers (recall that the corners are allowed to be half-integers). The
perimeter of this rectangle will be the middle of these three Fibonacci numbers.
Since any pair of adjacent Fibonacci numbers is relatively prime, the path from
pocket to pocket is complete.
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Figure 12: A billiard table giving a Fibonacci chain of length P = 21.

Square chains. For the ‘square’ chains and necklaces which we mentioned at the
outset, Ed Pegg and Edwin Clark have verified that there are chains for n = 15,
16, 17, 23, 25 to 31 and necklaces (and hence chains) for n = 32 upwards. The
existence problem was solved quite recently; more in the appendix at the end.

The billiards technique allows us to construct arbitrarily large specimens. Figure
13 shows how our billiard table technique can be used to find a ‘square’ chain of
length 16.

We may delete 16, or append 17, giving the 15-, 16- and 17-chains of Figure 1.

Crux Mathematicorum, Vol. 45(8), October 2020
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Figure 13: A billiard table with A = 9, B = 16, C = 25 (all squares), and D = 32
(half a square) and perimeter P = 16.

It is possible to accommodate other numbers by using billiard tables with more
than four corners! Figure 14 shows such a table with corners at 4.5, 8.5, 9, 12.5,
24.5, and 32. The corner at 8.5 is reflex; the others are right. The perimeter is 39.
There are two pockets: a conventional corner pocket at 32, and a side pocket at
9. The path between these two pockets is complete.
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Figure 14: A billiard table with six corners.
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Square necklaces. In order to connect the two pockets and make a necklace, we
must be sure that they sum to a square. Two half-squares summing to a square
are provided by the parametric equation(

(r + s)2 − 2r2
)2

+
(
(r + s)2 − 2s2

)2
= 2

(
r2 + ss

)2
For example, 12 + 72 = 2 · 52. We multiply the solution by 6 to get the parity
right and to avoid the sides having a common factor of 3. 422 − 62 = 26 · 33 can
be arranged as the difference of two odd squares, which are not multiples of 3,
in just two different ways, 432 − 112 and 4332 − 4312. Billiard tables with half
these squares as corners have perimeters 1728 and 185725. Their double-sides,
(5 · 17, 31 · 53) and (26 · 33, 11 · 43 · 389) are coprime, so the chains contain every
integer on the perimeter. Moreover, the ends of the chains are 1

262 and 1
2422 which

sum to 302 so that they may be joined to form necklaces.

Here are some small square necklaces. The bold numbers are 6x, 6y.

x2 + y2 = 2z2 corners are half double sides perimeter
r, s x, y the squares of: are coprime P
2,1 1,7 6,11,42,43 85,1643 1728
3,2 7,17 42,102,119,151 3757,8640 12397
4,3 17,31 102,186,197,251 4213,24192 28405
7,3 1,41 6,23,246,247 493,59987 60480
7,5 23,47 109,138,269,282 7163,53317 60480
5,4 31,49 186.294,373,437 51840,52693 104533
7,3 1,41 6,246,397,467 60480,97093 157573
2,1 1,7 6,42,431,433 1728,183997 185725
5,3 7,23 42,138,859,869 17280,718837 736117
7,3 1,41 6,246,2153,2167 60480,4574893 4635373
3,2 7,17 42,102,2159,2161 8640,4650877 4659517
5,4 31,49 186,294,2587,2597 51840,6606133 6657973
5,3 7,23 42,138,4319,4321 17280,18634717 18651997
4,3 17,31 102,186,6047,6049 24192,36531613 36555805
7,5 23,47 138,282,15119,15121 60480,228504637 228565117

Of course, if one looked for square chains by putting halves of odd squares at the
corners of a billiard table, then, by Theorem 0 of number theory, namely that odd
squares are congruent to 1 mod 8, we would find that our tour broke up into four
separate loops, those containing 0 and 1, −1 and 2, −2 and 3, and those containing
−3 and 4 modulo 8. However, we are able to make a single necklace, by breaking
the loops at places which sum to a square on other loops. For example, the billiard
table with corners at 4.5, 24.5, 40.5 and 60.5 yields four 18-loops which may be
connected to form a 72-necklace as follows

. . . 1 — 3 . . . 6 — 10 . . . 71 — 29 . . . 52 —48 . . .

where the dots represent the other 16 members of each of the four loops.
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More generally, if the odd squares are (s− 2r)2, (s+ 2r)2, (2s− r)2 and (2s+ r)2,
we will have n = 3(s2 − r2). In order that the point 1 is on an edge adjacent to
the smallest square, we must have

s ≥ r +
»

(9r2 − 1)/2.

Cubic chains. The billiard table with corners at {62.5, 171.5, 256, 365} has
perimeter 387. The sides are relatively prime, so the path between the pockets
is complete. The adjacent pair-sums are 125, 343, 512 and 730. In pursuit of a
chain all of whose pair-sums are cubes, we move the corner from 365 to 364.5, and
insert a new reflex corner at 386.5 and a side pocket at 387. A detailed calculation
reveals that the path between the pockets at 387 and 256 is complete, so we then
have a cubic chain among the numbers from 1 through 387. This chain uses only
the cubes 125, 343, 512 and 729.

By deleting the endpoint at 387 we obtain a cubic chain among the numbers from
1 through 386. Since each of our Fibonacci chains also has a pocket at its highest
number, we can similarly delete that maximum number and obtain a Fibonacci
chain among the numbers from 1 to Fk − 1, for any k > 3. We leave the reader to
design billiard tables with extra corners to accommodate such numbers.

No doubt, in answer to Nob Yoshigara’s question, cubic chains and necklaces exist
for all sufficiently large n, but not for n < 295. When n = 295 the graph has just
two monovalent vertices, at 216 and 256, which have to form the tails of a chain,
but it cannot be completed. We can construct a cubic necklace if we can find a
number which is the sum of two odd cubes in two different ways. If the cubes are
a3 + d3 = b3 + c3, then we also need that a3 < c3 − b3 (to make sure the necklace
includes all the numbers from 1 on) and that gcd(c3 − b3, b3 − a3) = 2 (else the
necklace will split up into smaller necklaces). The smallest try is 233 + 1633 =
1213 + 1373, but the relevant gcd is 14 and we have 7 small necklaces each of
length 114256 instead of a single necklace of length 799792. Fortunately, Andrew
Bremner observes that 213+2573 = 1673+2313 where 1673−213 = 2·13·31·73·79
and 2313 − 1672 = 26 · 119827 have gcd 2, so that if we put halves of these four
odd cubes at the corners of a billiard table, we will have a cubic necklace of length
the latter number, 7668928. Surely there are smaller ones.

Triangular chains exist for n = 2 and probably for all n ≥ 9. Necklaces appear
to exist for n ≥ 12, except for n = 14. We would like to see proofs of these
statements, which we have verified to n = 70. It is easy to find arbitrarily large
triangular chains, by taking numbers which are the sum of two triangular numbers
in two different ways. If the triangular numbers A < B < C < D are odd and not
all multiples of three (in fact two will have to be multiples of 3 and two of them
congruent to 1 mod 3), then, by placing their halves at the corners of a billiard
table, we will have a triangular necklace of length C − A, provided that the
sides of the table are coprime, and that A < C −B (else we will lose some of the
beads from the beginning of the necklace).

The table on the next page shows some triangular necklaces.
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The existence of ‘triangular triples’, such as

−−−29−−− 91−−− 62−−−,

−−−44−−− 92−−− 61−−−,

−−−27−−− 93−−− 78−−−

where each pair sums to a triangular number, enables us to expand the 90-necklace
at the head of the last list, to 91-, 92- and 93-necklaces, as in Figure 15.

In the same way, we can insert —101—199—152— and —100—200—53— into
the 198-necklace which is the second in the list.

corners are half the sides are perimeter;
triangular numbers: coprime # of beads

1, 15, 91, 105 7, 38 90
55, 153, 253, 351 49, 50 198
91, 231, 325, 465 47, 70 234
15, 253, 465, 703 106, 119 450
21, 55, 561, 595 17, 253 540
45, 153, 595, 703 54, 221 550
91, 253, 741, 903 81, 244 650

253, 703, 1035, 1485 166, 225 782
3, 325, 903, 1225 161, 289 900

325. 703, 1275, 1653 189, 286 950
45, 91, 1035, 1081 23, 472 990

465, 703, 1653, 1891 119, 475 1188
171, 1225, 1431, 2485 103, 527 1260
45, 325, 1431, 1711 140, 553 1386
1, 55, 1431, 1485 27, 688 1430

45, 1035, 1711, 2701 338, 495 1666
1, 435, 1711, 2145 217, 638 1710

171, 703, 1953, 2485 266, 625 1782
91, 153, 1891, 1953 31, 869 1800
55, 1485, 1891, 3321 203, 715 1836
105, 595, 2211, 2701 245, 808 2106
15, 231, 2485, 2701 108, 1127 2470
91, 1485, 2701, 4095 608, 697 2610
55, 435, 2701, 3081 190, 1133 2646
21, 595, 3081, 3655 287, 1243 3060
3, 325, 3081, 3403 161, 1378 3078

171, 253, 3321, 3403 41, 1584 3250
1, 91, 4005, 4095 45, 1957 4004

Triangular necklaces
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Figure 15: Expanding a ‘triangular’ 90-necklace by one, two or three beads.

Pentagonal chains are those in which adjacent links sum to the pentagonal
numbers, 1, 2, 5, 7, 12, 15, . . ., 1

2n(3n ± 1). They appear to exist for all n ≥ 4
(e.g., 1—4—3—2) and necklaces for all n ≥ 9, e.g., –6–1–4–8–7–5–2–3–9–6– or

12
10 14

5 8
7 4

15 9

11 2

1 6 9 13

Figure 16: A necklace with adjacent pairs of beads adding to pentagonal numbers.

This has been checked to n = 49. Here are some other necklaces.

corners are half the sides are perimeter;
pentagonal numbers: coprime # of beads

15, 35, 57, 77 10, 11 42
1, 7, 51, 57 3, 22 50

7, 35, 117, 145 14, 41 110
35, 77, 145, 187 21, 34 110
15, 117, 145, 247 51, 14 130
57, 155, 247, 345 49, 46 190
7, 145, 287, 425 69, 71 280
1, 15, 287, 301 7, 136 286
7, 51, 301, 345 22, 125 294
7. 77, 425, 495 35, 174 418
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Prime chains have been considered from time to time [3, 4], but as in all cases
except the Fibonacci numbers and the Lucas numbers, existence proofs for all
large enough n are elusive.

Theorem 2. There is a chain formed with the numbers 1 to n with each adjacent
pair adding to a Lucas number, just if n = 5, or Lk or Lk−1, where Lk is a Lucas
number with k ≥ 2 (L2 = 3, L3 = 4, Ln+1 = Ln +Ln−1). The chain is essentially
unique.

The proof can follow either of the methods used for Theorem 1.

There are corresponding theorems for sequences satisfying the same recurrence
relation. For example, the chains that can be formed using the numbers 4, 5, 9,
14, 23, 37, . . . have length one of those numbers, or one less than one of them.

Appendix on square necklaces (February 2020)

In the more than seventeen years since this paper was written, one author has
collected square necklaces for 32 ≤ n ≤ 252. They are not unique. Figure 17
shows a pair of necklaces for n = 40.

1 3 6 19 30 34 15 10 39 25 24 3 6 19 30 34 15 10 39 25 24 40
8 40 22 9
17 9 27 16
32 16 37 33
4 33 12 31
21 31 13 18
28 18 36 7
36 7 28 29
13 2 21 20
12 23 4 5
37 27 22 14 35 29 20 5 11 38 26 32 17 8 1 35 14 2 23 26 38 11

Figure 17: A pair of square necklaces for n = 40.

At a recent MathFest presentation by the other author, a member of the audience
claimed to have used a computer to find square necklaces for 32 ≤ n ≤ 1000.

We were delighted to learn that the problem was recently solved by Robert Gerbicz;
see the Mersenne Forum blog thread [1]. Square necklaces exist for any length of
the form n = (71 ∗ 25k − 1)/2 with k ≥ 0. A generalization of this construction
proves the existence of square necklaces of any length n ≥ 32 and square chains of
any length n ≥ 25. Gerbicz’s C code for generating square necklaces is available
for download [2].

Acknowledgment. Thanks to Alex Fink for finding one of the necklaces in Figure
17 and to Ethan White for discovering Robert Gerbicz’s blog post.
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TRIBUTE
Richard K. Guy’s passing at age 103 invokes awe as much as sadness. It is truly
the end of an era.

I first learned of Richard Guy in the late 1960’s, when as an undergraduate at the
University of Manitoba I got interested in the “no-three-in-line” problem, which
is: In an n by n grid of points, can you always choose 2n of these n2 points so that
no three are collinear (in any direction)? Richard had co-authored a paper on this
problem, conjecturing that the answer is no for large enough n (still unsettled to
this day, by the way). I got nowhere beyond drawing some examples, but had a
lot of fun in the process.

As a graduate student in the 1970’s I visited the University of Calgary, first meeting
Richard then, and joined the U of C Math Department in 1979. In the mid-80’s, for
some reason Richard put my name forward to replace Léo Sauvé as Editor of Crux;
an odd choice, as I had some experience at the time with local math contests and
other school enrichment activities in the Department, but had never even heard of
Crux, much less subscribed or contributed to it. However, it was a move on his part
that I am forever grateful for, as it led to my enjoying ten years of intense but
ever-fascinating involvement with this publication. During this time, Richard’s
formidable knowledge and library on topics such as geometry, number theory and
inequalities were always available and invaluable to me. In 1991, Richard became
a member of Cruxs very first Editorial Board, and he remained as a Board member
through 2003. Beyond that, he was always around for advice.

Richard’s international prominence in certain areas of mathematics was due in
part to his impressive list of publications, which include some classic books such
as Unsolved Problems in Geometry (written with Croft and Falconer), Unsolved
Problems in Number Theory, and the two-volume Winning Ways for your Mathe-
matical Plays (written with Berlekamp and Conway). His contributions to mathe-
matics even extended to terminology, in particular the phrase “n choose k” for the
binomial symbol

(
n
k

)
. Closer to home, his decades-long support of mathematical

enrichment for students in Calgary was an inspiration to his colleagues, as was his
love of the outdoors and of life gently lived. He and his late wife and companion
Louise were a delight to know and to be around. The mathematical community,
and particularly the mathematics department at Calgary, was the richer for his
presence, and is much the poorer without him.

Bill Sands
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MATHEMATTIC
No. 18

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by December 15, 2020.

MA86. On a 2×n board, you start from the square at the bottom left corner.
You are allowed to move from square to adjacent square, with no diagonal moves,
and each square must be visited at most once. Moreover, two squares visited on
the path may not share a common edge unless you move directly from one of them
to the other. We consider two types of paths, those ending on the square at the
top right corner and those ending on the square at the bottom right corner. The
diagram below shows that there are 4 paths of each type when n = 4. Prove that
the numbers of these two types of paths are the same for n = 2014.

MA87. One or more pieces of clothing are hanging on a clothesline. Each
piece of clothing is held up by either 1, 2 or 3 clothespins. Let a1 denote the
number of clothespins holding up the first piece of clothing, a2 the number of
clothespins holding up the second piece of clothing, and so forth. You want to
remove all the clothing from the line, obeying the following rules:

(i) you must remove the clothing in the order that they are hanging on the line;

(ii) you must remove either 2, 3 or 4 clothespins at a time, no more, no less;

(iii) all the pins holding up a piece of clothing must be removed at the same time.

Find all sequences a1, a2, . . . , an of any length for which all the clothing can be
removed from the line.

MA88. Proposed by Konstantin Knop.

a) Sort the numbers from 1 to 100 in increasing order of their digit-sums; in
case of a tie, sort in increasing order of the numbers themselves. Consider
the resulting sequence a(n) : a(1) = 1, a(2) = 10, a(3) = 100, . . . Find at
least one number n > 1 such that a(n) = n.

b) Consider the same problem but for numbers from 1 to 100 000 000.

Copyright © Canadian Mathematical Society, 2020
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MA89. Proposed by Bill Sands.

Two robots R2 and D2 are at the origin O on the x, y plane. R2 can move twice
as fast as D2. There are two treasures located on the plane, and whichever robot
gets to each treasure first gets to keep it (in case of a tie, neither robot gets the
treasure). One treasure is located at the point P = (−3, 0), and the other treasure
is located at a point X = (x, y). Find all X 6= O so that D2 can prevent R2 from
getting both treasures, no matter what R2 does. Which such X has the largest
value of y?

Note: D2 does not care if R2 gets one of the treasures, only that R2 shouldn’t get
both treasures. D2 also doesn’t care if it gets either treasure itself, it only wants
to prevent R2 from getting both treasures.

MA90. Proposed by Michel Bataille.

Two positive integers are called co-prime if they share no common divisors other

than 1. Find all pairs of co-prime x, y such that
y(x+ y)

x− y is a positive integer.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problémes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 décembre 2020.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

MA86. Sur un damier de taille 2 × n, on commence au carré en bas et à
gauche. Par la suite, il est permis de se déplacer d’un carré à un carré adjacent,
sans déplacement en diagonale; on peut visiter chaque carré au plus une seule fois.
Enfin, deux carrés faisant partie du même parcours ne peuvent partager un côté
que si on se déplace de l’un immédiatement vers l’autre. On considère deux sortes
de parcours, ceux terminant au sommet à droite en haut puis ceux terminant à
droite en bas. Le schéma montre qu’il y a bien 4 parcours de chaque sorte lorsque
n = 4. Démontrer qu’il y a le même nombre de parcours de chaque sorte lorsque
n = 2014.

Crux Mathematicorum, Vol. 45(8), October 2020
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MA87. Un nombre d’items de linge se trouvent suspendus sur une corde à
linge. Chaque item y est retenu par 1, 2 ou 3 épingles à linge. Soit a1 le nombre
d’épingles retenant le premier item de linge, a2 le nombre d’épingles retenant le
deuxième item de linge, et ainsi de suite. On voudrait enlever tous les items de
linge de la corde, en respectant les directives suivantes:

(i) on doit enlever les items de la corde dans le même ordre qu’ils sont suspendus;

(ii) on doit enlever 2, 3 ou 4 épingles à la fois, ni plus ni moins;

(iii) toutes les épingles retenant un item doivent être enlevées en même temps.

Pour n donné, déterminer toutes les suites a1, a2, . . . , an permettant d’enlever tous
les items de linge de la corde.

MA88. Proposé par Konstantin Knop.

a) Trier les nombres de 1 à 100 en ordre croissant de leurs sommes de chiffres,
où les ex æquo sont départagés selon l’ordre des nombres eux-mêmes. Ceci
donne lieu à la suite a(n) : a(1) = 1, a(2) = 10, a(3) = 100, . . . Déterminer
au moins un nombre n > 1 tel que a(n) = n.

b) Considérer le même problème pour les nombres de 1 à 1 000 000 000.

MA89. Proposé par Bill Sands.

Au départ, deux robots R2 et D2 se trouvent à l’origine O dans le plan x, y. Deux
trésors se situent dans le plan et le premier robot à y arriver reçoit le trésor en
question (en cas d’égalité, ni l’un ni l’autre reçoit le trésor). Un trésor se trouve
au point P = (−3, 0) et le second à un point X = (x, y). Or, R2 se déplace à deux
fois la vitesse de D2. Déterminer tout X 6= O tel que D2 peut empêcher R2 de
recevoir les deux trésors, quoi que R2 fasse. Lequel tel X a la plus grande valeur
de y?

Note: D2 se balance si R2 reçoit un des trésors, pourvu qu’il ne reçoive pas les deux;
aussi, D2 se balance s’il reçoit un quelque trésor ou non, il ne veut qu’empêcher
R2 de recevoir les deux trésors.

MA90. Proposé par Michel Bataille.

Deux entiers positifs sont dits relativement premiers s’ils ne partagent aucun di-
viseur autre que 1. Déterminer tout couple d’entiers relativement premiers x, y

tels que
y(x+ y)

x− y est un entier positif.
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2020: 46(3), p. 98–101.

MA61. A hexagon has consecutive angle measures of 90◦, 120◦, 150◦, 90◦,
120◦ and 150◦. If all of its sides are 4 units in length, what is the area of the
hexagon?

Originally problem 14 of the 2014 Mathworks Math Contest.

We received 15 solutions, 14 of which were correct. We present the solution by
Joel Schlosberg.

The hexagon can be dissected into a square, two equilateral triangles, and a par-
allelogram; those can in turn be cut and rearranged into two rectangles whose
dimensions are 4× 6 and 4× 2

√
3. Therefore, the area of the hexagon is 24 + 8

√
3.

MA62. A positive integer n is called “savage” if the integers {1, 2, . . . , n} can
be partitioned into three sets A, B and C such that

i) the sum of the elements in each of A, B and C is the same,

ii) A contains only odd numbers,

iii) B contains only even numbers, and

iv) C contains every multiple of 3 (and possibly other numbers).

Now consider the following:

(a) Show that 8 is a savage integer.

(b) Prove that if n is an even savage integer, then n+4
12 is an integer.

Crux Mathematicorum, Vol. 45(8), October 2020
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Originally problem 10 of the 2003 Euclid Contest.

We received 8 solutions, all of which were correct. We present the solution by
Corneliu Manescu-Avram.

(a) From A = {5, 7}, B = {4, 8}, C = {1, 2, 3, 6}, it follows that 8 is a savage
number.

(b) Let S(M) be the sum of elements of the set M . From

S(A) = S(B) = S(C) =
n(n+ 1)

6
,

we deduce that 6 divides n(n+1). The set B contains only even numbers, so
that S(B) is even, whence it follows that 12 divides n(n+ 1). If n = 12k+ r,
with r ∈ {0, 2, 4, 6, 8, 10}, this is possible only for r ∈ {0, 8}. But for n = 12k,
we have S(C) = 2k(12k + 1) and

3 + 6 + · · ·+ 12k = 6k(4k + 1) ≤ S(C),

a contradiction.

The only remaining possibility is r = 8, so that n+4 = 12k+8+4 = 12(k+1).

MA63. One way to pack a 100 by 100 square with 10 000 circles, each of
diameter 1, is to put them in 100 rows with 100 circles in each row. If the circles
are repacked so that the centres of any three tangent circles form an equilateral
triangle, what is the maximum number of additional circles that can be packed?

Originally problem 25 of the 1998 Cayley Contest.

We received 2 submissions, both of which were correct and complete. We present
the solution by Arya Kondur.

In order to pack the maximum number of circles, we need to create rows that
alternate between 100 and 99 circles. A small portion of two rows is depicted in
Figure 1, as well as some denotations regarding the radius of each circle and the
side length of the equilateral triangle.

We see that s = 2r, where s represents the side length of the equilateral triangle
and r represents the radius of a circle. The height of the equilateral triangle can
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be calculated as h = s · sin 60◦ since the angle opposite h is equivalent to 60◦. This
yields h = s

2

√
3 = r

√
3.

Notice that if we simply have one row of circles, the height of the row would be 2r.
However, referring to the figure, we see that with two rows of circles, the height
is r + h + r. That is, the height of two rows is 2r + h = 2r + r

√
3. With three

rows, we find that the height is r + 2h+ r. This simplifies to 2r + 2r
√

3. We see
a pattern starting to form. The height of n rows is 2r + (n− 1)(r

√
3).

We are given that the diameter of a circle is 1, meaning the radius is 1/2. We
substitute this value into our formula for the height of n rows. Thus, the height is
1 + (n− 1)(

√
3/2). Since the maximum height is 100, we set this equal to 100 and

solve for n. It follows that the maximum number of rows is n = 115.3. However,
since we want an integer number of rows, we round down to n = 115.

Since we have 115 rows, we have 58 rows with 100 circles and 57 rows with 99
circles. We do not make 58 rows of 99 circles and 57 rows of 100 circles since this
would result in fewer total circles. With our current arrangement, the total number
of circles we can fit in the 100 by 100 square is 58 · 100 + 57 · 99 = 11443 circles.
Therefore, we conclude that a maximum of 11443−10000 = 1443 additional circles
can be packed.

MA64. A regular octagon is shown in the first diagram below, with the
vertices and midpoints of the sides marked.

An “inner polygon” is a polygon formed by traversing the octagon in a clockwise
manner, selecting some of the marked points as you go, ensuring that each side of
the original octagon contains exactly one selected point. Then each selected point
is connected to the next with a line segment, and the last is connected to the first
to complete the inner polygon.

An example of an inner polygon is shown in the second diagram.

How many inner polygons does the regular octagon have?

Originally problem 13 of the 2017 Mathworks Math Contest (with modified word-
ing).

We received three submissions, out of which two were correct and complete. Both
are presented below.
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Solution 1, by Aditya Gupta, slightly edited.

We observe that an inner polygon is uniquely determined by the vertices it has in
common with the octagon.

Since an inner polygon cannot contain adjacent vertices of the octagon, it can
contain at most 4 of those vertices. Thus we can divide the problem into five
cases:

(a) The chosen points of the inner polygon do not contain a vertex of the octagon
and hence consist entirely of midpoints of sides. There is 1 such inner polygon.

(b) One vertex of the octagon is chosen. We have 8 such inner polygons.

(c) Two vertices are chosen. Since the vertices cannot be adjacent, we then have
8·5
2 = 20 such inner polygons.

(d) Three vertices are chosen. There are
8·(4

2)
3 = 16 such inner polygons.

(e) Four vertices are chosen. There are 2 such inner polygons.

Hence the total number of inner polygons is 1 + 8 + 20 + 16 + 2 = 47.

Solution 2, by the Missouri State University Problem Solving Group, slightly edited.

We claim that for any regular n-gon with n ≥ 5, the number of inner polygons is
Fn+1 + Fn−1, where Fk is the k-th Fibonacci number. In particular, when n = 8,
we have F9 + F7 = 34 + 13 = 47 inner polygons. [Ed: The formula also holds for
n < 5 if we allow degenerate polygons]. Note that Fn+1 + Fn−1 is also known as
the n-th Lucas number Ln.

We first show that the number of sequences of 0’s and 1’s of length n having no
two consecutive 1’s is Fn+2. We call such a sequence nice. Let An denote the
number of nice sequences of length n. Then A1 = 2 = F3 and A2 = 3 = F4.
There is a bijection between nice sequences of length n starting with 0 and nice
sequences of length n − 1 obtained by deleting the leading 0. There is also a
bijection between nice sequences of length n starting with 1 and nice sequences of
length n−2, obtained by deleting the leading two terms, which have to be 1 and 0
by definition. Therefore An = An−1 + An−2. Since the Fibonacci sequence obeys
the same recursion with shifted initial terms, the result follows.

We next note that there is a bijection between inner polygons and nice sequences
that do not both begin and end with a 1. Fix a vertex of the original polygon.
Beginning at that vertex and circling through the other vertices of the original
polygon, write a 1 if the vertex is a vertex of the inner polygon and a 0 if it is
not. By definition, no two 1’s can be consecutive, nor can both the first and the
last terms be 1’s. Conversely, given a sequence, we construct an inner polygon by
taking as vertices all the vertices of the original polygon that correspond to a 1
in the sequence and all the midpoints of sides of the original polygon that do not
contain one of those vertices.
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Finally, we show that the number of such sequences is as claimed. If a sequence
begins with a 0, we can append a nice sequence of length n − 1, of which there
are Fn+1. If the sequence begins with a 1, then the second and last term must
both be 0. This leaves a nice sequence of length n − 3, of which there are Fn−1.
Therefore the total number of inner polygons is Fn+1 + Fn−1.

MA65. There are four unequal, positive integers a, b, c, and N such that
N = 5a+ 3b+ 5c. It is also true that N = 4a+ 5b+ 4c and N is between 131 and
150. What is the value of a+ b+ c ?

Originally problem 23 of the 1998 Cayley Contest.

We received 17 submissions of which 16 were correct and complete. We present
the solution by Doddy Kastanya.

We have two equations:

N = 5a+ 3b+ 5c, (1)

N = 4a+ 5b+ 4c. (2)

If we multiply equation (1) by 4, multiply equation (2) by 5 and then take the
difference, we get:

N = 13b (3)

Also, from (1) and (2), we have:

5a+ 3b+ 5c = 4a+ 5b+ 4c

or a + c = 2b. Since b is a positive integer and N is between 131 and 150, the
only value that satisfies both equation (3) and the condition on the value of N is
b = 11. Since a+ c = 2b, then a+ b+ c = 3b = 33.
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PROBLEM SOLVING
VIGNETTES

No. 13
Shawn Godin

A Problem from Richard Guy

I am not sure when I first heard about Richard Guy, I suspect it was from one of
Martin Gardner’s articles. Over the years I have accumulated a few of his books.
Through my involvement with Crux, I have corresponded with Professor Guy on a
number of occasions: soliciting material, asking for feedback or opinions on issues
as well as receiving feedback or opinions on issues where I had not asked for one.
I always felt that the journal, and I, benefited from his wisdom. I have also been
fortunate enough to meet him on a couple of occasions at CMS meetings and I
currently possess some of his old journals that he had donated to the University
of Calgary. In his memory, we will explore a problem from one of his publications.

In [1], Professor Guy presents us with the first few terms of 35 patterns. The reader
is then given the task to conjecture whether these patterns continue indefinitely,
or not. In example 6, we are introduced to the numbers

31, 331, 3331, 33331, 333331, 3333331,

each of which is prime. This leads us to consider whether all numbers of the form
33 . . . 331 are prime.

We will refer to these numbers as tn =

n︷ ︸︸ ︷
33 . . . 33 1. As the last digit of tn is 1, 2

and 5 cannot be factors of tn. Also, tn − 1 and tn + 2 are each clearly divisible by
3, so 3 cannot be a factor of any tn. To aid our analysis, we will rewrite tn in a
different form.

We played with rep-digit numbers in a previous column [2019 : 45(6), p. 313-317].
It can be shown that the rep-digit number consisting of n copies of the digit k can
be written as

n︷ ︸︸ ︷
kk . . . kk =

k

9
(10n − 1).

Hence, tn + 2 =

n+1︷ ︸︸ ︷
33 . . . 333, so

tn + 2 =
3

9
(10n+1 − 1)

tn =
10n+1 − 7

3
.

Since we are looking for primes, p > 5, that divide tn and we know 3 is not a
factor of tn, then we can check to see if p divides 3tn = 10n+1 − 7. If p divides
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3tn, it must also divide tn and we will have 10n+1 ≡ 7 (mod p). In this form we
can tell right away that 7 never divides tn since 7 - 10.

Exploring powers of 10 for the next couple of primes we get the following.

n 10n (mod 11) 10n (mod 13)
1 10 10
2 1 9
3 10 12
4 1 3
5 10 4
6 1 1
7 10 10
8 1 9
9 10 12
10 1 3

Modulo 11, the residue classes of powers of 10 alternate back and forth between
10 and 1. This makes sense as we can write 10 ≡ −1 (mod 11). When we look
modulo 13 we get the residue classes 10, 9, 12, 3, 4, 1 and then the pattern repeats.
For all prime moduli the powers of 10 will form a periodic sequence of residue
classes.

Fermat’s little theorem states that if p is prime, a is an integer and p - a, then

ap−1 ≡ 1 (mod p) ,

which was explored in an earlier issue [2012: 38(6) p.235 - 237]. For our problem
this means that 10p−1 ≡ 1 (mod p), hence 10p ≡ 10 (mod p) which means that
the cycle has length p−1 or we have gone through several cycles by this time. We
can conclude that the length of the cycle must divide p−1. This is verified by our
examples: modulo 11 the period was 2 and 2 | 10; and modulo 13 the period was
6 and 6 | 12.

If we would have calculated the residues of 2 modulo 11 we would have had a cycle
of length 10: 2, 4, 8, 5, 10, 9, 7, 3, 6, 1. A number n is called a primitive root modulo
p, for some prime p, if powers of n run through all the non-zero residue classes.
Hence we would say 2 is a primitive root modulo 11. Notice that since 10 = 2× 5,
cycles modulo 11 can have period 1, 2, 5 or 10. Once we have a primitive root
we can make some deductions. Since 4 = 22 and 210 ≡ 1 (mod 11) which marks
the end of the cycle, then 45 = (22)5 ≡ 1 (mod 11), hence the cycle for powers of
4 has length 5. Similarly we can see the cycle for 10 has length 2 since 10 ≡ 25

(mod 11).

Primitive roots cycle through all non-zero residues modulo p, so if 10 is a primitive
root modulo p, then 10n ≡ 7 (mod p) for some n and then 10k ≡ 7 (mod p) for
all k ≡ n (mod p− 1). Artin conjectured in 1927 that all integers that are not
perfect squares or −1 are primitive roots for infinitely many primes. If true, it
means there are infinitely many primes that divide some terms of our sequence.
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Even if it isn’t true, if we can find one prime where 10 is a primitive root, we will
be able to find infinitely many terms of our sequence that are not prime.

It turns out 10 is a primitive root modulo 17, and 109 ≡ 7 (mod 17). Hence
17 | 109−7 and therefore 17 | t8. Dividing yields t8 = 333 333 331 = 17×19 607 843
where the second factor is also prime. Since 10 is a primitive root modulo 17,
powers of 10 cycle through the 16 non-zero residue classes modulo 17. Thus, since
17 | t8 we must also have 17 | t24, 17 | t40, . . . and in general 17 | t16k+8. So we get
an infinite family of terms of the sequence that are divisible by 17. Similarly 10 is
a primitive root modulo 19, 23, 29, 47, 59, 61, . . . so each of these is tied to infinite
families of terms in the sequence that are divisible by them.

Even if 10 is not a primitive root modulo p we might get a solution. Note that
102 = 100 ≡ 7 (mod 31) which means that 31 | t1 = 31, but if we look at powers
of 10 modulo 31 we get the cycle of residue classes

10→ 7→ 8→ 18→ 25→ 2→ 20→ 14→ 16→ 5→ 19→ 4→ 9→ 28→ 1→ 10→ 7→ · · ·

which is periodic of period 15 (note 15 | 30), which means that 31 | t15k+1.

We can generalize this idea: if tn = p we must have 10n+1 ≡ 7 (mod p) which
means that 7 is in the cycle of powers of 10 modulo p, which is periodic with
period that divides p − 1. This means that p | tkd+n for all positive integers k,
where d | p − 1 is the period. Thus the list of numbers must contain infinitely
many composites.

For example, the next prime on the list is t2 = 331, which means that, at the
very least, 331 | t330k+2. Using Excel, I investigated the residues of powers of 10
modulo 331 and found that the length of the cycle is actually 110 | 330. Therefore,
we have the more precise result 331 | t110k+2. Wolfram Alpha confirms that

3t112
331

=
10113 − 7

331

is an integer, showing that 331 | t112.

There are some other phenomena related to ideas from our solution. Earlier, we
saw that the periods of powers of 10 modulo 11, 13 and 17 were 2, 6 and 16
respectively. Notice that the fractions

1

11
= 0.09

1

13
= 0.076923

1

17
= 0.0588235294117647

are also periodic with periods 2, 6 and 16. There is a strong connection here. If
you do the long division for 1

13 , for example, you will see, in the remainders, the
cycle of residue classes of powers of 10 modulo 13. Think about why this must be
true. In [2], Professor Guy and John H. Conway (another great mathematician
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we lost this year) investigate decimal representations of fractions. They introduce
what they call long primes as primes, p, whose decimal representation of 1

p has
the maximum length p − 1. As we have seen, these are the primes where 10 is a
primitive root.

Along with [2], readers of MathemAttic may enjoy a few of Professor Guy’s other
books. In particular [3], a collection of over 200 problems with hints, solutions,
and discussions; and [4] for any interested in seeing some unsolved problems and
progress that has been made towards their solutions.
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The Eugene Strens Collection
John McLoughlin

Did you know that one of the finest collections of recreational mathematics is
housed at University of Calgary? The Eugene Strens Recreational Mathemat-
ics Collection was acquired through the dedication and generosity of Professor
Richard and Mrs. Louise Guy, the estate of Eugene Strens and many other indi-
viduals who established the original collection of books, periodicals, puzzles and
manuscripts. Among these others are Charles W. Trigg, Wade Philpott, Martin
Gardner, William Schaaf, and Leon Bankoff.

Two related links appear here. The first of these is a link to the book collection
in the library catalogue:
https://asc.ucalgary.ca/book-collection/eugene-strens/

The second link is for The Recreational Mathematics Archives. Here will appear a
collection of links to the finding aids for the various fonds that make up the Strens
archival collection (the C.M. Jones fonds will be of special interest because they
contain correspondence between Jones and Richard Guy)
https://asc.ucalgary.ca/special-collection/recreational-mathematics/

Personal Note

I had the opportunity to visit the collection in its pre-digital days back in the mid-
90s. On two occasions I spent a couple of days there. The collection was under the
supervision of Apollonia Steele at the time. I would go through the catalogue to
select items for consideration. These would be retrieved and shared for use in the
area. A few things struck me on my visit beyond the extraordinary wealth of the
resources. First there were multiple copies of select books. Why? These books had
been provided by the likes of the aforementioned contributors and hence, it was
not as though one could simply pass them along. Rather it was not uncommon to
find jottings or notes of the contributors in the works themselves. It was neat to
be holding books from the collections of people who had authored the same books
that had entertained me beforehand. Second, there was so much good material
that it was challenging to make selections. I do recall learning some mathematics
and leaving with photocopies of select articles, in particular, ideas around number.

One of those learnings concerned Kaprekar’s number. Select any four different
digits and arrange them to form the largest four-digit number and the smallest
four-digit number before taking the positive difference between these numbers.
Now repeat this using the four digits in your result. (It may be that the four digits
are not all different any longer, but use them anyhow.) Continue this process. Lo
and behold, the result will always be 6174. This is Kaprekar’s number. Observe
that 7641− 1467 = 6174, thus, returning the number itself.
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The Lighter Side of Mathematics

A recreational mathematics conference was held at University of Calgary in 1986
to celebrate the founding of the Strens Collection. A collection of articles by
authors such as Doris Schattschneider, Elwyn Berlekamp, H.S.M. Coxeter, David
Singmaster and many others were collated into a volume representing the proceed-
ings. The resulting publication, The Lighter Side of Mathematics, was edited by
Richard Guy and Robert Woodrow. The MAA published it as part of its Spectrum
Series.

The articles are preceded by an introductory
section offering insight into the origins of the
collection. Richard Guy mentions in reference
to the recreational mathematical manuscripts
and items, how the children of Eugene Strens
“were reluctant to see the careful collection of
a lifetime broken up, but they did not have
the facility to continue curating it themselves.”
He goes on to explain how Lee Sallows reached
out to Martin Gardner who reached out to oth-
ers concerning the possibilities for housing the
collection. Ultimately it was Alan MacDonald,
the director of libraries at University of Calgary
who expressed willingness to house the special
collection. An agreement by the Strens chil-
dren to donate a significant chunk of the works
along with an arrangement to purchase the balance made this possibility a reality.
Alan MacDonald described the collection as “a pearl that will grow” and indeed
it did with the contributions of many others to the volumes of material on hand.

A subsequent introductory chapter (prepared by Pascal Strens and translated
by Lee Sallows) offers insight into the life story of Eugene Louis Charles Marie
Strens. Amidst the biographical piece, Pascal writes “Not unnaturally, Eugene
would communicate his enthusiasms to his children; a great treat for us would be
those special occasions when the forbidden drawer was opened and each of us was
invited to choose a game or puzzle to examine.” He closes with an expression of
gratitude for the arrangement to keep much of the collection intact as “a fitting
memorial to the remarkable man who was our father.”

Some additional comments

It has been challenging to give a sense of the importance of this collection and the
effort made by Richard and Louise Guy to bring this to fruition. There was an
emphasis on making the materials accessible to a broader audience. Perhaps some
of the readers here have availed themselves of the collection, or may be inclined
to learn more about it now. That is all good.

I want to acknowledge Regina Landwehr and Allison Wagner from the University
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of Calgary Library for assistance with communications. They provided the web
links including two additional ones shared here for the interest of readers. They
can be reached via speccoll@ucalgary.ca with any further inquiries.

1. An article from March 2013 describing an exhibit of Strens materials curated
by Regina Landwehr for an exhibition series:
https://wayback.archive-it.org/11669/20190427153210/https://www.

ucalgary.ca/news/utoday/march21-2013/math

2. And for general interest, though you may have seen it already, the memorial
page the U of C created for Dr. Guy:
https://science.ucalgary.ca/mathematics-statistics/about/richard-guy

Finally, concerning The Lighter Side of Mathematics, it is a wonderful collec-
tion. The American Mathematical Monthly review by Victor J. Katz in 1996 aptly
pointed to its curiosities including the difficulty in distinguishing recreational and
serious mathematics. He notes, “Despite its unevenness, however, the book con-
tains many gems including prize-winning studies from other publications and sum-
maries of important ideas by excellent expository writers.”

The review outlines several of the papers that impressed Katz. Out of respect to
Richard Guy, the bulk of the commentary on his contribution of “The Strong Law
of Small Numbers” appears here verbatim.

There are many number patterns which seem to appear when we look at small
values of n. But, as Guy notes, “there aren’t enough small numbers to meet the
demands made of them.” Thus many of the patterns – and we need to discover
which ones – do not hold in general. If you like numerical puzzles, the article
will provide many hours of stimulation (provided you don’t look at the answers
provided).

I will add that The Lighter Side of Mathematics holds a place in my recreational
mathematics collection. In closing, Richard Guy has made a valuable contribution
to recreational mathematics through his writings as well as his initiative through
the Strens Collection and other examples of making recreational mathematics more
visible and accessible. Whether a collection, a conference, a book, or a personal
connection... thank you Richard.
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OLYMPIAD CORNER
No. 386

The problems in this section appeared in a regional or national mathematical Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by December 15, 2020.

OC496. The six digits 1, 2, 3, 4, 5, and 6 are used to construct a one-digit
number, a two-digit number and a three-digit number. Each digit must be used
only once and all six digits must be used. The sum of the one-digit number and the
two-digit number is 47 and the sum of the two-digit number and the three-digit
number is 358. Find the sum of all three numbers.

OC497. Does there exist a positive integer that is divisible by 2020 and has
equal number of digits 0,1,2, . . . , 9?

OC498. A collection of 8 cubes consists of one cube with edge-length k for
each integer k, 1 ≤ k ≤ 8. A tower is to be built using all 8 cubes according to
the rules:

(a) Any cube may be the bottom cube in the tower.

(b) The cube immediately on top of a cube with edge-length k must have edge-
length at most k + 2.

Let T be the number of different towers than can be constructed. What is the
remainder when T is divided by 1000?

OC499. A self-avoiding rook walk on a chessboard (a rectangular grid of
unit squares) is a path traced by a sequence of moves parallel to an edge of the
board from one unit square to another, such that each begins where the previous
move ended and such that no move ever crosses a square that has previously been
crossed, i.e., the rookôs path is non-self-intersecting.

Let R(m,n) be the number of self-avoiding rook walks on an m × n (m rows, n
columns) chess board which begin at the lower-left corner and end at the upper-
left corner. For example, R(m, 1) = 1 for all natural numbers m; R(2, 2) = 2;
R(3, 2) = 4; R(3, 3) = 11. Find a formula for R(3, n) for each natural number n.

OC500. An n ×m matrix is nice if it contains every integer from 1 to mn
exactly once and 1 is the only entry which is the smallest both in its row and in

its column. Prove that the number of n×m nice matrices is
(nm)!n!m!

(n+m− 1)!
.
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire par-
venir au plus tard le 15 décembre 2020. La rédaction souhaite remercier Rolland
Gaudet, professeur titulaire à la retraite à l’Université de Saint-Boniface, d’avoir traduit
les problémes.

OC496. Les six chiffres 1, 2, 3, 4, 5 et 6 servent à construire un nombre
à 1 chiffre, un nombre à 2 chiffres, puis un nombre à 3 chiffres. Chaque chiffre
doit servir une seule fois. La somme du nombre à 1 chiffre et celui à 2 chiffres
est 47, tandis que la somme du nombre à 2 chiffres et celui à 3 chiffres est 358.
Déterminer la somme des trois nombres.

OC497. Existe-t-il un entier positif, divisible par 2020 et utilisant le même
nombre de chacun des chiffres 0,1,2, . . . , 9?

OC498. Une collection de 8 cubes consiste d’un cube de côté k pour chaque
entier k, 1 ≤ k ≤ 8. Une tour doit être construite selon les règles qui suivent.

(a) N’importe quel cube peut être utilisé comme base.

(b) Le cube immédiatement au dessus du cube de côté k doit être de côté au
plus k + 2.

Soit T le nombre de différentes tours pouvant être construites. Quel est le reste
lorsque T est divisé par 1000 ?

OC499. Une Marche autoévitante d’une tour sur un échiquier (une grille
rectangulaire formée de carrés unitaires) est un chemin tracé par une suite de mou-
vements parallèles à un bord de l’échiquier partant d’un carré unitaire à un autre
de sorte que chacun de ces mouvements commence où le mouvement précédent a
terminé et qu’aucun mouvement ne croise un carré qui a été précédemment croisé,
c’est-à-dire le chemin de la tour ne se croise pas.

Soit R(m,n) le nombre de Marches autoévitantes d’une tour sur un échiquier m×n
(m lignes, n colonnes) qui commencent au coin inférieur gauche et se terminent
au coin supérieur gauche. Par exemple, R(m, 1) = 1 pour tout entier naturel m;
R(2, 2) = 2; R(3, 2) = 4; R(3, 3) = 11. Trouver une formule pour R(3, n) pour
chaque entier naturel n.

OC500. Une matrice n ×m est dite spéciale si elle contient tout entier de
1 à mn exactement une fois et si 1 est le seul entier à être le plus petit à la fois
dans sa rangée et dans sa colonne. Démontrer que le nombre de matrices spéciales

n×m est
(nm)!n!m!

(n+m− 1)!
.
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SOLUTIONS

Statements of the problems in this section originally appear in 2020: 46(3), p. 111–112.

OC471. There are n > 3 distinct natural numbers less than (n−1)! written on
a blackboard. For each pair of these numbers, Sergei divided the bigger number by
the smaller with the remainder and wrote on his notebook the resulting incomplete
quotient. For example, if he divided 100 by 7, he got 100 = 14 · 7 + 2 and wrote
14 in the notebook. Prove that among the numbers in the notebook there are two
that are equal.

Originally from Russia Math Olympiad, 5th Problem, Grade 9, Final Round 2017.

We received 9 submissions. We present the solution by Corneliu Avram-Manescu.

Let x1 < x2 < . . . < xn be the given numbers and let qi =

õ
xi+1

xi

û
. If all the qi

are distinct, then

n−1∏
i=1

xi+1

xi
≥
n−1∏
i=1

qi ≥
n−1∏
i=1

i, i.e.
xn
x1
≥ (n− 1)!,

which is a contradiction, because all the xi are less than (n− 1)!.

OC472. Let P (x) be a polynomial of degree n ≥ 2 with nonnegative coeffi-
cients and let a, b and c be the side lengths of an acute-angled triangle. Prove that
the numbers n

√
P (a), n

√
P (b) and n

√
P (c) are also the side lengths of a triangle.

Originally from Russia Math Olympiad, 6th Problem, Grade 10, Final Round 2017.

We received 7 submissions. We present the solution by Ioannis D. Sfikas, slightly
modified.

First, we need a Lemma.

Lemma. For any real numbers a, b and for 0 ≤ p ≤ 1, |a+ b|p ≤ |a|p + |b|p.

Proof. If a and b have opposite signs it’s obvious. Now, assume that a 6= 0 and
let t = b/a ≥ 0. We need to prove that for 0 ≤ p ≤ 1,

(1 + t)p ≤ 1 + tp ∀t ≥ 0.

If p = 0 or p = 1 the result is trivial. So, let 0 < p < 1 and consider the function
f(t) = 1 + tp − (1 + t)p. Clearly, f(0) = 0 and

f ′(t) = p

Å
1

t1−p
− 1

(t+ 1)1−p

ã
.
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Hence, f ′(t) > 0 for all t > 0, i.e. f(t) is increasing on [0,∞) and the conclusion
follows.

Now, let P (x) =
n∑
k=1

akx
k. By Minkowski Inequality, the Lemma and the fact that

a+ b > c, we have

n

»
P (a)+ n

»
P (b) ≥ n

Ã
n∑
k=0

ak
Ä
a

k
n + b

k
n

än ≥ n

Ã
n∑
k=0

ak(a+ b)k = n

»
P (a+ b) > n

»
P (c).

Similarly, n
√
P (b) + n

√
P (c) > n

√
P (a) and n

√
P (c) + n

√
P (a) > n

√
P (b). Therefore,

n
√
P (a), n

√
P (b), n

√
P (c) are also side lengths of a triangle.

OC473. In square ABCD, let M be the midpoint of AB, let P be the
projection of point B onto line CM and let N be the midpoint of segment CP . The
angle bisector of ∠DAN intersects line DP at point Q. Prove that quadrilateral
BMQN is a parallelogram.

Originally from 2017 Romania Math Olympiad, 3rd Problem, Grade 7.

We received 18 submissions. We present 3 solutions.

Solution 1, by Miguel Amengual Covas.

B
C

DA

N

R

P

Q

SM
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We have MB
BC =

1
2AB

AB = 1
2 . From similar triangles BPM , CPB and CBM , then

MP =
1

2
BP =

1

2
·
Å

1

2
· PC

ã
=

1

2
·
Å

1

2
· (2 ·NC)

ã
=

1

2
NC,

implying
MN

NC
=
MP + PN

NC
=
MP +NC

NC
=
MP

NC
+ 1 =

3

2
.

Let AN (extended) intersect DC (extended) at R. From similar triangles AMN
and RCN ,

AM

CR
=
MN

NC
=

3

2
.

That is to say, AM = 3
2CR, and therefore

AB = 2 ·AM = 3 · CR,

or
AD = 3 · CR,

yielding
AD

DR
=

3

4
,

revealing that 4ADR is a 3-4-5 right-angled triangle with

AD : DR : RA = 3 : 4 : 5.

Let AQ (extended) intersect DR at S. Applying the internal angle bisector theo-
rem to 4ADR at A, we obtain

DS

AD
=

DR

AD +AR
=

4

3 + 5
=

1

2
,

making 4ADS congruent to 4CBM with

∠DAS = ∠BCM,

implying AS ‖ CM . Therefore, Q divides DP in the same ratio that S divides
DC:

DQ

DP
=
DS

DC
=
DS

AD
=

1

2
,

and so Q is the midpoint of PD.

Hence QN , connecting the midpoints of sides PD and PC of 4PCD, is parallel
to CD and half as long or, equivalently,

QN ‖MB and QN = MB,

making MBNQ a parallelogram, as desired.
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Note that triangles ADP and PDC are isosceles (see the following figure).

B
C

DA

PM

a
3a
5

4a
5

a
5

2a
5

a

Solution 2, by Ivko Dimitrić

Let a be the side-length of the square, s = PB and L =
←→
AQ ∩←→DC. Further, let

α := ∠MCB = ∠PCB = ∠PBM and β := ∠CMB = ∠CBP,

so that β = 90◦ − α. Right triangles CMB,CBP and BMP are similar, so

MP

PB
=
PB

PC
=
BM

BC
=

1

2
,

from which

s = PB =
1

2
PC = PN = NC and MP =

1

2
PB =

1

2
s.

Then,

BC2 = BP 2 + PC2 =⇒ a2 = s2 + (2s)2 = 5s2 =⇒ s =
a√
5
,

MN = MP + PN =
1

2
s+ s =

3

2
s =

3a

2
√

5
, sinα =

PB

BC
=
s

a
=

1√
5
.

Since ∠NMB = ∠CMB = β, ∠NMA = 180◦ − β and

cos(180◦ − β) = cos(90◦ + α) = − sinα = − 1√
5
,

the Law of Cosines for 4AMN gives

AN2 = AM2 +MN2 − 2AM ·MN · cos(180◦ − β)

=
a2

4
+

9a2

20
+ 2 · a

2
· 3a

2
√

5
· 1√

5
= a2.
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Hence, AN = a = AB = AD. Since PN = PB, the triangle BPN is right isosceles
with ∠NBP = ∠PNB = 45◦. Because 4ABN is isosceles,

∠ANB = ∠ABN = ∠ABP + ∠PBN = α+ 45◦.

Then,
∠BAN = 180◦ − 2∠ABN = 180◦ − (2α+ 90◦) = 90◦ − 2α

and
∠NAD = 90◦ − ∠BAN = 2α.

AQ is the angle bisector of ∠NAD, so ∠NAQ = ∠QAD = ∠LAD = α, hence
∠DLA = 90◦ − α = β. Therefore, right triangles ALD and CMB are congruent,
L is the midpoint of CD and ∠CMB = β = ∠DLA = ∠LAB, showing that LA
is parallel to CM. Since L is the midpoint of CD and LQ is parallel to CP, the
segment LQ is the mid-line parallel to side CP in 4DPC, so Q is the midpoint
of DP. Since N is the midpoint of PC, QN is the mid-line in the same triangle
parallel to side DC and equal to half of that side in length. Therefore,

QN ‖ DC ‖MB and QN =
1

2
DC =

1

2
AB = MB,

which proves that BMQN is a parallelogram.

Remark. Another result that can be proved is the following: If K is the midpoint
of BN and O is the center of the square, then OPQN is also a square.

Solution 3, by Oliver Geupel.

Consider Cartesian coordinates with A = (0, 10), B = (0, 0), C = (10, 0), and
D = (10, 10). Then, M = (0, 5). Since BP is the altitude in the right 4BCM ,

we have CP/PM = BC2/BM2 = 4. Hence, ~P =
Ä
4 ~M + ~C

ä
/5 = (2, 4). For the

midpoint N of CP , we have ~N =
Ä
~C + ~P

ä
/2 = (6, 2). Let Q′ be the point that

makes quadrilateral BMQ′N a parallelogram, that is, ~Q′ = ~M + ~N − ~B = (6, 7).
In order to prove Q = Q′, it is enough to show that Q′ is the midpoint of DP and
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cos∠NAQ′ = cos∠Q′AD. In fact, 2 ~Q′ = ~D + ~P ; whence Q′ is the midpoint of
DP . Moreover,

cos∠NAQ′ =

−−→
AN · −−→AQ′
AN ·AQ′ =

2√
5

=

−−→
AQ′ · −−→AD
AQ ·AD = cos∠Q′AD.

Consequently, Q = Q′, that is, quadrilateral MBQN is a parallelogram.

OC474. Given a right triangle ABC with hypotenuse AB, let D be the foot
of the altitude drawn from point C, let M and N be the intersections of the angle
bisectors of ∠ADC and ∠BDC, respectively, with sides AC and BC. Prove that

2 ·AM ·BN = MN2.

Originally from 2017 Czech-Slovakia Math Olympiad, 5th Problem, First Round.

We received 22 submissions. We present 2 solutions.

Solution 1, by Panagiotis Antonopoulos.

Since ÷MDN+’ACB = 1800 thenMDNC is cyclic, therefore ÷CNM = ÷CDM = 45◦

therefore ÷CNM = ÷CMN(= 45◦) and we conclude

CM = CN ⇐⇒ CM2 + CN2 = 2MC ·NC ⇐⇒ MN2 = 2MC ·NC. (1)

By applying the angle bisector theorem in both 4CDB and 4ADC we get

AM

MC
=
AD

DC
and

BN

NC
=
BD

DC

and since CD2 = BD ·DA, then we get the relation

AM ·BN = MC · CN. (2)

By (1) and (2) we get MN2 = 2AM ·BN .

Solution 2, by Ivko Dimitrić

Denote the side lengths of 4ABC by a = BC, b = AC, c = AB, as usual. The
interior angle bisector from a vertex of a triangle divides the opposite side in the
ratio of the two sides incident to that vertex. We also know that the triangles
ACD,ABC are similar, having equal corresponding angles and hence the corre-
sponding sides stand in the same ratio. Using these two results we have

AM

MC
=
AD

DC
=
AC

BC
=
b

a
=⇒ AM =

b

a
MC.

Then,

b = AM +MC =

Å
b

a
+ 1

ã
MC =⇒ MC =

ab

a+ b
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and

AM = AC −MC = b− ab

a+ b
=

b2

a+ b
.

In the same manner, using similarity of 4CBD and 4ABC we get

NC =
ab

a+ b
= MC and BN =

a2

a+ b
.

Consequently,

2 ·AM ·BN = 2 · b2

a+ b
· a2

a+ b
= 2

Å
ab

a+ b

ã2
= MC2 +NC2 = MN2,

by the Pythagorean Theorem for isosceles 4CNM.

OC475. Let N > 1 be an integer. Denote by x the smallest positive integer
with the following property: there exists a positive integer y strictly less than x−1
such that x divides N + y. Prove that x is either pn or 2p , where p is a prime
number and n is a positive integer.

Originally from 2018 Italy Math Olympiad, 4th Problem, Final Round.

We received 6 submissions. We present the solution by UCLan Cyprus Problem
Solving Group.

Note that x satisfies the stated property if and only if N 6≡ 0, 1 (mod x).

Let x = pr11 · · · prkk in its prime power decomposition. We may assume that k ≥ 2
otherwise there is nothing to prove. Our aim is to show that x = 2p for some
prime p.

For each 1 ≤ i ≤ k, let xi = prii . By the minimality of x, none of the xi satisfies
the stated property. Therefore N ≡ 0, 1 (mod xi) for each 1 ≤ i ≤ k.

If N ≡ 0 (mod xi) for each 1 ≤ i ≤ k then (by the Chinese Remainder Theorem)
N ≡ 0 (mod x), a contradiction. Similarly we cannot have N ≡ 1 (mod xi) for
each 1 ≤ i ≤ k.

Without loss of generality we may assume that N ≡ 0 (mod x1) and N ≡ 1
(mod x2). In particular, N ≡ 0 (mod p1) and N ≡ 1 (mod p2).

We cannot haveN ≡ 0 (mod p1p2) as thenN ≡ 0 (mod p2), a contradiction. Also,
we cannot have N ≡ 1 (mod p1p2) as then N ≡ 1 (mod p1), a contradiction. So
the number p1p2 also satisfies the property and therefore x = p1p2. Assume now
for contradiction that p1, p2 are both odd.

If N is even, then N 6≡ 0, 1 (mod 2p2). (As then either N ≡ 0 (mod p2), or N ≡ 1
(mod 2), both giving a contradiction.) Since 2 < p1, then 2p2 < p1p2 = x, a
contradiction as 2p2 satisfies the stated property.

If N is odd a similar argument shows that x = 2p1 satisfies the stated property,
again a contradiction. So the required result follows.
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Notes on a Sum Problem
Bill Sands

Dedicated to the memory of Richard K. Guy.

For an integer n > 1, look at the following sequence of partial sums:

• 1, 1 + 2, . . . , 1 + 2 + · · ·+ n,

• 1 + 2 + · · ·+ n− (n+ 1), 1 + 2 + · · ·+ n− (n+ 1)− (n+ 2),

. . . , 1 + 2 + · · ·+ n− (n+ 1)− (n+ 2)− · · · − 2n,

• 1 + 2 + · · ·+ n− (n+ 1)− (n+ 2)− · · · − 2n+ (2n+ 1),

1 + 2 + · · ·+n− (n+ 1)− (n+ 2)− · · ·− 2n+ (2n+ 1) + (2n+ 2), . . . ,

• . . . ,

where the first n natural numbers are added, the next n are subtracted, the next
n added, and so on. We’ll call this “the sequence of partial sums” or just “the
sequence” for n. For instance, the sequence for n = 3 is:

1, 3, 6, 2,−3,−9,−2, 6, 15, 5,−6,−18,−5, 9, . . . .

Question: for which natural numbers n does 0 eventually appear in its sequence
of partial sums?

A special case of this problem appeared on the 2015/16 Alberta High School
Mathematics Competition Part 2:

(a) Alya adds the following sequence of numbers together, one number at a time:

1, 2,−3,−4, 5, 6,−7,−8, 9, . . . ,

where the first two numbers are positive, the next two negative, the next
two positive, and so on. Thus she gets the totals

1, 1 + 2, 1 + 2− 3, 1 + 2− 3− 4, 1 + 2− 3− 4 + 5,

and so on. Prove that she will get zero infinitely often.

(b) Suppose instead Alya adds together the numbers

1, 2, 3,−4,−5,−6, 7, 8, . . . ,

where the first three numbers are positive, the next three negative, the next
three positive, and so on. Prove that she will never get zero as a sum.

See https://www.ualberta.ca/mathematical-and-statistical-sciences/outreach/
alberta-high-school-math-competition and click on “Question & Solution
Archive”, where you can find this contest and also contests from other years.

Copyright © Canadian Mathematical Society, 2020
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In this article, we will investigate the above question in general, getting a fairly
satisfactory but not complete answer, with some questions at the end that others
can tackle if they get interested.

We first establish two lemmas which will be needed later.

Lemma 1. For any k,

(kn+1)+(kn+2)+· · ·+(k+1)n−((k+1)n+1)−((k+1)n+2)−· · ·−(k+2)n = −n2.

Proof. Immediate, since for all i ∈ {1, . . . , n}, (kn + i) − ((k + 1)n + i) = −n.
2

Lemma 2. Let n ≥ 3, t ≥ 0 be integers so that n | t(t+ 1) and 0.4 < t/n < 0.5. If
n = kq for q ≥ 2 a prime power and k ≤ 6 an integer, then n = 2m and t = m− 1
for some integer m.

Proof. Since q | n, we need q | t or q | (t+ 1), so either t or t+ 1 must be equal to
sq for some positive integer s. If t = sq for s a positive integer, then

s

k
=
t

n
∈ (0.4, 0.5),

which is impossible since k ≤ 6. Thus it must be that t+ 1 = sq, so

s

k
− 1

qk
=
sq − 1

qk
=
t

n
∈ (0.4, 0.5), (1)

where k ≤ 6. We consider the possible values of k one by one.

• If k = 1, then
s

k
− 1

qk
= s− 1

q
cannot lie in the interval (0.4, 0.5), since s is

an integer and q ≥ 2.

• Assume k = 2. If s ≥ 2, then
s

k
− 1

qk
≥ 1 − 1

2q
>

1

2
, contradiction. Thus

s = 1, which means t = q − 1 and n = 2q, as claimed.

• Assume k = 3. Then by (1) s ≥ 2, so

s

k
− 1

qk
≥ 2

3
− 1

3q
≥ 1

2
,

which is impossible.

• Assume k = 4. By (1), s ≥ 2. If s ≥ 3, then

s

k
− 1

qk
≥ 3

4
− 1

4q
>

1

2
,

which is a contradiction. Thus s = 2 and t = 2q − 1, n = 4q, as claimed.
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• Assume k = 5. By (1), s ≥ 3. Then

s

k
− 1

qk
≥ 3

5
− 1

5q
≥ 1

2
,

impossible.

• Assume k = 6. By (1), s ≥ 3. If s ≥ 4, then

s

k
− 1

qk
≥ 2

3
− 1

6q
>

1

2
,

which is a contradiction. Thus s = 3 and t = 3q − 1, n = 6q, as claimed.

This proves Lemma 2. 2

Now to our main question. Let S0 be the set of all positive integers n whose
sequence of partial sums contains at least one zero. Suppose that n ∈ S0. So zero
occurs somewhere in the sequence of partial sums for n. There are two cases.

Case 1: zero occurs while adding. That is, for some k ≥ 1 and some 1 ≤ t ≤ n,

1 + 2 + · · · − 2kn+ (2kn+ 1) + · · ·+ (2kn+ t) = 0.

From Lemma 1, the sum 1 + 2 + · · · − 2kn = −kn2, so we get that

kn2 =
t(4kn+ t+ 1)

2

which becomes
t(t+ 1) = 2kn(n− 2t). (2)

From (2) we get t < n/2 and also n | t(t+ 1)/2.

Suppose that n = 2m for some integer m, and put t = m − 1 . Then from (2),
(m− 1)m = 4km · 2, so k = (m− 1)/8. Since k is an integer, we need

n = 2(8k + 1), t = 8k,

and these give solutions to Case 1 for all integers k ≥ 1. So

n ∈ S0 for all integers n > 2 satisfying n ≡ 2 mod 16.

Are there any other solutions in this case? If we put t = λn where λ < 1/2, then
(2) becomes

k =
λ(λn+ 1)

2n(1− 2λ)
.

Since k ≥ 1, we need λ2n + λ ≥ 2n − 4nλ, or n(λ2 + 4λ − 2) + λ ≥ 0. If
λ2 + 4λ− 2 ≤ −1/6, then since λ < 1/2 and n ≥ 3,

n(λ2 + 4λ− 2) + λ < −3

6
+

1

2
= 0;
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thus we need λ2+4λ−2 > −1/6, that is, λ2+4λ−11/6 > 0, that is, λ >
√

35/6−2.

Therefore t/n = λ ∈ (
√

35/6− 2, 1/2) ≈ (0.415, 0.5).

Thus, if n = kq for q ≥ 2 a prime power and k ≤ 6 an integer, Lemma 2 tells us
that the above solution, namely n = 2m and t = m− 1 for some integer m, is the
only solution to (2), and that n must be congruent to 2 mod 16 for there to be a
solution in this case.

So we need only look at those integers n not of the form n = kq for q ≥ 2 a prime
power and k ≤ 6 an integer. For n ≤ 100, say, these are:

56, 60, 63, 70, 72, 77, 84, 88, 90, 91, 99.

Of these, n = 56, 60, 72, 77, 88 and 91 have no integer t satisfying n | t(t+ 1) and
t
n ∈ (

√
35/6−2, 1/2), and 70 and 84 have no integer t satisfying n | t(t+ 1)/2 and

t
n ∈ (

√
35/6− 2, 1/2). Of the remainder, n = 63 permits t = 27, but then k given

by (2) is not an integer. The same thing happens for n = 90 (t = 44) and n = 99
(t = 44). Thus there are no further solutions n ≤ 100 in Case 1.

Case 2: zero occurs while subtracting. That is, for some k ≥ 0 and some 1 ≤ t ≤ n,

1 + 2 + · · ·+ (2k + 1)n− ((2k + 1)n+ 1)− · · · − ((2k + 1)n+ t) = 0.

From Lemma 1, the sum −(n+ 1)− (n+ 2)− · · · − 2n+ · · ·+ (2k+ 1)n = kn2, so
we get that

n(n+ 1)

2
+ kn2 =

t[2(2k + 1)n+ t+ 1]

2

which becomes

t(t+ 1) = n[(2k + 1)(n− 2t) + 1] (3)

and

k =
2nt+ t(t+ 1)− n(n+ 1)

2n(n− 2t)
≥ 0. (4)

From (3) we get t ≤ n/2 and also n | t(t + 1). If t = n/2, then from (3) we get
t(t+ 1) = n = 2t, so t = 1 and n = 2. Equation (3) holds for all k in this case, so
not only is 2 ∈ S0, but its sequence of partial sums contains zero infinitely many
times, namely

1+2−3 = 0, 1+2−3−4+5+6−7 = 0, 1+2−3−4+5+6−7−8+9+10−11 = 0, . . . ,

answering part (a) of the contest problem given earlier. Notice that n = 2 was
excluded from Case 1, whereas every other positive integer congruent to 2 mod 16
was shown to belong to S0. But Case 2 shows that 2 ∈ S0 nevertheless!

From now on we assume that n > 2, which implies t < n/2 from above. Again
suppose that n = 2m for some integer m, and put t = m− 1. Then from (4),

k =
4m(m− 1) + (m− 1)m− 2m(2m+ 1)

4m · 2 =
m− 7

8
.
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Since k is an integer, we need

n = 2(8k + 7), t = 8k + 6,

and these give solutions to Case 2 for all integers k ≥ 0. So

n ∈ S0 for all positive integers n ≡ −2 mod 16.

To look for other solutions in this case, if we put t = λn where λ < 1/2, then

2nt+ t(t+1)−n(n+1) = 2λn2 +λn(λn+1)−n(n+1) = n[(λ2 +2λ−1)n+λ−1].

Since λ2 + 2λ− 1 ≤ 0 if 0 < λ ≤
√

2− 1, from (4) we must have λ >
√

2− 1 and

so t/n = λ ∈
Ä√

2− 1, 1/2
ä
≈ (0.414, 0.5).

Thus, as in Case 1, if n = kq for q ≥ 2 a prime power and k ≤ 6 an integer,
Lemma 2 gives that the only solution in this case is n = 2m and t = m − 1 for
some integer m, which gave us n ∈ S0 for all positive integers n ≡ −2 mod 16.

From Case 1, among all integers n ≤ 100, the only remaining candidates for
membership in S0 are n = 63, 70, 84, 90 and 99. Of these, for n = 63 (t = 27) the
k given by (4) is once again not an integer. The same thing happens for n = 70
(t = 34), n = 90 (t = 44) and n = 99 (t = 44). This leaves n = 84, which this
time has the solution t = 35, k = 0. Thus 84 ∈ S0.

The solutions n = 2, 14 and 84 are the first three in an infinite sequence of
solutions, corresponding to k = 0 in Case 2, that is, all of these reach zero during
the first series of subtractions: 1 + 2 + · · · + n − (n + 1) − · · · − (n + t) = 0 for
some t ∈ {1, 2, . . . , n}. This sequence a1 = 2, a2 = 14, a3 = 84, a4 = 492, . . . is
given by the recurrence an = 6an−1− an−2 + 2. See sequence A053141 in the On-
Line Encyclopedia of Integer Sequences https://oeis.org/. As a consequence,
n = a13 = 3822685022 in this sequence, which is congruent to −2 mod 16, will
give zero two different times (at least): once in the first series of subtractions, and
again (much later!) with k = (a13 − 14)/16 = 238917813 in Case 2. (Incidentally,
this would be a very roundabout way of proving that 3822685022 is not of the
form kq where q is a prime power and k ≤ 6 is an integer!)

Putting all this together, the complete list of integers n ≤ 100 in S0 is:

2, 14, 18, 30, 34, 46, 50, 62, 66, 78, 82, 84, 94, 98.

Curiously, this sequence is not in the On-Line Encyclopedia of Integer Sequences,
which gives this author some hope that this material is not already known. Read-
ers are invited to continue the sequence as far as they wish, finding any further
members of S0 not congruent to ±2 mod 16.

Here are some additional problems to consider. I have not thought about these
problems; they might be really easy, or really hard, or something in between. But
they are problems that naturally popped up, and who knows, you might be the
first person to solve them!
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1. Are there any positive integers greater than 2 with at least three zeroes in
their sequence? The recurrence given above will generate infinitely many positive
integers with at least two zeroes in their sequence, the first being 3822685022. No
bets about whether there are others in between 2 and 3822685022!

2. Are there any integers besides 2 with infinitely many zeroes in their sequence?

3. Does S0 contain any odd integers?

4. Many variations of this theme are possible: here is one. Add up the numbers

1, 2, . . . , 9,−10,−11, . . . ,−99, 100, 101, . . . , 999,−1000,−1001, . . . ;

so all one-digit numbers are added, two-digit numbers subtracted, three-digit num-
bers added, and so on. Do you ever get zero?
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Squares near products of
consecutive integers

Ed Barbeau
To the memory of Richard Guy

Richard Guy was a mathematician of broad taste with an eye for what was rich
and interesting. I hope that what follows is something that might catch his fancy.
Let us start with two sets of observations:

4! + 1 = 52; 5! + 1 = 112; 6! + 32 = 272; 7! + 1 = 712;

and

3× 4× 5× 6 + 1 = 192; 4× 5× 6× 7 + 1 = 292; 5× 6× 7× 8 + 1 = 412.

In each case, we have a product of consecutive integers that differs from the next
greater square by a square. The first set of equations seem fortuitous, but the
second illustrates a general pattern since

(x− 1)x(x+ 1)(x+ 2) = (x2 + x)(x2 + x− 2) = (x2 + x− 1)2 − 1.

We will take a ramble through products of consecutive integers to see how common
the phenomenon is.

For m ≥ 1, let

f2m(x) = (x−m+ 1) · · · (x− 1)x(x+ 1) · · · (x+m− 1)(x+m),

and
f2m+1(x) = (x−m) · · · (x− 1)x(x+ 1) · · · (x+m)

be defined for those x for which the product is positive, and for each n ≥ 2, let

gn(x) = d
»
fn(x)e

be the smallest integer not less that the square root of fn(x). Therefore, g4(x) =
x2 + x− 1.

It appears to be the case that a product of any number of consecutive positive
integers can never be a square, a fact that is easy to establish for a product of
2, 3, 4 or 5 integers. However, a numerical check reveals that for 33 of the 70
integer values of x between 3 and 72, inclusive, f3(x) = (x − 1)x(x + 1) differs
from the next greater square by a perfect square. This is remarkable, considering
the sparseness of squares in the sequence of integers.

The difference between the product and the next square is often quite small. So
we can examine solutions of the diophantine equation

y2 = (x− 1)x(x+ 1) + k2 = x3 − x+ k2
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where k is a positive integer parameter. This admits a number of generic solutions
given by

(x, |y|) = (−1, k), (0, k), (1, k), (k2, k3), (4k2 − 1, k(8k2 − 3)), (4k2 + 1, k(8k2 + 3)).

For individual values of k, additional solutions can be found. For example, y2 =
x3 − x + 1 is satisfied by (x, |y|) = (56, 419) and y2 = x3 − x + 25 is satisfied
by (x, |y|) = (3, 7), (7, 19), (8, 23), (13, 47), (32, 181). Indeed, non-generic solutions
have been discovered when 1 ≤ k ≤ 8 and 12 ≤ k ≤ 17.

A useful device for obtaining additional solutions (x, y) when two are known is to
determine the equation y = ax+ b of the line through two of them in the cartesian
plane. This will intersect the graph of the equation in a third point whose abscissa
is given by the cubic equation (ax + b)2 = x3 − x + k2. This has three solutions
that add to a2, two of which are known; the third solution will be an integer when
a is and will be the abscissa of another solution of the diophantine equation.

In the case of the product f4(x) of four consecutive integers, not only is g4(x)2 −
f4(x) equal to a square (1), but also (g4(x) + 2)2 − f4(x) is square. Indeed,

(x2 + x+ 1)2 − (x− 1)x(x+ 1)(x+ 2) = (2x+ 1)2.

As for the cubic, we can consider the diophantine equation

y2 = (x− 1)x(x+ 1)(x+ 2) + k2 = x4 + 2x3 − x2 − 2x+ k2.

We know that when k = 1, there is a solution for any integer value of x, and when
k is odd, there is at least one, namely

(x, y) =

Å
1

2
(k − 1),

1

4
(k2 + 3)

ã
.

There are additional sporadic solutions such as

(k;x, |y|) = (13; 4, 23), (16; 6, 44), (27; 9, 93), (122; 14, 242).

What values of k admit solutions, and is it possible for there to be infinitely many
solutions?

The case of five integers is similar to the case for three. The product f5(x) = (x−
2)(x−1)x(x+ 1)(x+ 2) differs from the next greater square g5(x)2 by a square for
20 out of the 22 values of the integer x satisfying 3 ≤ x ≤ 24. Nontrivial solutions
of the diophantine equation y2 = f5(x) + k2 have been found for 1 ≤ k ≤ 8. Are
there solutions for any positive value of k?

Likewise, the product f7(x) of seven consecutive integers differs from the next
greater square for 18 out of the 21 values of x between 4 and 24 inclusive, as well
as frequently for the second, third and fourth greater squares. The diophantine
equation y2 = f7(x) + 1 has at least two solutions (x, y) = (4, 71), (11, 4259)
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When there are six terms in the product, we get behaviour similar to that for four
terms. We find that, for each small integer x, f6(x) differs from the next three
greater squares by a square. For x ≥ 3,

f6(x) = (x− 2)(x− 1)x(x+ 1)(x+ 2)(x+ 3) = x6 + 3x5− 5x4− 15x3 + 4x2 + 12x.

Define

u(x) =
1

2
(2x3 + 3x2 − 7x− 6);

v0(x) =
1

2
(x2 − 3x− 6); v1(x) =

1

2
(x2 + x+ 4); v2(x) =

1

2
(x2 + 5x− 2).

Then

v0(x)2 = u(x)2−f6(x); v1(x)2 = [u(x)+1]2−f6(x); v2(x)2 = [u(x)+2]2−f6(x).

Checking a table of values, we see that for x between 3 and 14 inclusive, g6(x) =
u(x). So it would seem that, as in the case of a fourfold product, g6(x) is given
by a polynomial generically.

However, further thought tells us that this cannot continue indefinitely. Note that
g6(x) = u(x) if and only if

[u(x)− 1]2 < f6(x) = u(x)2 − v0(x)2

if and only if
v0(x)2 − 2u(x) + 1 < 0.

The polynomial on the left side has degree 4 and positive leading coefficient, and
so is eventually positive. Indeed, f6(15) = 13366080, g6(15) = 3656 and u(15) =
3657. It turns out that f6(15) differs from the next four greater squares by a
square:

36562 − f6(15) = 162; 36572 − f6(15) = 872;

36582 − f6(15) = 1222; 36592 − f6(15) = 1492.

How often can g6(x)2 − f6(x) be square when x ≥ 15?

Let us take stock. When n is even and exceeds 2, it appears to be the case that
fn(x) can be written as the difference of squares of two polynomials, thus giving
rise to solutions of the diophantine equation y2 = fn(x) + k2 for infinitely many
values of k.

We have to be careful, because of course any polynomial can be written as the
difference of squares of two polynomials. If the polynomial f(x) is factored in any
way (including the trivial one) as f(x) = p(x)q(x), then

f(x) =

Å
p(x) + q(x)

2

ã2
−
Å
p(x)− q(x)

2

ã2
.

However, if may happen that the polynomials being squared do not take integer
values when x is an integer. This happens with f2(x) and f3(x) for example. We
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just have to note that f2(2) = f3(2) = 6, which cannot be written as the difference
of two integer squares.

It appears that f5(x) and f7(x) cannot be written as the difference of squares
of two polynomials mapping integers to integers. However, f8(x) has many such
representations. To find them, since

f8(x) = (x− 3)(x− 2)(x− 1)x(x+ 1)(x+ 2)(x+ 4),

we can choose p(x) to be the product of k ≥ 4 linear factors and q(x) the product
of the remaining 8−k factors. Let u(x) = 1

2 [p(x)+q(x)] and v(x) = 1
2 [p(x)−q(x)].

The polynomial u(x) is equal to g8(x) if and only if v(x)2 − 2u(x) + 1 < 0.

When k ≥ 5, the degrees of u(x) and v(x) are both equal to k, and the polynomial
on the left of the inequality is positive for x sufficiently large. When k = 4, since
p(x) and q(x) have leading coefficient 1, the degree of u(x) is 4 and that of v(x)
is at most 3. If v(x)2 − 2u(x) + 1 were to be negative for infinitely many integer
values of x, then the degree of v(x) would have to be 0, 1 or 2. If its degree were
2, then its leading coefficient would have to be 1.

Let p(x) = (x−3)x(x+2)(x+3) and q(x) = (x−2)(x−1)(x+1)(x+4). The choice
of factors for p(x) and q(x) is strategic, since the sum (2) and the sum of squares
(22) for the sets {−3, 0, 2, 3}, {−2,−1, 1, 4} are equal, and p(x) and q(x) differ in
only their linear and constant terms. We obtain u(x) = x4 + 2x3 − 9x2 − 10x+ 4
and v(x) = 8x+ 4. Since

v(x)2 − 2u(x) + 1 = −2x(x− 6)(x+ 1)(x+ 7) + 9,

we find that g8(x) = u(x) for x ≥ 7.

Using the choices

(−3, 0, 1, 4;−2,−1, 2, 3), (−3,−1, 2, 4;−2, 0, 1, 3), (−3,−2, 3, 4;−1, 0, 1, 2)

to obtain the factors p(x) and q(x), we obtain the representations

f8(x) = u(x)2 − (8x+ 4)2 = [u(x) + 2]2 − (2x2 + 2x+ 6)2

= [u(x) + 8]2 − (4x2 + 4x− 12)2 = [u(x) + 32]2 − (8x2 + 8x− 36)2.

Compare this with the fourfold product f4(x).

We are left with a few questions. Can fn(x) be written as the difference of squares
of two polynomials taking integer values on the integers (perhaps in several ways)
if and only if n is even and greater than 2? For what values of the positive integer
k is the diophantine equation y2 = fn(x) + k2 solvable? For what values of n is
the diophantine equation y2 = fn(x) + 1 solvable? More mysteriously, if there any
way to account for the frequency of gn(x)2 − fn(x) being square?

Noting that (x−1)(x+1)+1 = x2, we can see if products of consecutive integers of
the same parity exhibit interesting properties with respect to squares. Remarkably,
for integers x between −2 and 16 inclusive, the product (x−2)x(x+2) differs from
the next greater square by a square. There is no discernable pattern, and the chain
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is broken by 15×17×19 = 4845 which differs from 4900 by 55. When k is a positive
integer parameter, the diophantine equation

y2 = (x− 2)x(x+ 2) + k2 = x3 − 4x+ k2

seems to have an abundance of solutions. With little effort, nontrivial solutions
have been found for 17 of the first 25 values of k. Similarly, the product (x −
4)(x−2)x(x+2)(x+4) differs from the next larger square by a square when x = 1
and 5 ≤ x ≤ 14, with the first breaks in the pattern at x = 15, 19, 23, 27. The
product of n consecutive integers of the same parity is given by 2nfn(x/2), so that
the foregoing results for expressing fn(x) as a difference of polynomial squares can
be transferred to the new environment.

We can be more far-ranging in our exploration of products. For example, take an
odd product of consecutive integers, but leave the middle one out. We have for
example:

(x− 2)(x− 1)(x+ 1)(x+ 2) = (x2 − 2)2 − x2;

(x− 3)(x− 2)(x− 1)(x+ 1)(x+ 2)(x+ 3) = (x3 − 7x)2 − 62;

(x−4)(x−3)(x−2)(x−1)(x+1)(x+2)(x+3)(x+4) = (x4−15x2 +24)2−(10x)2.

Leaving out the middle two terms of an even product gives, for instance,

(x− 2)(x− 1)(x+ 2)(x+ 3) = (x2 + x− 4)2 − 22,

4(x−3)(x−2)(x−1)(x+2)(x+3)(x+4) = (2x3+3x2−19x−10)2−(x2+x−26)2.

In all but the last instance, the first term on the right is the least square exceeding
the left side when x is large.

There is a connection with the Tarry-Escott problem. For each positive integer
m, this asks for two distinct sets {a0, a1, . . . , am} and {b0, b1, . . . , bm} of m + 1
integers for which

ak0 + ak1 + · · ·+ akm = bk0 + bk1 + · · ·+ bkm

for k = 0, 1, 2, . . . ,m. For m = 2 and 3, the pairs ({−3, 1, 2}, {−2,−1, 3}) and
({−11,−3, 3, 11}, {−9,−7, 7, 9}} fill the bill. When the condition is satisfied, for
1 ≤ k ≤ m, the kth symmetric functions of the {ai} and {bi} are equal, and the
polynomial

m∏
i=0

(x− ai)−
m∏
i=0

(x− bi)

is constant. Thus
m∏
i=0

(x− ai)×
m∏
i=0

(x− bi) = u(x)2 − c2

for some polynomial u(x) of degree m+ 1 and constant c. For example,

(x−11)(x−9)(x−7)(x−3)(x+3)(x+7)(x+9)(x+11) = (x4−130x3+2529)2−14402.
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Squares with Large Digit Average
Matthieu Dufour and Silvia Heubach

1 Introduction

In the world of recreational mathematics, an area that was near and dear to
Richard Guy’s heart, many problems involve properties of integers and their mul-
tiples, squares, or powers, respectively. These types of puzzles or problems have
natural appeal because they are easy to state, easy to understand, and for the
most part, rarely require more than the four basic arithmetic operations and ba-
sic properties of numbers to understand. Some of these puzzles can be solved by
reasoning alone, others require some programming to find answers or conjectures
that then need to be proved properly. Often, it is not immediately obvious from
the statement of the problems whether there is an easy solution or whether it is
a hard problem to solve. Here is an example, which is listed as Problem F24 in a
compilation of unsolved problems edited by Richard Guy [1]:

Which integers have squares that contain at most two different digits?

An easy answer is that there are infinitely many such integers, namely 10k, 2×10k,
and 3 × 10k for any k > 0. The more interesting question is whether there exist
any other squares with at most two different digits that do not end in a zero. The
first few examples of such integers are easy to find – the integers from one to nine
that result in two-digit squares. A computer search turns up a total of 24 such
squares, with the two largest being

31142 = 9696996 and 816192 = 6661661161

(see https://oeis.org/A018884). A very convincing probabilistic argument,
which is not a proof, seems to indicate that there are no others. The enterprising
reader can investigate similar questions regarding squares that have exactly three
different digits, and so on. Many more squares problems can be found at [2].

2 Squares With Large Digit Average

The question we will investigate is a somewhat related property of squares, namely
the average of their digits, which we will refer to as the digit average and denote by
DA(n). As we have seen from the introductory problem, some squares have very
low digit average, for example the sequence of infinitely many squares that have
only two digits, many of them zeros. In fact, the digit average of (10`)2 equals

1

2`+ 1
. Thus, we can make the digit average arbitrarily low.

What about the other extreme? Can we find arbitrarily large integers whose
squares have high digit averages? The maximal digit average of any integer can
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be at most nine, namely for an integer that consists of all nines, such as 999. The
only such square is 9, because the k-digit number 99.....99 for k ≥ 2 is congruent
to 3 mod 4 (since it is one less than a multiple of 100), and this remainder cannot
occur for a square. So, how close to the ideal can we get as the number of digits in
the integer we square gets larger and larger? And which integers would produce
the squares with large digit average?
Claim 1. For k ≥ 1, we have that

(2 9 . . . 9︸ ︷︷ ︸
k

8 3 . . . 3︸ ︷︷ ︸
k

)2 = 8 9 . . . 9︸ ︷︷ ︸
k−1

8 9 . . . 9︸ ︷︷ ︸
k

82 7 . . . 7︸ ︷︷ ︸
k−1

8 . . . 8︸ ︷︷ ︸
k

9 (1)

(2 9 . . . 9︸ ︷︷ ︸
k

8 3 . . . 3︸ ︷︷ ︸
k

27)2 = 8 9 . . . 9︸ ︷︷ ︸
k−1

8 9 . . . 9︸ ︷︷ ︸
k+1

89 7 . . . 7︸ ︷︷ ︸
k−1

9 8 . . . 8︸ ︷︷ ︸
k

929 (2)

with digit averages of 8.25− 5.75

4k + 3
and 8.25− 3.5

4k + 6
, respectively.

While it would be sufficient to list only one of these two sequences to answer our
question, we present both of these sequences here. The first one has a simpler
structure (and usually, simpler answers are preferred), while the second one has a

slightly faster convergence to 8.25. For a given ε > 0, we need k >
23

16ε
− 3

4 for the

first sequence to have a digit average of 8.25− ε, while we only need k >
14

16ε
− 3

2

for the second sequence. We now prove our claim for the first sequence.

Proof. The first task is to write the integer in a way that is friendly for squaring,
so we define the notion of the position of a digit, which is the power of ten it
corresponds to. Thus, the rightmost digit has position zero, and then the positions
increase from right to left. An integer consisting of k repetitions of the digit d that
end at position a and are followed by zeros has the value

d . . . d︸ ︷︷ ︸
k

0 . . . 0︸ ︷︷ ︸
a

= d · 10a(1 . . . 1︸ ︷︷ ︸
k

) = d · 10a(10k − 1)/9. (3)

For example, the sequence of four 5s in 34555589 has value
5

9
· 102(104 − 1). We

will also use that

(90x2 − 5x− 1)2 = 8100x4 − 900x3 − 155x2 + 10x+ 1. (4)

Now we are ready to prove the expression for the square in equation (1). We show
the identities that were used in the derivation underneath the equal signs. Any
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other identities result from rearrangements and basic algebra.

(2 9 . . . 9︸ ︷︷ ︸
k

8 3 . . . 3︸ ︷︷ ︸
k

)2

=
(3)

(
2 · 102k+1 + 10k+1(10k − 1) + 8 · 10k + 1

3 (10k − 1)
)2

=
(
30 · 102k − 5

3 · 10k − 1
3

)2
=

Å
1

3

[
90 · (10k)2 − 5 · 10k − 1

]ã2
=
(4)

1

9

[
8100 · 104k − 900 · 103k − 155 · 102k + 10k+1 + 1

]
= 900 · 104k − 100 · 103k − 155

9 · 102k + 10
9 · 10k + 1

9

= (800 + 100)︸ ︷︷ ︸
900

·104k + (800 + 100− 1000)︸ ︷︷ ︸
−100

·103k +
(
7
9 + 82− 100

)︸ ︷︷ ︸
−155/9

·102k

+
(
− 70

9 + 80
9

)︸ ︷︷ ︸
10/9

·10k +
(
9− 80

9

)︸ ︷︷ ︸
1/9

= 8 · 104k+2 + 103k+3(10k−1 − 1) + 8 · 103k+2 + 102k+2(10k − 1)

+ 82 · 102k + 7 · 10k+1(10k−1 − 1)/9 + 8 · 10(10k − 1)/9 + 9

=
(3)

8 9 . . . 9︸ ︷︷ ︸
k−1

8 9 . . . 9︸ ︷︷ ︸
k

82 7 . . . 7︸ ︷︷ ︸
k−1

8 . . . 8︸ ︷︷ ︸
k

9.

To compute the digit average, we simply multiply each digit that occurs by its
frequency and divide by the total number of digits to obtain

DA(2 9 . . . 9︸ ︷︷ ︸
k

83 . . . 3︸ ︷︷ ︸
k

2) =
2 · 1 + 7(k − 1) + 8(k + 3) + 18k

4k + 3
=

33k + 19

4k + 3

=
8.25(4k + 3)− 5.75

4k + 3
= 8.25− 5.75

4k + 3
.

The proof for the second sequence follows using the same steps: use the equation
(9000x2 − 500x− 19)2 = 81 · 106x4 − 9 · 106x3 − 92000x2 + 19000x+ 361 instead
of (4) and work from both sides of the equation. 2

This result tells us that we can achieve a digit average as close as we want to 8.25
(from below), so the question now becomes whether we can do better than this
value. We will answer this question in the next section.
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3 Can we do better?

Having looked at countless squares with reasonably high digit average, we are con-
vinced that there is no other sequence that generates infinitely many squares with
digit average above 8.25. Empirical evidence (which is not a proof) from com-
puter programming output strongly suggests that any squares with digit average
above 8.25 are bound to be “sporadic”, that is, they are not numerous and do not
have a particular structure. Below we present an argument why we are strongly
convinced there are nevertheless infinitely many of them with digit average above
8.25 and below a threshold value t0 that is around 8.3.

First, let’s assume that M is a very large finite set and A and B are subsets of
M , with magnitudes |M | = m, |A| = a, and |B| = b. Now suppose that the
values of a and b can be determined exactly using a counting argument, while
the value of c = |A ∩ B| cannot be determined explicitly, and that the size of
M makes a brute force enumeration using a computer program infeasible. We
know that max{a+ b−m, 0} ≤ c ≤ min{a, b}. If this range of possible values for
c is large, then knowing this interval does not provide much information at all.
However, if properties A and B are “independent” in a probabilistic sense, that
is, knowing that an integer n belongs to A provides no (or very little) information
about whether n belongs to B, and vice-versa, then probability pAB for an element
to be in A∩B is simply the product of the two probabilities pA and pB . Assuming
strong independence between A and B gives that the expected number of elements
in A ∩B is given by

c ≈ m · pAB = m · pA · pB = m · a
m
· b
m

=
ab

m
.

Now, given an integer n, letM be the set of integers with n digits (som = 9·10n−1),
B be the set of perfect squares in M , and At be the set of integers in M for which
DA(n) ≥ t. The number of elements in B is easily calculated as

b = b10n/2c − b10(n−1)/2c ≈ (
√

10− 1)10(n−1)/2.

Note that the difference between the actual value and the approximation quickly
tends to zero as n increases, so we will use equality instead of ≈ in any equations
relating to the value of c. Substituting the values of b and m into the equation for
c and simplifying leads to

c = c(t, n) =
(
√

10− 1)

9
10−(n−1)/2 · a(t, n),

where a(t, n) = |At|. While there is no explicit formula for a(t, n), it can be
determined recursively using the following algorithm.

Let g(s, n) count the integers with n or fewer digits whose digit sum is s, where
we write every such integer with exactly n digits by adding extra zeros if needed.
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For example, if n = 6, 13 is written as 000013. To evaluate g(s, n), we use the
following recursion that is obtained from conditioning on the last digit:

g(s, 1) = 1 for s = 0, 1, . . . , 9, and g(s, 1) = 0 otherwise;

g(s, k) =
9∑
r=0

g(s− r, k − 1) for 2 ≤ k ≤ n.

Once g(s, n) is calculated, the number h(s, n) of integers with n digits or fewer
whose digit sum is at least s is simply given by

h(s, n) =
9n∑
r=s

g(r, n)

because the largest such number consists of n nines, making the digit sum 9n.
The number of integers e(s, n) that have exactly n digits and whose digit sum is
at least s is then computed as

e(s, n) = h(s, n)− h(s, n− 1).

Because our goal is to have the digit average to be larger than t, we need s/n ≥ t
or equivalently, s ≥ nt. Thus,

a(t, n) = e(dnte, n).

These functions can now be programmed, for example in Python, to investigate
the behavior of c(t, n) for different values of t and n. One notices quickly that for
fixed n, the values of c(t, n) exhibit a behavior typical of percolation. Specifically,
there exists a threshold value t0(n) at which the behavior of c(t, n) changes. For
values of t slightly smaller than t0(n), the values of c(t, n) are quite large, and if t
exceeds t0(n), then c(t, n) becomes very small. Remarkably, this threshold t0(n)
is very stable when increasing the value of n (= number of digits), showing that
there is a threshold t0 that is independent of n for large enough values of n.

So how can we pin down the value of t0? Recall that c(t, n) gives the expected
number of squares that have a digit average that exceeds t when the square has n
digits. For the threshold t0(n) to exist, we need to have at least one such square,
and the threshold would occur exactly when we go from having many squares to
not having any such square. That is, at the threshold, we would have c(t0, n) = 1,
or, equivalently, log(c(t0, n)) = 0. Table 1 shows the values of log(c(t0, n)) for
t-values near the observed threshold for n = 500, n = 5000, and n = 10000.
The values of t in the table are incremented in steps of either 1/500, 1/5000, or
1/10000, respectively, because these are the increments for the corresponding digit
averages. By linear interpolation of the two logarithm values closest to zero we
obtain observed thresholds of 8.2981, 8.29986, and 8.30006, which shows that the
threshold does not depend on n very much. This computational evidence leads
to the question of the limit of the threshold values as n grows without bound.
How close is it to 8.3? This is a rather hard question to answer since we only
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t log(c(t, 500)) t log(c(t, 5000)) t log(c(t, 10000))
8.292 2.681 8.2992 2.9263 8.2997 3.2297
8.294 1.801 8.2994 2.04085 8.2998 2.3438
8.296 0.920 8.2996 1.15524 8.2999 1.4579
8.298 0.037 8.2998 0.26946 8.3000 0.57186
8.300 -0.847 8.3000 -0.61649 8.3001 -0.3143
8.302 -1.733 8.3002 -1.50261 8.3002 -1.2005
8.304 -2.621 8.3004 -2.38890 8.3003 -2.0867

Table 1: Table of values of log(c(t, 500)), log(c(t, 5000)) and log(c(t, 10000)) for
t-values near observed thresholds.

can compute the values of c(t, n) for finite values of n and the formulas used to
compute a(t, n) are recursive.

An easier question is to find squares whose digit average is 8.25 or above, because
we already know that we can get as close to 8.25 from below as we want with our
two specialized sequences. To find such integers, our program selected promising
integers and computed the digit average of their squares for integers with up to
20 digits, an otherwise prohibitively time consuming task. We found

7071060740792635832 = 499998999999788997978888999589997889

941800402941090273132 = 8869879989799999999898984986998979999969,

with digit averages of 8.25 and 8.275, respectively. We challenge the readers to find
additional squares with digit average of 8.25 and above, and maybe even break the
current record. If you find such an integer, send it together with your name and
location or affiliation to sheubac@calstatela.edu for posting on Silvia’s website
http://www.calstatela.edu/faculty/silvia-heubach. Happy hunting!

Both authors last saw Richard Guy at an MSRI workshop on Combinatorial Games
in honor of Elwyn Berlekamp’s 75th birthday. Richard, then 98, was still actively
engaged in doing mathematics. We believe that if we had posed this problem to
him, he would have started to think about how to tackle it. What an inspiration!
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An introduction of the problem of
finding the chromatic number of

the plane (I)
Veselin Jungić

1 Introduction

In their influential book Unsolved Problems in Geometry, Hallard Croft, Kenneth
Falconer, and Richard Guy included the chromatic number of the plane problem:

Problem 1. What is the smallest number of sets (“colours”) with which we can
cover the plane in such a way that no two points of the same set are a unit distance
apart? [1]

This smallest number is called the chromatic number of the plane and it is often
denoted by χ. Croft, Falconer, and Guy described the problem as “fascinating”
and claimed that it “combines the ideas from set theory, combinatorics, measure
theory and distance geometry.” As Alexander Soifer has established [9, 10], the
problem was originally posted in 1950 by Edward Nelson, a graduate student at
the University of Chicago at the time. Since then the problem, because of its
simple and easily understandable statement, but also because of its evasiveness,
has attracted the attention of some of the most prominent mathematicians as well
as that of recreational mathematicians. Over the years, this widespread interest
resulted in various generalizations of the problem. For a detailed account of the
history of the problem, the people involved, and some of the generalizations of the
problem, see [9, 10]

Regardless of all these efforts, until very recently (this will be discussed in a sequel
to this article), the lower bound for χ, established by Nelson in the 1950s [10]
remained unchanged.

As Croft, Falconer, and Guy observed in their presentation of [1], even though
the problem is stated in the geometrical terms (plane, points, distance) it easily
translates in a graph theory question. Consider the graph G = (V,E) in which the
set of vertices V is the set of the points in the plane. Two vertices are adjacent, i.e.
connected by an edge e ∈ E, if and only if the distance between the vertices/points
equals to 1. The question is to find the chromatic number of the graph G, i.e. the
smallest number of colours sufficient for colouring the set V so that no two adjacent
vertices are coloured by the same colour.

In 1951, Nicolaas de Brujin and Paul Erdős [3] proved that, if one assumes the
axiom of choice, then the chromatic number of an infinite graph is equal to the
maximum chromatic number of its finite subgraphs. This fact means that finding
the chromatic number of the plane is “purely finite in character.” [1]
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In what follows, through a series of exercises and examples, we will try to provide
to the reader a long–lasting taste of the problem of finding the chromatic number
of the plane.

Exercise 1. Prove that χ ≥ 3, in other words prove that if the points in the plane
are each coloured by one of two given colours then there must exist two points
that are at a unit distance and coloured by the same colour.

2 The Moser spindle

In the May 1961 issue of the Canadian Math Bulletin, Leo and William Moser
posted their solution to the following problem:

Problem 2.

(a) Prove that every set of six points in the plane can be coloured in three colours
in such a way that no two points a unit distance apart have the same colour.

(b) Show that in (a) six cannot be replaced by seven. [6]

The problem itself was proposed by the Moser brothers probably around the late
1950s. Both Leo and William Moser were prominent Canadian mathematicians.
[7, 8] We know that Richard Guy and Leo Moser knew each other and shared their
passion for problem solving. For example, in his celebrated article “Strong Law of
Small Numbers” from 1988, Guy writes:

This example [#8], as well as example 5., was first shown to me by Leo
Moser, a quarter of a century ago. [4]

This means that it is almost certain that Richard Guy was aware of at least a
version of the problem of finding the chromatic number of the plane in the early
1960s. The reader has probably already realized that the solution to Problem 2
establishes that χ ≥ 4.

Next, we follow Leo and William Moser’s solution [6] to Problem 2. Let two points
which are a unit distance apart be called friends, otherwise they are strangers. If
a finite set of points can be coloured by k colours so that no pair of friends have
the same colour we say that this set permits a proper k-colouring. In the rest of
this note we assume that any set of four or more points is a subset of a plane.

Exercise 2. Show that four points in the plane cannot be friends to each other
and that two points cannot have three common friends.

Exercise 3. Show that any set of four points permits a proper 3-colouring.

Exercise 4. Show that any set of five points permits a proper 3-colouring.

Exercise 5. Show that any set of six points permits a proper 3-colouring.
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Example 1. Below we demonstrate a construction of a unit distance graph on
seven vertices known as the Moser spindle.

Start by choosing a point A in the plane and then
draw a circle with the centre at A and radius 1.
Denote this circle by c1. Choose a point B on the
circle c1. Draw the line segment AB.

Next, draw a circle with the centre at B and radius 1.
Denote this circle by c2. Let C be an intersection point
of c1 and c2. Draw a circle, call it c3, with the centre
at C and radius 1. Observe that the point A belongs
to both c2 and c3. Let D be the other intersection
point of c2 and c3. Draw the line segments AC, BC,
BD, and CD. Observe that all those line segments
are of length 1.

1 1

A

B C

D

Step 1

Draw a circle, call it c4, with the centre atD and radius
1. Draw a circle with the centre at A and passing
through the point D. Denote this circle by c5. Next,
choose a point E in the intersection of c4 and c5. Draw
the line segment DE. Observe that |DE| = 1.

1 1

A

B C

D

E

Step 2

Draw a circle with the centre at E and radius 1. De-
note this circle by c6. Let F and G be the intersection
point of c1 and c6.

1 1

A

B C

D

E
F

G

Step 3

Draw the line segments AF , AG, EF , and EG. Ob-
serve that all those line segments are of length 1.
The Moser spindle appears!

1 1

A

B C

D

E
F

G

Step 4

Exercise 6. Use the Moser spindle to prove that χ ≥ 4.
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3 What about the upper bound?

Example 2. It is possible to cover the plane with congruent regular hexagons:

Exercise 7. Suppose that each regular hexagon in Example 2 is with the side
length equal to 2

5 . Choose one of the hexagons and call it h1. Let c1 be the
circumscribed circle of the hexagon h1. Let c2 be the smallest circle that contains
h1 and all six hexagons that share a side with h1. What is the diameter of c1?
What is the diameter of c2?

Exercise 8. Use Example 2 and Exercise 7 to show that χ ≤ 7.

Therefore, from Exercise 6 and Exercise 8 it follows that:

Theorem 3. 4 ≤ χ ≤ 7.

It should be mentioned that, in addition to Exercise 6 and Exercise 8, there are
other ways to establish the bounds presented in Theorem 3. See, for example,
[9, 10].

4 Remarks

As often happens in mathematics, an object created to answer a particular ques-
tion may be used later in a completely different mathematical environment. For
example, if the Moser spindle is considered a graph on seven vertices then its pla-
nar embedding – i.e. a drawing of the graph so that no edge crosses any other
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edge – requires that one edge is drawn longer than the others. This implies that
the Moser spindle is not a so-called matchstick graph! For more details about this
part of the life of the Moser spindle, see, for example, [11] .

Going in a different direction, we have found the Moser spindle prove to be an
interesting geometrical object on its own. We hope that the reader would be
curious to search for the measures of the various angles contained in the Moser
spindle, as well as the non-unit distances between the vertices. As we will see in
the sequel, some of these geometric properties played important roles in the proof
that χ ≥ 5.

But the main reason for this note is to serve as another, perhaps modest, tribute
to the many contributions to mathematics made by Richard Guy and his collab-
orators and friends, including Leo Moser. Richard’s entire professional life was
about collaboration and sharing everything he knew about mathematics, as well
as his love for it, with anyone who would listen: from pioneers who marked the
development of mathematics in the 20th century, like Paul Erdős and John Con-
way, to champions of the promotion of mathematics to the general public, such as
Martin Gardner, to adults whose very first positive experience with mathematics
was a conversation with Richard, as the author of this note witnessed firsthand.

Richard also left us with a warning that we must be careful when making definite
conclusions about mathematical phenomena based on limited data, regardless of
its quantity or if it was computer-generated. Here is Richard’s Strong Law of
Small Numbers as a reminder that one should not rush to generalize patterns that
appear among “small numbers”:

There aren’t enough small numbers to meet the many demands made
of them. [4]

5 Hints and solutions

Exercise 1. Consider an equilateral triangle.

Exercise 2. Observe that the existence of four points that are friends with each
other would imply the existence of a triangle inscribed in the unit circle with all
its sides equal to 1. A mutual friend of two friends, say A and B, must belong to
the intersection of circles with their centres at A and B and radii equal 1.

Exercise 3. Say that A and B are friends. Use two colours to colour those two
points. Only one of C and D can be a mutual friend to A and B, say C. Use the
third colour to colour C. How should we colour the point D?

Exercise 4. Observe that from the second part of Exercise 2 it follows that not
all of the points A, B, C, D, and E can have exactly three friends each. Suppose
that the point A does not have three friends. Say that A has two friends, B and
C. Use Exercise 3 to properly 3-colour points B, C, D, and E. How should we
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colour the point A? If A has four friends then those four points belong to a circle
with the centre at A and we can colour them properly with two colours.

Exercise 5. Let A, B, C, D, E, and F be six points in the plane. If there is
a point with two or four or five friends then we can use a similar argument as in
Exercise 4. Suppose that all points have exactly three friends. Say that A is a
friend with B, C, and D. Observe that A, E, and F have a common friend, say
B. If E and F are strangers then there is a proper 2-colouring of the six points. If
E and F are friends, consider the following two cases: (1) B is the only common
friend for E and F ; (2) E and F have another common friend.

Exercise 6. Use three colours and try to avoid colouring two friends with the
same colour.

?

?

?

?

Exercise 7. 4
5 and 2

√
7

5 .

Exercise 8. In 1961, Hugo Hadwiger proposed [5] the following 7-colouring of a
tessellation of the plane by regular hexagons, with diameter d, 4

5 < d < 1. Observe
that each hexagon is surrounded by hexagons of a different colour.
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De l’utilité d’une vieille curiosité
grecque

Claude Goutier

1 Introduction

On doit principalement aux Grecs de l’Antiquité, les fondements de la géométrie
et de la théorie des nombres. Cette dernière contient des problèmes simples et
faciles à comprendre, mais dont la solution peut être très élaborée ou encore avoir
échapé à la sagacité de très nombreux mathématiciens depuis des siècles.

Euclide a développé une géométrie qui porte son nom, démontré l’infinitude des
nombres premiers et donné une formule décrivant les nombres parfaits pairs.

Dans l’édition du Scientific American de mars 1968, Martin Gardner écrit:

”One would be hard put to find a set of whole numbers with a more
fascinating history and more elegant properties, surrounded by greater
depths of mystery — and more totally useless — than the perfect
numbers ...”

Traduction libre: On serait bien en peine de trouver un ensemble de nombres
entiers avec une histoire plus fascinante et des propriétés plus élégantes, mais tout
aussi inutiles, que les nombres parfaits ...

Dans cet article, nous allons examiner sous la forme d’un parcours historique, la
relation inattendue qui existe entre les nombres parfaits et les formes universelles
qui produisent des nombres de Carmichael, et trouver une utilité à ces nombres
parfaits.

2 Les nombres parfaits

Un nombre est dit parfait [1, B1] s’il est égal à la somme de ses diviseurs stricts
(c’est-à-dire autre que lui-même). Par exemple, les diviseurs stricts de 6 sont 1, 2
et 3. Puisque 6 = 1 + 2 + 3, c’est un nombre parfait.

Au troisième siècle avant notre ère, Euclide nous a donné une formule suffisante
pour un nombre parfait pair: (2p − 1)2p−1 lorsque 2p − 1 est un nombre premier.
Au dix-huitième siècle, Euler a démontré que tous les nombres parfaits pairs sont
nécessairement de cette forme.

Le nombre p doit lui aussi être premier car sinon

2(ab) − 1 = (2a − 1)(1 + (2a) + (2a)2 + ...+ (2a)b−1)

est un nombre composé.
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On peut se poser quelques questions à propos de ces nombres parfaits. Sont-ils en
nombre infini? Existe-t-il des nombres parfaits impairs? Sont-ils utiles?

On ignore la réponse aux deux premières questions. Quant à la troisième, c’est
justement la raison de cet article.

Dans le tableau qui suit, G est un nombre parfait, n son rang, p et mp des
paramètres dans la formule d’Euclide, d le nombre de diviseurs stricts suivi de
ceux-ci.

n p mp G d diviseurs stricts

1 2 3 6 3 1 2 3

2 3 7 28 5 1 2 4 7 14

3 5 31 496 9 1 2 4 8 16 31 62 124 248

4 7 127 8128 13 1 2 4 8 16 32 64 127 254 508 1016 2032 4064

5 13 8191 33550336 25 1 2 4 8 16 32 64 ... 4193792 8387584 16775168

...

51 82589933 — — 165179865 La marge est trop étroite pour tous les contenir

2.1 Les nombres de Mersenne

Le nombre 2p − 1 qui apparâıt dans la formule d’Euclide est appelé nombre de
Mersenne [1, A3]. On n’en connâıt très peu, le cinquante et unième a été trouvé
le 7 décembre 2018. Étant donné leur taille, la plupart ont été découverts en utili-
sant des ordinateurs, surtout grâce au “Great Internet Mersenne Prime Search”
[2], un projet de recherche distribuée. Le programme de recherche, très optimisé,
est aussi utilisé pour tester de manière intensive le processeur central des ordina-
teurs. La forme très particulière des nombres de Mersenne est utile dans certains
programmes de génération de nombres aléatoires. C’est ainsi que l’on retrouve le
“Mersenne Twister” utilisé dans certains jeux sur des consoles vidéo.

Les nombres de Mersenne fournissent aussi des exemples de très grands nombres
premiers. En effet, lorsque p vaut 82589933, le nombre de chiffres de 2p− 1 est de
p · log102 + 1, soit 82589933 × 0.30103 + 1 = 24862048 chiffres. On voit que les
nombres de Mersenne, contrairement à ceux de Fermat, ont une certaine utilité,
mais attendons la suite.

3 Les nombres de Carmichael

Avant d’aborder les formes universelles, il faut examiner quelques concepts supplé-
mentaires étudiés au fil du temps.

3.1 1640: Le petit théorème de Fermat

Fermat avance que pour tout entier a, le nombre an − a est un multiple de n
lorsque n est un nombre premier.
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Cette propriété ne permet malheureusement pas de déterminer avec certitude si
un nombre est premier. En effet, il existe des nombres dits pseudo-premiers pour
lesquels la propriété est vérifiée pour plusieurs entiers a. Par exemple: 341 qui
n’est pas premier (341 = 11×31) satisfait la condition du petit théorème de Fermat
puisqu’il divise 2341 − 2.

Il existe surtout des nombres composés, les nombres de Carmichael, qui satisfont
la propriété pour toutes les valeurs de l’entier a. Qui plus est, il a été démontré
qu’il en existe une infinité [3].

Ces nombres de Carmichael [1, A13] peuvent être caractérisés d’une autre manière.

Exercise 3.1.1. Quelles sont les valeurs de a qui satisfont toujours la relation
et qui, pour cette raison, ne sont d’aucune utilité pour distinguer les nombres
composés des nombres premiers?

3.2 1899: Le critère de Korselt

Le critère de Korselt est une autre façon de caractériser les nombres de Carmichael.

N = p1 . . . pd avec 2 < p1 < p2 < . . . < pd et d ≥ 3, (pi − 1) divise (N − 1).

Autrement dit, un nombre de Carmichael est composé d’au moins 3 facteurs pre-
miers impairs distincts. Chacun de ces facteurs doit aussi satisfaire une condition
de divisibilité.

Nous allons remplacer le nombre 1 qui apparâıt dans la formule précédente, par
un paramètre δ. En faisant cela, nous traiterons simultanément les nombres de
Carmichael et les nombres de Lucas-Carmichael [1, A13].

Sans nous attarder, disons simplement que les nombres de Lucas-Carmichael sont
définis par le critère de Korselt lorsque δ vaut −1.

On montre facilement qu’un nombre de Carmichael peut s’écrire de la façon sui-
vante: N = pi(1 + ki(pi − 1)). Mais en utilisant δ, on obtient les deux formules:

N = pi(1 + ki(pi − δ)), (N − δ) = (pi − δ)(1 + kipi).

On voit alors très clairement le rôle joué par δ et le caractère commun des nombres
de Carmichael et de Lucas-Carmichael. Ceci illustre aussi le critère de Korselt, en
explicitant le produit de facteurs premiers et la condition de divisibilité.

Exercise 3.2.1. Démontrez les deux formules précédentes et réalisez qu’il s’agit
d’une seule et même équation présentée de deux façons différentes.

3.3 1939: Les formes universelles

Jack Chernick a étudié ce qu’il appelle des formes universelles donnant des nombres
de Carmichael dès que chaque facteur est premier. L’avantage de ces formes, une
fois établies, est qu’il suffit de vérifier que tous les facteurs sont premiers.
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La plus simple et la plus connue est:

(6m+ 1)(12m+ 1)(18m+ 1),

m étant un entier positif non nul. En posant m = 1 dans la forme précédente, on
obtient: (6+1)(12+1)(18+1). On peut vérifier que les facteurs sont premiers et que
6, 12 et 18 divisent bien 1728 égal à 2633. Rappelons que tous les facteurs doivent
être premiers. Si m = 2, le deuxième facteur (24 + 1) n’est pas premier. Chernick
donne d’autres formes universelles, par exemple: (10m+ 7)(20m+ 13)(50m+ 31).

Exercise 3.3.1. Démontrez que cette dernière forme est universelle et trouvez la
première valeur de m satisfaisante.

4 Une forme universelle parfaite

Nous allons maintenant construire une forme universelle parfaite:

N = (g1Gm+ δ) · · · (gdGm+ δ)

en nous assurant qu’elle satisfasse le critère de Korselt.

On doit avoir au moins trois facteurs, donc d ≥ 3. Chaque facteur doit être distinct
des autres. Les gi seront distincts et G sera le plus grand commun diviseur des
valeurs giG. Le paramètre m est un paramètre libre permettant d’obtenir plusieurs
nombres distincts à partir d’une même forme. Le paramètre δ permet de traiter
simultanément les nombres de Carmichael et de Lucas-Carmichael. Finalement,
chaque facteur (giGm+ δ) doit être premier.

Pour satisfaire la condition de divisibilité, il faut que:

N − δ = (g1Gm+ δ) . . . (gdGm+ δ)− δ
soit divisible par chacun des (giGm+ δ)− δ.
En développant le produit et en regroupant les termes, on obtient:

N − δ = (
∏

1≤i≤d

gi)G
dmd+ · · ·+ δd−2(. . .)G2m2 + δd−1(g1 + · · ·+ gd)Gm+ (δd− δ).

En considérant que la valeur absolue de δ vaut 1, le terme constant δd− δ s’annule
dès que d est impair. Cette condition est nécessaire lorsque δ vaut -1.

Il faut aussi que l’avant-dernier terme δd−1(g1 + · · · + gd)Gm soit divisible par
chacun des (giGm). C’est a dire que gi divise (g1 + · · ·+ gd).

Nous supposons donc que G est un nombre parfait égal à la somme de ses diviseurs
stricts gi.

Chacun des (giGm) divise bien les termes précédents puisque les gi sont des di-
viseurs de G.

Exercise 4.0.1. Quelle condition supplémentaire faut-il imposer à m lorsque la
forme universelle parfaite est dérivée d’un nombre parfait impair?
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4.1 Une propriété des nombres parfaits

Il nous reste à montrer que d, le nombre de facteurs stricts d’un nombre parfait,
est impair.

Nous distinguons deux cas. Si le nombre parfait est pair, nous utilisons la formule
d’Euclide (2p − 1)2p−1 et pour s’implifier l’écriture, posons m = 2p − 1.

Énumérons tous les diviseurs en formant deux suites: la première est celle des
puissances consécutives de deux: 1, 21, . . ., 2p−1, la deuxième sera le produit de
m et de chacun des termes de la première suite, soit: m, m21, . . ., m2p−1. Le
nombre total des diviseurs est pair puisqu’on a deux suites de même longueur. En
omettant le nombre parfait lui-même, on obtient le nombre impair de diviseurs
stricts, soit 2p− 1.

Si le nombre parfait est impair, tous ses diviseurs stricts doivent être impairs
et pour obtenir une somme impaire (c’est-à-dire le nombre parfait lui-même), le
nombre de termes doit être impair.

Remarquons qu’en généralisant le critère de Korselt pour inclure les nombres de
Lucas-Carmichael, nous avons mis en évidence cette propriété des nombres par-
faits.

5 Résumé et quelques exemples

En résumé, nous avons utilisé les diviseurs stricts d’un nombre parfait pour con-
struire une forme universelle parfaite.

Il faut montrer que la construction est valide et que l’on peut trouver des valeurs
de m qui rendent tous les facteurs premiers.

Plutôt que de donner des exemples qui deviennent vite volumineux, voici un pro-
gramme pour évaluer une forme dans le calculateur gp de pari/gp[4]:

parfait=[6,28,496]; stricts=[[1,2,3],[1,2,4,7,14],[1,2,4,8,16,31,62,124,248]];

S(d)={if (d == 1,"C",d == -1,"D","?")}; /* == operateur de comparaison */

forme (n, d, m) = /* n = rang du nombre parfait, d = delta, m = variable */

/* ! indique un facteur non premier */

{

G=parfait[n]; g=stricts[n]; nb=matsize(g)[2];

N=1; for (i=1,nb, N=N*(g[i]*G*m+d)); /* produit des facteurs de la forme */

printf ("%s %d = ", S(d), N);

for (i=1,nb, printf(" %d%s", (g[i]*G*m+d), if (isprime (g[i]*G*m+d),"","!")));

print (" m = ", m);

}

Les valeurs satisfaisantes de m pour les trois premiers nombres parfaits sont
données dans les tableaux qui suivent lorsque δ vaut respectivement 1 et −1:
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n 6 28 496

1 1 2136 3494274080
2 6 2211 59586796500
3 35 4071 65403950535
4 45 5106 90497573145
5 51 5430 102867466065
6 55 9000 183907014270
7 56 10656 187988501295
8 100 17655 205676959950
9 121 18315 221913416340

n 6 28 496

1 1 219 10405375365
2 4 3354 54995354820
3 5 3870 75970448190
4 14 4884 128038936200
5 15 7824 141170974350
6 29 15525 204686064660
7 39 24825 207758902890
8 40 34914 288204274995
9 49 42669 294525612150

Pour le nombre parfait suivant, 8128 avec ses 13 diviseurs, la première valeur
satisfaisante de m semble hors de portée. Finalement après 26 jours de calcul sur
98 processeurs, 216818853118725 est la première valeur satisfaisante de m.

À titre d’exemple dans gp, forme(1,1,1) et forme(2,-1,219) afficheront

C 1729 = 7 13 19 m = 1

D 6794971926001106598911 = 6131 12263 24527 42923 85847 m = 219

6 Ajout de facteurs supplémentaires

On peut ajouter à volonté λ facteurs supplémentaires à une forme universelle
parfaite. Chacun étant de la forme: sj = (2jG2m + δ), 0 ≤ j < λ et m doit être
divisible par 2λ−1.

En partant de la forme universelle parfaite: N = (1 ·6m+δ)(2 ·6m+δ)(3 ·6m+δ),
on ajoute successivement: (20 · 36m+ δ) (21 · 36m+ δ) (22 · 36m+ δ) ...

Notons en passant la relation: sj+1 = 2sj − δ et que dans le cas des nombres de
Lucas-Carmichael (δ = −1), λ doit être pair.

Exercise 6.0.1. Démontrez que les formes universelles parfaites étendues satisfont
le critère de Korselt.

7 Nombres premiers de Sophie Germain

Dans le cadre de ses recherches sur le grand théorème de Fermat, Sophie Germain
[1, B48] a étudié une paire de nombres premiers reliés de la façon suivante: p2 =
2p1 + 1. Le premier nombre, p1, est appelé nombre premier de Sophie Germain.
Le deuxième nombre, p2, est appelé nombre premier sûr.

L’efficacité de certains algorithmes de factorisation repose sur la présence de nom-
breux petits facteurs de N − 1. Ces nombres premiers sûrs sont donc une entrave
à ces algorithmes.
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Pour les nombres de Lucas-Carmichael, les facteurs supplémentaires qui satisfont
sj+1 = 2sj−δ sont justement de la forme des nombres premiers de Sophie Germain,
puisque δ vaut −1.

8 De nouvelles questions

Les quelques exemples précédents ont montré qu’il existe des formes universelles
parfaites dont tous les facteurs sont premiers.

Étant donnée une suite d’expressions (Hgim + d), où H, le plus grand commun
diviseur des gi (relativement premiers entre eux) et d sont donnés, on peut se poser
les questions suivantes à propos des variables:

Quelles sont les conditions sur H, gi et d, pour qu’il y ait au moins une chance que
les termes soient premiers? Existe-t-il au moins un m qui rende tous les termes
premiers? Existe-t-il une infinité de valeurs de m satisfaisantes?

9 Conclusion

À partir des nombres parfaits que nous ont légués les Grecs de l’Antiquité, nous
avons exploré quelques facettes de la théorie des nombres qui regorge de problèmes
parfois très simples et de questions souvent sans réponse. Ce qui est d’ailleurs le
sujet du livre Unsolved problems in Number Theory de Richard K. Guy plusieurs
fois cité dans cet article.

Nous avons surtout trouvé une utilité aux nombres parfaits en construisant une
forme universelle parfaite à partir de leurs diviseurs stricts.

Pour terminer, comme dans le Timeo Danaos et dona ferentes de Virgile, méfiez-
vous des cadeaux des Grecs anciens, ils vous réservent encore bien des surprises.
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Every positive integer is a sum of
four squares

Michael Barr

1 Introduction

Ever since I took a course in number theory many decades ago, I have been fas-
cinated by the theorem that every positive integer is the sum of four squares.
The proof I learned was rather complicated. We present here a much more ele-
gant argument that is due to the Fields Medal winning mathematician Alan Baker
(1939–2018). It was originally proved by Joseph-Louis Lagrange (1736–1813), Ital-
ian/French mathematician. Actual birth name: Giuseppe Lodovico Lagrangia.

Here is an outline of the main steps of the argument.

Step 1. If a and b are each a sum of 4 squares so is their product ab. This reduces
the argument to showing it for primes.

Step 2. If p is prime, then there is a k < p for which kp is a sum of four squares.

Step 3. If k > 1, then there is an l < k such that lp is a sum of four squares.

The first two steps are standard; Baker’s argument applies to the third step.

2 Modular arithmetic

Modular arithmetic is crucial to the argument. It will be familiar to many of you.
Nonetheless there are one or two things in this development that may be new to
you.

Let m be a positive integer. We say of (not necessarily positive) integers x and y
that x ≡ y (mod m) when m divides x − y. For example 5 ≡ 16 (mod 11), but
also −5 ≡ 17 (mod 11) since 11 divides −5− 17. Note that x ≡ 0 (mod m) iff m
divides x. When x ≡ y (mod m) holds, we will say that x is congruent to y
mod m.

Here are a couple of easily derived properties of modular arithmetic that we will
be using, generally without comment.

1. x ≡ x (mod m).

2. If x ≡ y (mod m) then y ≡ x (mod m).

3. If x ≡ y (mod m) and y ≡ z (mod m) then x ≡ z (mod m).

4. If x ≡ y (mod m) and x′ ≡ y′ (mod m) then x + x′ ≡ y + y′ (mod m)
and xx′ ≡ yy′ (mod m). In particular, x ≡ y (mod m) implies x2 ≡ y2

(mod m).
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For any m, the numbers 0, 1, . . . ,m− 1 constitutes a complete set of residues
mod m. This means that every number is congruent to one and only one number
in that set. For a positive number x you simply divide by m and use the remainder.
If x < 0, you can still define division with non-negative remainder.

But this is not the only possible complete set of residues. For example, mod 11,
the numbers 0, 2, 4, 6, . . . , 20 are another one. For example, 7 ≡ 18 (mod 11). For
our purposes, the set −5,−4, . . . , 0, . . . , 5 is a complete set of residues mod 11. For
any odd m, the set −(m− 1)/2, . . . , 0, . . . , (m− 1)/2 is called the absolutely least
residues mod m. All the residues in that set have absolute value less than m/2.

3 Step 1, the product identity

This identity will be used twice, once to show S4S-1 and again in Step 3.

(a2 + b2 + c2 + d2)(x2 + y2 + z2 + w2)

= (ax+ by + cz + dw)2 + (ay − bx− cw + dz)2 (PI)

+(az + bw − cx− dy)2 + (aw − bz + cy − dx)2

This is somewhat tediously proved by direct multiplication. For example the cross
term 2axby coming from squaring the first term on line 2 cancels the term 2ay(−bx)
coming from squaring the second term. Eventually, all the cross terms cancel and
only terms like a2x2 remain.

If you know about quaternions (you do not have to know about quaternions to
read this paper), then it may interest you to know that the particular patterns of
plus and minus signs comes from the product

(a+ bi + cj + dk)(x+ yi + zj + wk)

But even knowing about quaternions doesn’t prove the formula above. In fact
the formula is what is needed to prove that quaternionic absolute value preserves
products.

What this formula does do is reduce the question at hand to showing that every
prime is the sum of four squares. Since 2 = 12 + 12 + 02 + 02 is a sum of four
squares we can confine ourselves to odd primes.

Exercise. The quaternions are a 4 dimensional associative, but non-commutative,
algebra spanned by 1, i, j,k, such that

i2 = j2 = k2 = ijk = −1

Derive the rest of the multiplications from these equations.
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4 Proof of Step 2

We begin with an important property of prime numbers: If a prime divides a
product, then it divides one of the factors. This is standard and can be found in
any discussion of the greatest common divisor.

Let p be an odd prime.

As x ranges over the set of (p+1)/2 numbers 0, 1, . . . , (p−1)/2, I claim that no two
of the elements of the set of all x2 are congruent mod p. In fact, if 0 ≤ x ≤ (p−1)/2,
0 ≤ x′ ≤ (p− 1)/2, and x2 ≡ x′2 (mod p), then p divides

x2 − x′2 = (x− x′)(x+ x′).

But then p must divide either x − x′ or x + x′ and both the sum and difference
are less than p and so one (or both) must be 0, which is possible only if x = x′.
Thus those (p+ 1)/2 numbers are all distinct mod p. In a similar way, if y ranges
over the set of numbers 0, 1, . . . , (p− 1)/2, the (p+ 1)/2 numbers −1− y2 are all
distinct. Since the two sets of numbers altogether total p+ 1 numbers at least one
pair of them must be congruent. Since both sets are individually distinct mod p,
there must be a pair x, y for which x2 ≡ −1 − y2 (mod p) which is to say that
x2 + y2 + 1 is a multiple of p, say kp. Since x and y are non-negative, k cannot be
0 and since x and y are less than p/2,

x2 + y2 + 1 ≤ p2/2,

so that k < p.

5 Proof of Step 3

Suppose now that a2 + b2 + c2 + d2 = kp with 1 < k < p. We first consider the
case that k is an even number. In that case, either all four of the numbers a, b, c, d
are even, or all are odd, or two of them are even and two odd. In the last case,
assume that a and b are both even and c and d both odd. In all three cases, we
compute Å

a+ b

2

ã2
+

Å
a− b

2

ã2
+

Å
c+ d

2

ã2
+

Å
c− d

2

ã2
=
a2 + 2ab+ b2 + a2 − 2ab+ b2 + c2 + 2cd+ d2 + c2 − 2cd+ c2

4

=
2a2 + 2b2 + 2c2 + 2d2

4
=
k

2
p

and so ` = k/2 proves Step 3 in this case. Now suppose that k > 1 is odd. Let x be
the absolutely least residue of a (mod k). That is a ≡ x (mod k) and |x| < k/2.
Similarly, let y, z, w be the absolutely least residues of b, c, d, respectively mod k.
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Since x2 + y2 + z2 +w2 ≡ a2 + b2 + c2 + d2 (mod k) and the latter is kp, it follows
that x2 + y2 + z2 +w2 is also a multiple of k, say lk. Since all four terms are less
than k2/4, it follows that l < k. Clearly,

(a2 + b2 + c2 + d2)(x2 + y2 + z2 + w2) = lk2p

We will next show that every term used in the product identity, PI above, is
divisible by k.

ax+ by + cz + dw ≡ a2 + b2 + c2 + d2 = kp ≡ 0 (mod k)

ay − bx− cw + dz ≡ ab− ba− cd+ dc = 0 (mod k)

az + bw − cx− dy ≡ ac+ bd− ca− db = 0 (mod k)

aw − bz + cy − dx ≡ ad− bc+ cb− da = 0 (mod k)

It now follows thatÅ
ax+ by + cz + dw

k

ã2
+

Å
ay − bx− cw + dz

k

ã2
+

Å
az + bw − cx− dy

k

ã2
+

Å
aw − bz + cy − dx

k

ã2
= lp

It now follows that p is the sum of four squares.

6 Sums of two and three squares

What integers are sums of two squares? There is a product identity that is much
easier than the one for four squares (exercise: find it) which basically reduces this
question to primes. The oddest prime of all, namely 2, is a sum of two squares. It
is an easy exercise to show that no prime p ≡ 3 (mod 4) is a sum of two squares.
It is somewhat harder to show that every prime p ≡ 1 (mod 4) is a sum of two
squares. From these observations, you can readily see the forward implication: The
number n is a sum of two squares iff every prime divisor p ≡ 3 (mod 4) divides
n an even number of times. Thus 162 is a sum of two squares (since 3 divides it
four times) while 54 isn’t.

The situation with three squares is not so simple. By inspection, we can see that
7 is the first number not the sum of three squares and the next one is 15 = 3× 5,
which shows that there can be no product identity for three squares. After 15
comes 23, which might cause you to conjecture that the only exceptions are n ≡ 7
(mod 8). Until you come to 28, another exception. The final answer was given
by French mathematician Adrien-Marie Legendre (1752–1833). The number n is
a sum of three squares iff it is not of the form 4e(8k+ 7). You may enjoy showing
the “only if” part.
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Some memories of Richard Guy
Alex Fink

Richard Guy was not only a friend to me, but a mentor and a formative mathe-
matical influence since I met him in the late 1990s. I write this to portray a few
pieces of his attitude to mathematics and life, as I saw them.

Richard’s long dedication to mentorship and young people in mathematics was
remarkable. He was mentoring and writing joint publications with students un-
til nearly the end – my erstwhile record, with him, for largest age gap between
coauthors didn’t have a chance of surviving, but his role in the record was secure!
For just as long he pitched in to University of Calgary’s outreach efforts, such
as the marking effort for the Calgary Junior Math Contest and appearances at
the weekly Math Nite for highschoolers (and younger: this was where I met him,
around grade five).

As a researcher, Richard’s dedication to following his own trails in his research,
regardless of the popular opinion of the mathematical subareas in question, was
refreshing. To Richard math was recreation, so an area being characterised as
“recreational mathematics” was no dismissal like it is for so many. Richard was
fond of telling how combinatorics as a whole lay in disrepute when he got his start
in research, midcentury, but ascended to near-respectability by the turn of the
century and made it by his last decade. I’m delighted to see his tastes vindicated.

Unsurprisingly given this, Richard’s work was spread over many areas of mathe-
matics. While I was working with him as an undergraduate he encouraged such
breadth in me too. He would suggest I accompany him to conferences even some-
what outside my area: his explanation was that even if I didn’t understand the
talks I’d absorb some of the language and be better prepared for the next one.
In retrospect I’m sure it was also a nudge about networking, given Richard’s own
immense mathematical networks.

Richard’s mathematical explorations were driven by hands-on play with examples,
and if a computer could be coaxed to produce the examples, all the better. When
I paid a visit to Richard in his office in his nineties and beyond, he’d always have
open a terminal window or four in which he had the number theory software Pari-
GP computing so-called aliquot sequences. This also illustrates one of his tenets
of research—always have multiple balls in the air. Not only does this give you
somewhere to turn when stuck, but while you’re focussing on one project, there
will still be a little part of your mind at work on the others.

An aliquot sequence is obtained by iterating the function mapping a natural num-
ber n to the sum of all its proper divisors (i.e. excluding n itself). So the aliquot
sequence beginning with 12 runs 12, 16, 15, 9, 4, 3, 1, 0, and there it runs out. Dick-
son conjectured in 1913, refining Catalan (1888), that this behaviour was repre-
sentative: every aliquot sequence is bounded, either reaching zero or becoming
periodic [3]. But Richard thought this behaviour was only the small numbers
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up to their usual tricks (cf. [5]); with John Selfridge in 1975 [7] he made the
“counter-conjecture” that aliquot sequences starting at even numbers escape to
infinity except at a set of asymptotic density zero. In amassing evidence for the
counter-conjecture, rather than automating computations of sequences and letting
the machine churn away on them, Richard would only give the command to com-
pute one term at a time. He’d want to see every term and copy it to a text file,
where he could take in the gently rolling shapes formed by the varying numbers of
digits, and he’d mark it up with a factorisation to see the dance of the “drivers”,
powers of two times certain other small primes, which when they appeared as
factors stuck around awhile and reliably guided the sequence up or down.

As this shows, once Richard had examples to hand they would need to be set down
in the way best allowing visual extraction of insight. Whatever visualisation he
settled on would be precisely laid out and lovingly drawn. Euclidean geometry
is, of course, given to this. For triangle geometry experiments Richard kept a
coordinatised drawing of a Generic Triangle on large graph paper, following the
idea on which Clark Kimberling’s Encyclopedia of Triangle Centers [8] is built: if
it’s true in one random enough example, it’s always true (this is not just a heuristic
but can be firmed up into a rigorous fact!) Richard, of course, picked as his generic
triangle one that had the nicest Diophantine properties he could muster. This was
a longstanding passion: his old posters of Euclidean geometry from his teacher
days stayed atop his bookshelves, never far away. Here are a few more memorable
examples from my research with him: the honeycombs on unrolled tori that were
Cayley graphs associated to actions of Conway’s “extraversion” of a triangle on
associated objects – draw in, say, the angle bisectors (two lines per angle!) of a
triangle, and observe how they are permuted when you continuously swap the
places of two vertices [6]; and the maps in the style of Conway’s topographs,
trivalent plane graphs with numbers labelling the faces [2], from when we were
playing with Markov’s equation x2 + y2 + z2 = 3xyz in number fields.

The charming graphics in the original edition of Winning Ways [1] were drawn and
lettered by Richard, and he made sure they were retained in the second edition. Af-
ter the second edition’s appearance I’d sometimes get papers from Richard whose
back sides had been used in assembling the second edition, with the old graphics
cut out and carefully taped into the spaces left for them. You see, after serving
that purpose these pages had become One Sided Paper, not to be discarded but
to be saved for use of its remaining side in the OSPital!

Richard was an early adopter of computers. Though the computer age was in full
swing by the time I met him, there were still plenty of signs. The first I noticed was
that his email address was in the Computer Science department. This was because
his computing account at the U of C predated the fission of Computer Science and
Math into separate departments, and naturally, when they did split, the former
took the computers. Richard’s standard tools for computer graphics were LATEX
packages epic and eepic, which freed the user from the harshest restrictions of
the old picture environment (now you could have lines of arbitrary slope!) but
were still distinctly closer to the metal than modern standards like TikZ. He was
impressively fluent at the required coordinatisation.
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A sample page of Winning Ways. One of the first moments in Richard’s
research career was his independent rediscovery and development of the
Sprague-Grundy theory, noticing it applied more generally than had
been seen before. Richard Nowakowski has written this moment up:
https://notes.math.ca/en/article/richard-guy-and-game-theory/

A glimmer of the excitement Richard must have felt in the mechanical computer
days came to the surface during one of his visits to my parents’ home. My folks
had Richard over for a number of dinners, especially during my visits back after
I’d moved out, and his good appetite and fondness for just one more drink were
reliable sources of cheer. Anyway, I had in my old bedroom some of my uncle
Archie’s mechanical calculators, including a Curta, an accumulator machine where
the addend could be shifted in place value by turning the body, nicknamed the
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“pepper grinder” for its cylindrical shape with crank on top. During one visit a
group of us – Richard, me, my partner, my dad – fell to an online investigation of
the Curta calculator’s online mechanisms, and Richard was rapt throughout.

Richard was nimble with wordplay. He’d make sure that just the right name was
assigned to a mathematical concept, or title to a paper. He shared this disposition
with many in his circles, including the other authors of Winning Ways, and one of
the standard anecdotes about the book is a perfect illustration. The three of them
invented many combinatorial games for the book. If a game couldn’t be given
the right name right away, it went in the “games without names” file, to later be
married to a name that, on its coining, was sent to the “names without games” file.
Andrew Bremner shared the wordplay bug, and Richard and I took some hikes
with him in the Rockies; on the drives to and from, typical entertainments were
naming words that contained the letters on a licence plate as subsequences, or
doing the Saturday NYT crossword without writing anything down. Both of them
were stiff competition! It was fitting that at one of Richard’s birthday celebrations
at the U of C (his 90th?), one of the impromptu games the attendees fell to was
presentation of spontaneous limericks celebrating math and Richard.

Richard, and his wife Louise, were both staunch pacifists and proponents of nuclear
disarmament, and my favourite memory thereof fits here. While corresponding
with Andrew about six-letter anagrams to illustrate my and his paper exploring
the exceptional S5 subgroup of S6 [4], Richard was delighted to discover that the
permutation taking ANDREW to END WAR lay in the subgroup, enough so that
we used it to close the article.

Aspects of writing other than le mot juste were important to Richard too, and
some of his most memorable advice to me was on the subject of writing. When at
work on a project, his advice was to write liberally at every stage: “the easiest way
to edit is to cut things out”. He was also always mindful of the audience he was
writing for, and was careful not to making assumptions of background knowledge
that might alienate some of this audience. Hence he’d never call anything “well-
known” without the follow-up “. . . to those who well know it”.

Richard belonged to the Department of Mathematics and Statistics at the U of
C since the beginning of its existence in an autonomous university, and by my
day was certainly a fixture. Here’s a fact that echoes the central place Richard
had for me in the department: his personal library was indexed together with the
department’s general library in a single catalog, and if the book you sought was
in Richard’s collection, you could just knock on his personal door onto the library
stacks. Richard was also famed in the university as a whole: my dad enjoys telling
of being invited by Richard to a Chancellor’s Club evening soirée, where Richard
introduced him to both Robert Thirsk, Canadian astronaut and then Chancellor,
as well as Elizabeth Cannon, then President. He moved easily amongst them all
and was respected by all of them.

Richard’s abiding love for Louise kept him steady and lifted his spirits all the time
I knew him, before and after her passing in 2010. A window with Louise’s photo
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was the only constant presence on Richard’s office computer, as terminals with
computations and data files and papers were opened and closed. After 2010 he’d
bring a framed version of her photo to accompany him on big outings, like the
Calgary Tower Climb or the Alpine Club of Canada’s opening of the Louise and
Richard Guy Hut.

The story of the Hut and both Guy’s passion for mountaineering and the ACC is
well told by Chic Scott [9]. But Richard couldn’t be contained by the mountains.
The Calgary Tower Climb, up the 802 steps from ground level to the tower’s
observation deck, saw Richard’s participation every year until, amazingly, 2019
(by which point it had become the Bow Building Climb). And he walked his 3km
commute to the office well into his 90s, finishing of course by climbing the stairs
to the fourth floor.

Richard never wanted to impose on anyone, in spite of his age. Getting around
Calgary in his last years, after walking to the office became an impracticality, he
was grateful for rides from many friends but stuck it out a long time taking transit.
My parents, who held season tickets for the same nights as Richard, would give
him lifts home from Vertigo Theatre in downtown Calgary, an offer made more
palatable by having my grandfather to drop off too so they could say it was no
extra burden for Richard to come along. Richard loved the theatre and maintained
his subscription even through the 2019/20 season: he was clearly an optimist!
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Cyclic Subtraction Set Games
Silvia Heubach, Melissa A. Huggan,

Richard J. Nowakowski, Craig Tennenhouse

Problem

Richard K. Guy always pushed the boundaries of combinatorial games, particu-
larly impartial games. He established combinatorial games as a subject with his
invention of an infinite class of Taking-and-Breaking games. These are called Octal
games since the rules are described by an octal code. With Elwyn Berlekamp and
John Conway, he wrote Winning Ways, which established Partizan Combinatorial
Game Theory as an independent subject. However, Richard returned to impartial
games with a primer entitled Fair Game. With Alex Fink, he published a tanta-
lizing problem called the ‘The Number-Pad game’ (and its solution). The game is
played as follows: Initially, the score is 0. With a key-pad, as you would find on a
phone or calculator, the first player presses a number and ‘+’, after that the next
player pushes a different button in the same row or column as the last number and
then ‘+’, and so on. In this version, the number-pad does not include 0. The first
player to go over 30 loses. One can change this to subtracting from 30, wherein
the first player to go below 0 loses.

The generalization of the Sprague-Grundy theory, the major tool to solve impartial
combinatorial games, to cover this type of problem is not particularly nice, but in
special cases, like the Number-Pad game, it does reduce to ‘obvious’ bookkeeping.
We propose a similar impartial game that Richard would have liked.

The Cyclic Subtraction Game: The board has two components consisting of a
heap, say of size n, and the repeating sequence (1, 2, 3, 1, 2, 3, . . .). In general, the
next player takes away whatever number is at the beginning of the sequence from
the heap and then deletes the first term of the sequence. The first player who
cannot move loses.

For example, with heap size 8 the game would be

8, (1, 2, 3 . . .)→ 7, (2, 3, 1, . . .)→ 5, (3, 1, 2, . . .)→ 2, (1, 2, 3 . . .)→ 1, (2, 3, 1 . . .)

whereupon the game stops because there is only one token in the heap but the
next player must remove two tokens.

This is a boring game since the play is fixed once the sequence and heap size are
given, so let’s make it more exciting. We will use the convention of calling the
players Richard and Louise (like Richard and his wife).

The Cyclic Subtraction Game Version 2: Louise is allowed to select the heap size
or the starting number in the sequence. Richard then chooses the other. Louise
then starts the game. Can Louise win? Can she win if the first player who cannot
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move is the winner? To make the game non-trivial, the heap size must be at least
six.

The Multi-heap Cyclic Subtraction Game: Suppose the original game is played
with two (or more) heaps where a player gets to choose in which heap to play. Who
wins? We do not have an answer. We leave that to any enterprising gamester.

Solution

The solution to Version 2 of the Cyclic Subtraction game requires the analysis
of the original boring game. Impartial games have just two types of positions.
A Next player winning position, i.e., one in which the next player has a winning
move, is represented by N . A position in which the player to move is bound to
lose is represented by P, short for Previous player win. We lay out the situation in
a 3×n table, where the columns give the heap size and the first, second and third
row, respectively, indicate that the first term in the sequence is 1, 2, or 3. Let (r, n)
denote the position in row r and heap size n, respectively. In this game, a player
has exactly one choice of position to move to. The heap size will be decreased by
r, and the row value will change to the next term in the sequence. The rules to
generate the table recursively are:

• The entry for (1, n) is P if (2, n− 1) exists and is N , else it is N ;

• The entry for (2, n) is P if (3, n− 2) exists and is N , else it is N ;

• The entry for (3, n) is P if (1, n− 3) exists and is N , else it is N .

If the position referenced does not exist, that means there is no move, so the player
loses.

Table 2: Outcomes for the Cyclic Subtraction Game
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 P N N P P P N P P N N N P N N
2 P P N N N P N N P P P N P P N
3 P P P N P P N N N P N N P P P

The columns for heaps of size 12, 13, and 14 are the same as those for sizes 0, 1,
and 2. Since the rules only look back at most 3 columns, the columns now repeat
forever. We need to only look at the first 12 columns and work modulo 12 for the
heap size.

If Louise chooses a starting number, then Richard can always find a heap size
where the entry is P. Louise has to move and loses. For example, if she says 2
then Richard can give a heap size that is 0, 1, 5, 8, 9, or 10 modulo 12. However,
if Louise chooses the heap size to be 6 and 11 modulo 12, then whatever Richard
chooses as the start of the sequence, the position is a next player win and Louise,
as the next player, wins.

Note that if they were playing first-player-who-cannot-move wins, then Louise can
still win by choosing heap sizes 0 or 5 modulo 12.
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by December 15, 2020.

4571. Proposed by Ed Barbeau. Dedicated in memoriam to Richard K. Guy.

What is the smallest square integer expressible as the product of three distinct
nonzero integers in arithmetic progression?

4572. Proposed by Veselin Jungić. Dedicated in memoriam to Richard K. Guy.

D

E

G

A

B

C

F

In 1961, Canadian mathematicians Leo and
William Moser introduced a geometric object con-
sisting of seven vertices and eleven line segments
of the unit length. This object is now known as
the Moser spindle: see p. 390-396 of this issue for
more details.

In the Moser spindle, find the measure of the angle
∠GAF .

4573. Proposed by J. Chris Fisher.

For any triangle ABC let γ be the circle through A and B that surrounds the
incircle α and is tangent to it, while β is a circle inside the triangle that is tangent
to the sides AC and BC. Then β is externally tangent to γ if and only if it is
also tangent to the line parallel to (but not equal to) AB that is tangent to the
incircle.

This result was conjectured following the solution of Honsberger problem H4 [2018:
143-144], which related H4 to Problem 2.6.4 in H. Fukagawa and D. Pedoe, Japanese
Temple Geometry Problems: San Gaku, The Charles Babbage Research Centre
(1989) page 37.

4574. Proposed by George Apostolopoulos.

Let x1, . . . , xn be positive real numbers with xi < 64 such that
∑n
i=1 xi = 16n.

Prove that
n∑
i=1

1

8−√xi
≥ n

4
.
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4575. Proposed by Nguyen Viet Hung.

Determine the coefficient of x in the following polynomialÇ
1 +

Ç
n

0

å
x

åÇ
1 +

Ç
n

1

å
x

å2Ç
1 +

Ç
n

2

å
x

å3

· · ·
Ç

1 +

Ç
n

n

å
x

ån+1

.

4576. Proposed by Dao Thanh Oai and Leonard Giugiuc.

Let ABDE, BCFG and ACHI be three similar rectangles as given in the figure.
Suppose AB

AE is constant and let O be the center of ACHI. Show that OD = OG
and ∠GOD is constant when A and C are fixed but B can move.

4577. Proposed by Nikolai Osipov.

For any integer k, solve the equation

xy2 + (kx2 + 1)y + x4 + 1 = 0

in integers x, y.

4578. Proposed by Ed Barbeau. Dedicated in memoriam to Richard K. Guy.

Suppose that {a, b, c} and {u, v, w} are two distinct sets of three integers for which
a + b + c = u + v + w and a2 + b2 + c2 = u2 + v2 + w2. What is the minimum
possible value assumed by |abc− uvw|?

4579. Proposed by George Stoica.

Let a, b, c ∈ Z∗ such that
ab

c
+
bc

a
+
ca

b
∈ Z. Prove that

ab

c
,
bc

a
,
ca

b
∈ Z.
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4580. Proposed by Alpaslan Ceran.

In an isosceles triangle ABC with AB = AC = 1, find the length of BC which
maximizes the inradius.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposś dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 décembre 2020.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

4571. Proposeé par Ed Barbeau. En mémoire - Richard K. Guy.

Quel est le plus petit entier carré pouvant être écrit comme le produit de trois
entiers non nuls en progression arithmétique?

4572. Proposeé par Veselin Jungić. En mémoire - Richard K. Guy.

D

E

G

A

B

C

F

En 1961, les mathématiciens Canadiens Leo et
William Moser ont proposé l’étude d’un ob-
jet géométrique ayant sept sommets et onze
arêtes de longueur un. Cet objet est main-
tenant connu sous le nom fuseau de Moser (p.
390-396).

Déterminer la mesure de l’angle ∠GAF dans le
fuseau de Moser indiqué.

Copyright © Canadian Mathematical Society, 2020

https://publications.cms.math.ca/cruxbox/


418/ Problems

4573. Proposeé par J. Chris Fisher.

Pour un triangle ABC, soit γ le cercle qui passe par A et B, puis qui entoure le
cercle inscrit α en lui étant tangent. Soit aussi β un cercle quelconque à l’intérieur
du triangle et tangent aux côtés AC et BC. Alors β est tangent à γ à son extérieur
si et seulement si β est tangent à la ligne, distincte de AB, qui est parallèle à AB
et tangente au cercle inscrit.

Cette conjecture fait suite à la solution au probléme H4 de Honsberger [2018: 143-
144], faisant le lien entre H4 et le probléme 2.6.4 dans H. Fukagawa et D. Pedoe,
Japanese Temple Geometry Problems. San Gaku, The Charles Babbage Research
Centre (1989) page 37.

4574. Proposeé par George Apostolopoulos.

Soient x1, . . . , xn des nombres réels positifs tels que xi < 64 et
∑n
i=1 xi = 16n.

Démontrer que
n∑
i=1

1

8−√xi
≥ n

4
.

4575. Proposeé par Nguyen Viet Hung.

Déterminer le coefficient de x dans le polynômeÇ
1 +

Ç
n

0

å
x

åÇ
1 +

Ç
n

1

å
x

å2Ç
1 +

Ç
n

2

å
x

å3

· · ·
Ç

1 +

Ç
n

n

å
x

ån+1

.

4576. Proposeé par Dao Thanh Oai et Leonard Giugiuc.

SoientABDE, BCFG etACHI trois rectangles similaires, tels qu’illustrés. Fixons
le ratio AB

AE et considérons O, le centre de ACHI. Démontrer que OD = OG et
que ∠GOD est constant lorsque A et C sont fixes et que B est libre de bouger.
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4577. Proposeé par Nikolai Osipov.

Soit k un entier quelconque. Déterminer les solutions entières x, y à l’équation

xy2 + (kx2 + 1)y + x4 + 1 = 0.

4578. Proposeé par Ed Barbeau. En mémoire - Richard K. Guy.

Soeint {a, b, c} et {u, v, w} deux ensembles distincts, chacun consistant de trois
entiers, respectant a+ b+ c = u+v+w et a2 + b2 + c2 = u2 +v2 +w2. Déterminer
la valeur minimale de |abc− uvw|.

4579. Proposeé par George Stoica.

Soient a, b, c ∈ Z∗ tels que
ab

c
+
bc

a
+
ca

b
∈ Z. Démontrer que

ab

c
,
bc

a
,
ca

b
∈ Z.

4580. Proposeé par Alpaslan Ceran.

Pour un triangle isocèle ABC tel que AB = AC = 1, déterminer la longueur de
BC qui maximise le rayon du cercle inscrit.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2020: 46(3), p. 123–128.

4521. Proposed by Robert Frontczak.

Let m ∈ N, define the sequence an(n ≥ 0) by a0 = m, a1 = a2 = · · · = am = 1
and an =

√
an−m−1 · an−m for n ≥ m+ 1. Determine limn→∞ an.

We received 8 submissions of which 3 were correct and complete. A common error
was to miscalculate the pattern of the sequence and arrive at an incorrect limit.
We present the solution of Walther Janous, slightly modified.

For n ≥ 0 define zn = logm an (note that an > 0 for all n, so this is well-defined);
that is, an = mzn . We get the linear recursion z0 = 1, z1 = · · · = zm = 0 and
zn = 1

2 (zn−m+zn−m−1) for n ≥ m+1. This recurrence relation has characteristic
polynomial p(x) = xm+1− 1

2x− 1
2 , which factors as (x−1)(xm+xm−1+· · ·+x+ 1

2 ).
Clearly x = 1 is a solution of p(x) = 0.

We will show that all the roots of p(x) which are different from 1 lie in the interior
of the unit disk, and the equation p(x) = 0 has no multiple solutions.

If λ is any root of p(x) then it satisfies 2λm+1 = λ+ 1, so

2|λ|m+1 = |λ+ 1| ≤ |λ|+ 1. (1)

If |λ| > 1 then |λ| + 1 < |λ|m+1 + 1, which combined with the above inequality
gives us 2|λ|m+1 < |λ|m+1 + 1, that is, |λ|m+1 < 1, a contradiction. On the other
hand, if |λ| = 1 then (1) implies that |λ + 1| = |λ| + 1, which can only happen
when λ = 1. Therefore, for λ 6= 1 we must have |λ| < 1.

Now suppose λ is a multiple root of p(x). Then it is also a root of p′(x), that is,
it satisfies (m+ 1)λm− 1

2 = 0. Substituting for λm in p(λ) = 0 we would then get

λ · 1
2(m+1) − λ

2 − 1
2 = 0, which would give λ = −m+1

m . However, this λ is outside

the unit disk and hence cannot be a solution to p(x) = 0.

Let λ0, . . . , λm be the roots of p(x), with λ0 = 1. Since these roots are all distinct,
the recurrence relation given by zn has solution

zn = α0 + α1λ
n
1 + · · ·+ αmλ

n
m for n ≥ 0,

where the coefficients αk are determined by the initial values of the sequence. Note
that |λk| < 1 for k 6= 0 implies that lim

n→∞
zn = α0, so in order to calculate the

desired limit it suffices to calculate α0.
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The values αk are the solutions to the following system of equations, obtained
from z0 = 1, z1 = · · · = zm = 0,

α0+ α1+ · · ·+ αm = 1
α0+ α1λ1+ · · ·+ αmλm = 0
α0+ α1λ

2
1+ · · ·+ αmλ

2
m = 0

...
α0+ α1λ

m
1 + · · ·+ αmλ

m
m = 0.

We use Cramer’s Rule to calculate

α0 =

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
0 λ1 . . . λm
...

...
...

...
0 λm1 . . . λmm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1
1 λ1 . . . λm
...

...
...

...
1 λm1 . . . λmm

∣∣∣∣∣∣∣∣∣
The denominator is a Vandermonde determinant and thus equals∏

0≤k<j≤m

(λj − λk).

Expanding the determinant in the numerator down the first column we get another
Vandermonde determinant, namely∣∣∣∣∣∣∣
λ1 . . . λm

...
...

...
λm1 . . . λmm

∣∣∣∣∣∣∣ = λ1 . . . λm

∣∣∣∣∣∣∣
1 . . . 1
...

...
...

λm−11 . . . λm−1m

∣∣∣∣∣∣∣ = λ1 . . . λm
∏

1≤k<j≤m

(λj−λk).

Therefore

α0 =
λ1 . . . λm
m∏
k=1

(λk − λ0)
.

Recall λ0 = 1 and λ1, . . . , λm are the roots of q(x) = xm + xm−1 + · · · + x + 1
2 .

Hence

λ1 · . . . · λm =
(−1)m

2
,

m∏
k=1

(λk − 1) = (−1)mq(1) = (−1)m(m+
1

2
),

and we get α0 = 1
2m+1 . Therefore lim

n→∞
zn = 1

2m+1 and lim
n→∞

an = m
1

2m+1 .
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4522. Proposed by Miguel Ochoa Sanchez, Leonard Giugiuc and Kadir Altintas.

Let ABC be an acute triangle with orthocenter H and circumcenter O. Denote
Area(AHO)=x, Area(BHO)=y and Area(CHO)=z. Prove that

2(x2y2 + y2z2 + z2x2) = x4 + y4 + z4.

We received 24 submissions, all correct, and feature a composite of the solutions
submitted independently by Ivko Dimitrić and by the UCLan Cyprus Problem Solv-
ing Group.

We shall prove a result that has the given problem as a very special case:

Let ` be an arbitrary line containing the centroid G of an arbitrary triangle ABC,
and choose any two points O′ and H ′ on `. Set [AH ′O′] = x, [BH ′O′] = y, and
[CH ′O′] = z. Prove that

2(x2y2 + y2z2 + z2x2) = x4 + y4 + z4.

In the original formulation (with O′ = O and H ′ = H), the line OH through the
circumcenter and the orthocenter is the Euler line of a triangle, which contains
the centroid G.

We begin by recalling the familiar identity,

2(x2y2+y2z2+z2x2)−(x4+y4+z4) = (x+y+z)(−x+y+z)(x−y+z)(x+y−z).
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In detail:

2(x2y2 + y2z2 + z2x2) = x4 + y4 + z4

⇐⇒ (x2 + y2 − z2)2 − 4x2y2 = 0

⇐⇒ (x2 + y2 − z2 − 2xy)(x2 + y2 − z2 + 2xy) = 0

⇐⇒ ((x− y)2 − z2)((x+ y)2 − z2) = 0

⇐⇒ (x− y − z)(x− y + z)(x+ y − z)(x+ y + z) = 0.

So it is enough to show that the sum of two of the areas is equal to the other. And
since AO′H ′, BO′H ′, CO′H ′ have O′H ′ as a common side, the proof comes down
to showing that the distance from ` = O′H ′ to one of the vertices is equal to the
sum of its distances to the other two vertices. Note first that because G is in the
interior of the triangle, ` intersects two of its sides (or all three if it passes through
a vertex). As in the figure, we assume that ` meets the sides through A, and we let
M be the midpoint of BC and A′, B′, C ′,M ′ be the projections of A,B,C,M on
`. The right triangles AA′G and MM ′G are similar, and we know that AG

GM = 2;

therefore AA′

MM ′ = 2. But MM ′ is the midline of the trapezoid B′BCC ′, whence
2MM ′ = BB′ + CC ′, and we conclude that AA′ = BB′ + CC ′, which completes
the proof.

Editor’s comments. The result concerning lines through centroid G (used in the
featured solution) is certainly familiar to those of us who teach calculus. Dimitrić
observes that because G is the center of gravity of the vertices of a triangle, any
triangle, considered as three point masses, would balance with G on the x-axis,
which implies that the y-coordinates of the vertices would sum to zero.

4523?. Proposed by Leonard Giugiuc.

Let n be a natural number such that n ≥ 2. Further, let {a1, a2, . . . , an} ⊂ [0, 1]
and {b1, b2, . . . , bn} ⊂ [1,∞) such that

n∑
k=1

ak +
n∑
k=1

bk = n+ 1.

Prove that
1

n
(n2 + 1) ≤

n∑
k=1

a2k +
n∑
k=1

b2k ≤ n+ 3.

We received 9 correct solutions. One submission proved only one inequality and
two others were incorrect. The most efficient solutions were essentially as follows.

Let u =
∑n
k=1 ak and v =

∑n
k=1 bk. By either the Root-Mean-Square and Arith-

metic Mean or Cauchy-Schwarz inequality, we have that

n∑
k=1

a2k ≥
u2

n
=

(n+ 1− v)2

n
and

n∑
k=1

b2k ≥
v2

n
.
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Therefore

n∑
k=1

a2k +
n∑
k=1

b2k ≥
1

n
[(n+ 1)2 − 2v(n+ 1) + 2v2]

=
n2 + 1

n
+

2

n
[n− v(n+ 1) + v2]

=
n2 + 1

n
+

2

n
[(v − n)(v − 1)].

Since v ≥ n ≥ 1, the sum of the squares is not less than (n2 + 1)/n and equality
occurs when all the ak are equal, all the bk are equal, v = n and u = 1. Thus, we
obtain the left inequality with equality if and only if ak = 1/n and bk = 1 for each
k.

For each k, let bk = ck + 1. Then 0 ≤ ak, ck ≤ 1 a2k ≤ ak, c2k ≤ ck and

n∑
k=1

ak +
n∑
k=1

ck = 1.

Then

n∑
k=1

a2k +
n∑
k=1

b2k =
n∑
k=1

a2k +
n∑
k=1

(ck + 1)2

=
n∑
k=1

a2k +
n∑
k=1

c2k + 2
n∑
k=1

ck + n

≤
n∑
k=1

ak +
n∑
k=1

ck + 2
n∑
k=1

ck + n

= n+ 1 + 2
n∑
k=1

ck ≤ n+ 3.

Equality occurs if and only if
∑n
k=1 ck = 1 and each of ak and ck is either 0 or

1. In this case, all variables vanish except for one ck equal to 1. For example, we
have equality when a1 = · · · = an = 0; b1 = · · · = bn−1 = 1; bn = 2.

4524. Proposed by Lorian Saceanu.

Let x, y, z be non-negative real numbers at most one of which is zero. Prove that
if

x2 + y2 + z2 = 2(xy + yz + xz),

then

5 ≤ (x+ y + z)

Ñ∑
cyclic

1

y + z

é
≤ 27

5

and determine when equality holds for either bound.
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We received 21 submissions, all correct. We present the solution by Oliver Geupel.

Due to the homogeneity, we may assume that x+ y + z = 1. Then:

xy + yz + zx =
x2 + y2 + z2 + 2(xy + yz + zx)

4
=

(x+ y + z)2

4
=

1

4
, (1)

and

x2 + y2 + z2 = (x+ y + z)2 − 2(xy + yz + zx) = 1− 1

2
=

1

2
. (2)

From (1) and (2), we get

(x+ y + z)

Ñ∑
cyclic

1

y + z

é
=

(x+ y)(x+ z) + (y + z)(y + x) + (z + x)(z + y)

(x+ y)(y + z)(z + x)

=
x2 + y2 + z2 + 3(xy + yz + zx)

(x+ y + z)(xy + yz + zx)− xyz

=
1
2 + 3

(
1
4

)
1
4 − xyz

=
5
4

1
4 − xyz

≥ 5 (3)

with equality holding if and only if xyz = 0. Hence by the given constraint, exactly
one of x, y, z is zero.

To prove the upper bound, consider the polynomial

f(t) = (t− x)(t− y)(t− z) = t3 − t2 +
1

4
t− xyz,

which has three real zeros and a local maximum at t = 1/6. Since

f

Å
1

6

ã
=

Å
1

6

ã3
−
Å

1

6

ã2
+

1

24
− xyz =

1

54
− xyz,

we have

0 ≤ f
Å

1

6

ã
=

1

54
− xyz,

which together with (3) then yields

(x+ y + z)

Ñ∑
cyclic

1

y + z

é
=

5/4

1/4− xyz ≤
5/4

1/4− 1/54
=

27

5
.

Finally, the equality holds if and only if the local maximum at t = 1/6 is 0; that
is, if two of the roots are equal to 1/6 and the third one is 2/3.

Dropping our initial hypothesis x+ y + z = 1, we then conclude that the equality
holds if and only if two of the numbers x, y, z are equal while the third one is four
times the others.
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4525. Proposed by Julio Orihuela and Leonard Giugiuc.

Let H be the foot of the altitude from vertex A to side BC of the acute triangle
ABC; let the circle with center B and radius BH meet the perpendicular from
H to AB again at M , and the circle with center C and radius CH meet the
perpendicular from H to AC again at N . Moreover, let the line MN meet the
first circle again at L and the second circle again at Q, and finally, let Y be the
point where HL intersects AB and Z the point where HQ intersects AC. Prove
that AYHZ is a parallelogram and ∠MHL = ∠QHN .

We received 21 submissions, all of which were correct, and we feature the solution
by Theo Koupelis.

By construction, AH is the common tangent to the circles (B,BH) and (C,CH).
By symmetry about the lines AB and AC, AM and AN are also tangents to the
circles (B,BH) and (C,CH), respectively; thus

AM = AH = AN.

From tangency, ∠MHL = ∠AMN, and ∠QHN = ∠MNA. But triangle AMN
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is isosceles, and therefore ∠AMN = ∠MNA, and thus ∠MHL = ∠QHN, as
desired.

Let G,K be the points where MN meets the sides AB,AC, respectively. Again
by symmetry about the lines AB and AC,

∠GHA = ∠AMG = ∠AMN = ∠MNA = ∠KNA = ∠AHK.

As a consequence, M,A,K,H and N,A,G,H are concyclic point sets, and there-
fore,

∠KAH = ∠KMH and ∠HAG = ∠HNG.

However, from tangency we have

∠KMH = ∠LMH = ∠LHA and ∠HNG = ∠HNQ = ∠AHQ.

Therefore ∠KAH = ∠LHA, (which makes AZ||Y H) and ∠HAG = ∠AHQ,
(which makes AY ||HZ), and thus AYHZ is a parallelogram.

Editor’s comment. There is no need to require the given triangle ABC to be acute.
The featured solution remains valid for an arbitrary triangle ABC if directed angles
are used. For those readers familiar with properties of the orthic triangle (whose
vertices are the feet of the altitudes of ∆ABC), it is easy to show that GHK is the
orthic triangle of the given triangle ABC (where G and H are the points where
the given line MN meets the sides AB and AC, as in the featured solution).

4526. Proposed by Michel Bataille.

Let ABC be a scalene, not right-angled triangle with orthocenterH and letD,E, F
be the midpoints of BC,CA,AB, respectively. Points U, V,W , respectively on the
lines BC,CA,AB, are such that AU,BV,CW are perpendicular to HD,HE,HF
(respectively). Prove that U, V,W are collinear.

We received 16 solutions, all correct, and we feature three of them.

Solution 1, by Titu Zvonaru.

Let A′ be the foot of the altitude from A, P be the foot of the perpendicular
from D to AU , and set x = UB. We shall use directed distances along the sides
of ∆ABC, taking x to be positive when B lies between U and C. We shall use
familiar formulas for parts of a triangle, namely

AH = 2R cosA, BH = 2R cosB, BA′ = c cosB,

BD =
a

2
, and AD2 =

1

4
(2b2 + 2c2 − a2).
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Because right triangles UHP and UDP share the base UP , while right triangles
PHA and PDA share the base PA, we have

UD2 −DP 2 = UH2 −HP 2 and AD2 −DP 2 = AH2 −HP 2.

Subtracting these equations we obtain

UD2 −AD2 = UH2 −AH2

= (UA′2 +HA′2)−AH2 = (x+BA′)2 + (BH2 −BA′2)−AH2.

It follows that(
x+

a

2

)2
− 2b2 + 2c2 − a2

4
= (x+ c cosB)2 + 4R2 cos2B− c2 cos2B− 4R2 cos2A,

or

ax− 2cx cosB =
1

2
(b2 + c2 − a2) + 4R2(cos2B − cos2A). (1)

The cosine law combined with the sine law says that

1

2
(b2 + c2 − a2) = bc cosA = 4R2 sinB sinC cosA

which, together with other familiar formulas turns equation (1) into successively,

(sinA− 2 sinC cosB)x = 2R(cosA(sinB sinC − cosA) + cos2B)

(sin(B + C)− 2 sinC cosB)x = 2R(cosA(sinB sinC + cos(B + C)) + cos2B)

(sinB cosC − sinC cosB)x = 2R cosA(cosB cosC + cos2B)

(sin(B − C))x = 2R cosB(cosA cosC − cos(A+ C)) = 2R sinA cosB sinC.

We have, finally,

UB = x =
2R sinA cosB sinC

sin(B − C)
, and

UC = x+ a =
2R sinA cosB sinC

sin(B − C)
+ 2R sinA =

2R sinA sinB cosC

sin(B − C)
;

hence,
UB

UC
=

tanC

tanB
.

Similarly, V C
V A = tanA

tanC and WA
WB = tanB

tanA . The product of these three fractions
equals 1, so that by the converse of Menelaus’ theorem, U, V,W are collinear.

Solution 2 is a joint solution by Corneliu Manescu-Avram and Zlota Nicusor.

Choose a cartesian system of coordinates with H as origin and A on the y-axis.
We can take, without loss of generality, B and C on the line y = −1. Then we
have B(2b,−1) and C(2c,−1), say with b < c, while

AB : y + 1 = 2c(x− 2b) and AC : y + 1 = 2b(x− 2c).
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It follows that
A(0,−4bc− 1),

so that
D(b+ c,−1), E(c,−2bc− 1), and F (b,−2bc− 1).

We deduce that

AU : y + 4bc+ 1 = (b+ c)x, BV : (2bc+ 1)(y + 1) = c(x− 2b),

CW : (2bc+ 1)(y + 1) = b(x− 2c);

therefore

U

Å
4bc

b+ c
,−1

ã
, V

Å
2bc(4bc+ 1)

4b2c+ 2b− c ,
(c− 2b)(4bc+ 1)

4b2c+ 2b− c

ã
,

W

Å
2bc(4bc+ 1)

4bc2 + 2c− b ,
(b− 2c)(4bc+ 1)

4bc2 + 2c− b

ã
.

Points U, V,W are collinear if and only if∣∣∣∣∣∣
xU yU 1
xV yV 1
xW yW 1

∣∣∣∣∣∣ = 0.

Eliminating the denominators, we must verify that∣∣∣∣∣∣
4bc −(b+ c) b+ c

2bc(4bc+ 1) (c− 2b)(4bc+ 1) 4b2c+ 2b− c
2bc(4bc+ 1) (b− 2c)(4bc+ 1) 4bc2 + 2c− b

∣∣∣∣∣∣ = 0.

But it is clear that the sum of the last two rows equals 4bc+ 1 times the first row,
which completes the proof.

Solution 3 is a composite of the solutions by Jiahao Chen and by J. Chris Fisher.

As in the figure, let A′ be the foot of the altitude to BC, P be the point where HD
intersects AU , and define X to be one end of the diameter AX of the circumcircle.
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Because both BX and CH are perpendicular to AB, the lines are parallel. Simi-
larly BH||CX, whence quadrilateral BXCH is a parallelogram. This implies that
the midpoint D of the diagonal BC lies on the other diagonal HX so that X is
on the line containing H,D, and P . Because ∠XPA = 90◦, P must lie on the
circumcircle; consequently, the power of U with respect to the circumcircle satisfies

UA · UP = UC · UB. (2)

But the right triangles AUA′ and DUP are similar, whence

UA · UP = UD · UA′. (3)

Because the nine-point circle of ∆ABC contains the points A′ and D, this last
equation says that UA · UP is also the power of U with respect to the nine-point
circle. Equations (2) and (3) together, therefore, imply that U lies on the radical
axis of the two circles. Similarly, V and W also must lie on this radical axis; that
is, U, V,W are collinear as claimed.

Related consequences. It is easily seen that U lies also on B′C ′, V on C ′A′ and W
on A′B′, where A′, B′, C ′ are the feet of the altitudes to the lines BC,CA,AB,
respectively. For example, U is the radical center of the circumcircle, nine-point cir-
cle, and the circle whose diameter is AH (because the last circle contains the points
P,C ′, and B′). This observation leads to an alternative proof of the collinearity
of U, V,W : Since the triangles ABC and A′B′C ′ are perspective from the point
H, the intersections of corresponding sides of the triangles, namely

U = BC ∩B′C ′, V = CA ∩ C ′A′, W = AB ∩A′B′,

are collinear on the Desargues line. This line is sometimes called the orthic axis of
triangle ABC (because A′B′C ′ is the orthic triangle). Note, further, that also the
triangles DEF and XY Z are perspective from H (where X,Y, Z are points where
HD,HE,HF , respectively, meet the circumcircle), so that their corresponding
sides meet in collinear points

EF ∩ Y Z, FD ∩ ZX DE ∩XY.

Moreover, by using circles such as EFY Z it is easily seen that also these three
points lie on the line UVW .

Editor’s comments. The radical axis of two circles is always perpendicular to the
line joining the centers; here the radical axis of the circumcircle and nine-point
circle is perpendicular to the Euler line (which is the line joining the circumcenter
O to the nine-point center N , and which also contains the orthocenter H). Several
readers commented that care should be taken when interpreting this result given
an isosceles triangle ABC. The Euler line would then contain a vertex. So, for
example, should AB = AC, the Euler line would be AD; in this case the radical
axis VW would be the line through A parallel to BC, and U would be the point
at infinity common to those two lines. Should ∆ABC be equilateral, then the
circumcircle and nine-point circle would be concentric so that technically, there
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would be no radical axis: the points U, V,W would be collinear on the line at
infinity. The problem’s restriction to nonright triangles is superfluous: for example,
with a right angle at A, both V and W would coincide with A, and the radical
axis would be the common tangent to the circumcircle and nine-point circle at A
with U the point where that tangent intersects BC (possibly at infinity).

4527. Proposed by George Stoica.

Let n ≥ 4 be a positive integer. Prove that the roots of the polynomial a0 +a1x+
· · · + anx

n, whose coefficients satisfy |an−2|, |an−1| ≤ |an| ≤ |a0|, cannot be all
real.

We received eight correct solutions and one incorrect solution. The successful
solutions were variants of the following.

Suppose a polynomial of arbitrary degree n has its roots r1, . . . , rn all real and
satisfies the stated conditions on the coefficients. Then

1 ≤
Å |a0|
|an|

ã2/n
= (r21r

2
2 · · · r2n)

1
n ≤ 1

n
(r21 + r22 + · · ·+ r2n)

=
1

n

(r1 + r2 + · · ·+ rn)2 − 2

Ñ ∑
1≤i<j≤n

rirj

é =
1

n

ñÅ
an−1
an

ã2
− 2an−2

an

ô
≤ 1

n

ñÅ |an−1|
|an|

ã2
+

2|an−2|
|an|

ô
≤ 3

n
,

whereupon n ≤ 3. Thus, the polynomial cannot have degree exceeding 3 and
satisfy the other conditions.

However, the polynomials x2 − x− 1 and x3 + x2 − x− 1 show that the situation
is possible for degrees 2 and 3.

4528. Proposed by Leonard Giugiuc.

Let ABCD be a rectangle situated in a plane P. Find

min
M∈P

Å
MA+MC

MB +MD

ã
.

We received 11 solutions, 9 of which were correct. We present the solution by
UCLan Cyprus Problem Solving Group.

Suppose that the rectangle has dimensions AB = CD = a and AD = BC = b.

By Ptolemy’s inequality we have

(AC)(MB) 6 (MC)(AB) + (MA)(BC) = a(MC) + b(MA)

and
(AC)(MD) 6 (MC)(AD) + (MA)(DC) = b(MC) + c(MA) .
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Therefore (AC)(MB +MD) 6 (a+ b)(MA+MC). Thus,

MA+MC

MB +MD
>

AC

a+ b
=

√
a2 + b2

a+ b
.

Equality can occur if M = A or M = C.

Note: In fact, the above are the only cases of equality. Let ω be the circumcircle
of ABCD. In the first application of Ptolemy’s inequality, equality occurs if and
only if M belongs on the arc AC of ω which contains D. In the second application
equality occurs if and only if M belongs on the arc AC of ω which contains B. So
equality occurs in both cases if and only if M = A or M = C.

4529. Proposed by George Apostolopoulos.

Let a, b, c be the side-lengths of a triangle. Prove that

2a+ b

a+ c
+

2b+ c

b+ a
+

2c+ a

c+ b
≥ 9

2
.

We received 36 submissions, all correct. We present an amalgamation of similar
solutions by Michel Bataille and Gayen Subhankar, modified slightly by the editor.

Note first that the equality below can be checked readily:

(a+ c)(2a+ b) + (b+ a)(2b+ c) + (c+ b)(2c+ a) = 2(a+ b+ c)2.

Let L denote the left-hand side of the given inequality. Furthermore, let

x1 = 2a+ b, x2 = 2b+ c, x3 = 2c+ a,

y1 = (a+ c)(2a+ b), y1 = (b+ a)(2b+ c), y1 = (c+ b)(2c+ a).

Then

x1 + x2 + x3 = 3(a+ b+ c) and y1 + y2 + y3 = 2(a+ b+ c)2.

Since
x21
y1

=
2a+ b

a+ c
,
x22
y2

=
2b+ c

b+ a
and

x23
y3

=
2c+ a

c+ b
,

we have by Titu’s Lemma, which is a special case of Cauchy-Schwarz Inequality,
that

L =
(2a+ b)2

(a+ c)(2a+ b)
+

(2b+ c)2

(b+ a)(2b+ c)
+

(2c+ a)2

(c+ b)(2c+ a)

=
x21
y1

+
x22
y2

+
x23
y3
≥ (x1 + x2 + x3)2

y1 + y2 + y3

=
9(a+ b+ c)2

2(a+ b+ c)2
=

9

2
,
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completing the proof.

Editor’s note. Bataille pointed out that the inequality actually holds for all positive
numbers a, b and c.

4530. Proposed by Arsalan Wares.

Let A be a square with vertices Ak, k = 1, 2, 3, 4. On each side of A, mark 2
points which divide the side into 3 equal parts. These 8 points and the vertices of
A are connected to one another, dividing A into 16 disjoint regions, as shown in
the figure. Determine the ratio of the area of the shaded regions to the area of A.

We received 33 submissions, out of which 28 were correct and complete. We present
the solution by Joel Schlosberg.

The square A can be dissected into 60 mutually congruent triangles, with the
shaded regions being made up of 14 of them, so the ratio of their total area to
that of A is 7/30.
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