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MATHEMATTIC
No. 29

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by January 30, 2022.

MA141. Proposed by Ed Barbeau.

Determine all sets consisting of an odd number 2m + 1 of consecutive positive
integers, for some integer m ≥ 1 such that the sum of the cubes of the smallest
m+ 1 integers is equal to the sum of the cubes of the largest m integers.

MA142. The sketch shown is from the files of Leonardo da Vinci. Two
perpendicular diameters divide a circle into four parts. On each of these diameters
a circle of half the diameter is drawn, tangent to the original circle and meeting at
its centre. A radius to the large circle is drawn through the intersection points of
these smaller circles. Show that the red and blue shaded regions are of the same
area.

MA143. The integers from 1 to n are added to form the sum N and the
integers from 1 to m are added to form the sum M , where n > m + 1. If the
difference between the two sums is N −M = 2012, then determine the value of
n+m.

MA144. A game is played on a 7×7 board, initially blank. Betty Brown and
Greta Green make alternate moves, with Betty going first. In each of her moves,
Betty chooses any four blank squares which form a 2 × 2 block, and paints these
squares brown. In each of her moves, Greta chooses any blank square and paints
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it green. They take alternate turns until no more moves can be made by Betty.
Then Greta paints the remaining blank squares green. Which player, if either, can
guarantee to be able to paint 25 or more squares in her colour, regardless of how
her opponent plays?

MA145. Determine all integers n for which n3−3n+ 2 is divisible by 2n+ 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 janvier 2022.

MA141. Proposé par Ed Barbeau.

Déterminer tous les ensembles comprenant un nombre impair 2m + 1 d’entiers
positifs consécutifs, où m est un entier, m ≥ 1, sachant qu’en plus la somme des
cubes des m+ 1 plus petits éléments de l’ensemble égale la somme des cubes des
m plus grands éléments.

MA142. Le schéma suivant s’inspire de l’œuvre de Léonard de Vinci. Deux
diamètres perpendiculaires divise un cercle en 4 parties égales. Sur chacun de ces
diamètres on trace un cercle, tangent au cercle original, ces deux petits cercles se
rencontrant au centre du cercle original. Un rayon du grand cercle passe par les
points d’intersection des petits cercles. Démontrer que les régions en bleu et en
rouge ont la même surface.
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MA143. Pour n > m + 1, les entiers de 1 à n sont additionnés et donnent
N , tandis que les entiers de 1 à m sont additionnés et donnent M . Si la différence
entre ces sommes donne N −M = 2012, déterminer la valeur de n+m.

MA144. Au départ, les cases d’un échiquier de taille 7×7 sont en blanc. Par
la suite, Bernadette Brun et Véronique Vert alternent à colorer certains carrés,
Bernadette pour commencer. À chacun de ses coups, Bernadette choisit quatre
carrés blancs formant un bloc 2 × 2 et les colore brun. À chacun de ses coups,
Véronique choisit un carré blanc et le colore vert. Dès que Bernadette n’est plus
capable de jouer, Véronique colore en vert tous les carrés encore blancs. La gag-
nante est celle qui colore au moins 25 carrés de sa couleur. Est-il possible pour
une des deux joueuses de gagner, quelle que soit la stratégie de l’autre? Si c’est le
cas, quelle joueuse?

MA145. Déterminer tous les entiers n tels que n3 − 3n+ 2 est divisible par
2n+ 1.

Copyright © Canadian Mathematical Society, 2021
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2021: 47(4), p. 170–172.

MA116. Let ABCD and DEFG be two rectangles so that the point E lies
on the side AD, the point G lies on the side CD and the point F is the incenter
of 4ABC. What is the ratio of the area of ABCD and the area of DEFG?

Originally Problem 14 from Savin Contest, Kvant 2020(11-12), proposed by A.
Andreeva and M. Panov.

We received 11 submissions, 9 of which were correct and complete. We present the
solution obtained independently by two high school students Emilian Sega (Monta
Vista High School) and Vishak Srikanth (Stanford Online High School).

Let AB = a, BC = b, and AC = c. From the Pythagorean Theorem in 4ABC,
a2 + b2 = c2.

Let r be the inradius of triangle ABC. It is well-known that r =
a+ b− c

2
. We

then have:

[ABCD]

[DEFG]
=

ab

(a− r)(b− r) =
abÅ

a− a+ b− c
2

ãÅ
b− a+ b− c

2

ã
=

4ab

(c+ a− b)(c− a+ b)
(?)

Since c2 = a2 + b2, it follows that

(c+a−b)(c−a+b) = [c+(a−b)][c−(a−b)] = c2−(a−b)2 = c2−a2+2ab−b2 = 2ab .

Substituting in (?) we obtain:

[ABCD]

[DEFG]
=

4ab

2ab
= 2.

Crux Mathematicorum, Vol. 47(9), November 2021
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MA117. For which natural numbers n can the set {1, 2, . . . , n} be partitioned
into two subsets so that the sum of numbers in one subset equals to the product
of the numbers in the other subset?

Originally Problem 15 from Savin Contest, Kvant 2020(11-12), proposed by V.
Letzko.

We received 6 submissions, of which only 1 was correct and complete as the ma-
jority of the solvers forgot to consider the case n = 1. We present the solution by
the Missouri State University Problem Solving Group.

Such subsets can be found for any n 6= 2, 4. We will denote the set we take the sum
over by S and the set we take the product over by P . If n = 1, we take S = {1}
and P = {} and recall that the product over an empty index set is 1. Clearly no
solution is possible when n = 2. When n = 3, we take S = {1, 2} and P = {3}.
Exhaustive enumeration shows there is no solution for n = 4. If n = 2k + 1 with
k > 1, we take

P = {1, k, 2k}
and S to be its complement. Then∑

i∈S
i =

n(n+ 1)

2
− 1− k − 2k

= (2k + 1)(k + 1)− 3k − 1 = 2k2 = 1 · k · (2k) =
∏
i∈P

i.

If n = 2k with k > 2, we take

P = {1, k − 1, 2k}

and S to be its complement. Then∑
i∈S

i =
n(n+ 1)

2
− 1− (k − 1)− 2k

= k(2k + 1)− 3k = 2k2 − 2k = 1 · (k − 1) · (2k) =
∏
i∈P

i.

MA118. Can you colour all natural numbers using exactly 7 colours so
that the product of any two (not necessarily distinct) numbers of the same colour
results in a number of that same colour? For example, if 3 and 4 and coloured
red, then 9, 12 and 16 must also be coloured red.

Originally Problem 5 from Savin Contest, Kvant 2020(10), proposed by M. Ev-
dokimov.

We received 3 submissions, of which 2 were correct and complete. We present the
solution by the Missouri State University Problem Solving Group.

Copyright © Canadian Mathematical Society, 2021
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This can be done using k colours for any positive integer k. The case k = 1 is
trivial. For k > 1, let p1, . . . , pk−1 be distinct primes. For each i = 1, . . . , k − 1
define the set

Si =
{
pji

∣∣∣ j ≥ 1
}
.

Colour Si with the ith colour, and

T = N \
Ä
∪k−1i=1 Si

ä
with the kth colour. The Si are clearly closed under multiplication. Suppose
x, y ∈ T , but xy 6∈ T . Then xy ∈ Si for some i, which means xy = pji for some

j > 0. This forces x = p`i and y = pj−`i for some 0 ≤ ` ≤ j. One of ` or j − ` must
be non-zero, without loss of generality say ` 6= 0. Then x ∈ Si contradicting the
fact that x ∈ T . Therefore T is also closed under multiplication.

MA119. Alice and Bob are playing tic-tac-toe on an infinite grid. The
winner is declared when they place their sign over 5 squares in the shape of a plus.
If Alice goes first, can Bob always prevent her from winning?

Originally Problem 6 from Savin Contest, Kvant 2020(10), proposed by D. Ivanov.

We received 2 submissions, of which 1 was correct and complete. We present the
solution by Richard Hess.

Bob can always prevent Alice from picking 5 unit squares in the cross shape. He
does this by partitioning the infinite grid into 2×2 unit squares. When Alice picks
a unit square in one of these 2× 2 squares Bob answers by picking a vacant unit
square in the same 2× 2 square. Alice can never pick more than two unit squares
in any of Bob’s 2× 2 squares if Bob follows this strategy. Any cross shape in the
grid will have 3 unit squares in one of Bob’s 2× 2 squares; thus, Bob can prevent
Alice from winning this game.

MA120. With grid paper and pencil, it is easy to draw a right-angle triangle
with vertices on intersections of grid lines and with integer side-lengths; for exam-
ple, the so-called Egyptian triangle with side 3, 4 and 5 will do. Can you draw
a right-angle triangle with vertices on intersections of grid lines and with integer
side-lengths, but so that none of its sides follows grid lines?

Originally Problem 18 from Savin Contest, Kvant 2021(1).

Crux Mathematicorum, Vol. 47(9), November 2021
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We received 6 submissions, all correct. We present the solution by the Missouri
State University Problem Solving Group.

The answer is yes. Let (a, b, c) and (p, q, r) with aq 6= bp be Pythagorean triples,
that is a2 + b2 = c2, p2 + q2 = r2, and a, b, c, p, q, r ∈ Z+. The complex numbers
0, a, and bi form the vertices of a right triangle with integer side lengths. If we
multiply each of these by p+ qi, we will still have a right triangle with integer side
lengths, since this multiplication corresponds to a rotation followed by a dilation
by a factor of r. Performing this operation and converting to cartesian coordinates
gives the vertices

A = (0, 0), B = (ap, aq), C = (−bq, bp).

Clearly neither
−−→
AB nor

−→
AC is parallel to the coordinate axes. Since

−−→
CB = (ap+ bq, aq − bp),

and we chose p and q so that aq − bp 6= 0, this is not parallel to the coordinate
axes either.

Although the argument above shows the side lengths are integers, we will also
verify this directly:

AB = a
√
p2 + q2

= ar

AC = b
√
p2 + q2

= br

BC =
»

(ap+ bq)2 + (aq − bp)2

=
√
a2 + b2

√
p2 + r2

= cr.

For example, taking (a, b) = (3, 4) and (p, q) = (4, 3), we obtain

A = (0, 0), B = (12, 16), C = (−12, 9)

giving a right triangle with sides of length 20, 15, and 25.

Copyright © Canadian Mathematical Society, 2021
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Robo Creativity

The name of each robot consists of a string of at least two letters chosen from
C, D, E, F, P, Q, R and S. The initial letter of a robot defines its function. Let
x denote the part of the robot’s name after the initial letter. Then the following
rules apply.

• The robot Cx creates the robot x.
• The robot Px creates (or produces) the robot xx.
• The robot Dx destroys the robot x.
• The robot Qx destroys (or quashes) the robot xx.
• The robot Ex is the worst enemy of the robot x.
• The robot Rx is an enemy of (or rejects) the robot xx.
• The robot Fx is the best friend of the robot x.
• The robot Sx is a friend of (or supports) the robot xx.

1. Find a robot that creates itself.
2. Find a robot that destroys itself.
3. Find a robot that is a friend of itself.
4. Find a robot that creates its best friend.
5. Find a robot that is a friend of its worst enemy.
6. Find a robot that is the best friend of one of its enemies.
7. Find two robots which create each other.
8. Find two robots which destroy each other.
9. Find two robots such that the first creates the second and the second

destroys the first. (Find two solutions.)
10. Find two robots such that the first creates the second and the second is a

friend of the first.
11. Find two robots such that the first is the best friend of the second and the

second destroys the worst enemy of the first.
12. Find two robots such that the first creates the best friend of the second,

while the second destroys the worst enemy of the first. (Find two solutions.)

Find the answers on the last page of this issue.

By Andy Liu.

Crux Mathematicorum, Vol. 47(9), November 2021



Shawn Godin /419

PROBLEM SOLVING
VIGNETTES

No. 19

Shawn Godin

Thinking Like a Mathematician

As a student of mathematics, it is easy to get a false sense of what mathematics is.
We are taught theorems and techniques and we spend endless hours of homework
practicing, honing our skills. Even those who venture into the world of mathe-
matics competitions may be misled. In competitions, students do run into more
questions that are genuine “problems” rather than just “exercises”, but the process
is the same: read and understand the problem, come up with and execute a plan,
get an answer and check its reasonableness, then go on to the next problem. It is
easy to think that a mathematician sits in his office, with a large list of problems
to solve, and works through them one by one. However, for a mathematician, in
many cases finding the answer to a question is where the real fun begins!

Let’s consider a problem to illustrate. The following problem is from the 2020
Canadian Mathematical Gray Jay Competition (CMGC). The CMGC is a multi-
ple choice competition from the CMS for elementary school students. The first
competition was written on Thursday October 8, 2020 and the second will be
written Thursday November 18, 2021.

11. Alice types the fraction 30
37 into an online calculator and it calculates

the decimal form to thousands of decimal places. What is the sum of the
first 2020 digits after the decimal?

(A) 6060 (B) 6061 (C) 6062 (D) 6063 (E) 6064 (F) 6065

Division yields

30

37
= 0.810 810 810 8 · · · = 0.810

so the fraction is periodic with period 3. Since we are interested in the first 2020
digits after the decimal and 2020 ÷ 3 = 673 1

3 , we can deduce that the first 2020
digits will be 673 copies of 810, followed by one 8. Since 673×(8+1+0)+8 = 6065,
the answer is (F), and we can go on to #12.

At this point a mathematician may pause to ask, and try to answer, some ques-
tions. That is, they would create their own investigation based on the problem at
hand. A first question might be “what is the nature of the decimal representations
of fractions with denominator 37?” Calculating the first few, we start to see some

Copyright © Canadian Mathematical Society, 2021
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patterns:

1

37
= 0.027 027 0 · · · = 0.027

2

37
= 0.054 054 0 · · · = 0.054

3

37
= 0.081 081 0 · · · = 0.081

4

37
= 0.108 108 1 · · · = 0.108

The first few decimal representations are periodic with period 3, just like the
fraction in the problem. Taking a minute to think, we can convince ourselves that
since 1

37 is periodic, with period 3, then the other fractions will just be multiples
of it. This seems to make sense as

54 = 2× 27

81 = 3× 27

108 = 4× 27

810 = 30× 27.

That is, the repetend (the repeating part of the decimal) of the decimal represen-
tation of k

37 , with 0 < k < 37 seems to be 27k (with possibly a 0 added to the
front if 37k < 100). The place where this seems to break down is at 37

37 = 1 and
yet 27× 37 = 999. That means our pattern suggests, 37

37 = 0.999 = 0.999 999 9 . . .
so there must be something wrong . . . or is there?

Let’s examine this strange number and let x = 0.999 999 9 . . . . If we multiply by
10 and do a little algebra, we get

10x = 9.999 999 9 . . .

x = 0.999 999 9 . . .

Subtracting these two equations yields 9x = 9, or x = 1. It seems we have shown
that 0.999 999 9 · · · = 1! This turns out to be true. As such, many numbers have
two decimal representations. For example

1.999 999 9 . . . = 2,

0.499 999 9 . . . = 0.5,

3.141 499 999 9 . . . = 3.1415.

How do we deal with this? Mathematicians, being practical, would just use the
“easiest” representation of a number, but keep in mind what we discovered so that
if anything like that shows up again, we know how to handle it.

Next, a mathematician may ask themselves “what do other periodic decimals with
period 3 look like?”. Let’s start with the decimal

4

37
< 0.123 123 1 · · · < 5

37
,

Crux Mathematicorum, Vol. 47(9), November 2021
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which is not one of the fractions we have investigated. Using the idea we used
above (mathematicians love reusing ideas and techniques in new situations) when
evaluating 0.999 999 9 . . . , if we let x = 0.123 123 1 . . . , then

1000x = 123.123 123 1 . . .

x = 0.123 123 1 . . .

it follows that

0.123 123 1 · · · = 123

999

It would seem that if we have any decimal of the form 0.ABC, where A, B, and
C are digits in the three-digit repetend, then

0.ABC =
ABC

999

where ABC is a three-digit number with digits A, B, and C. I will leave the
details of this for your entertainment.

Next, we noticed that the original fractions we were considering had denominator
37, not 999. We also noticed that 27× 37 = 999, so we could write them as frac-
tions with denominator 999 since 37 is a factor of 999. We could then conjecture
that fractions whose denominator is a factor of 999 are periodic with period 3.
The factors of 999 are 1, 3, 9, 27, 37, 111, 333, 999. Looking at the decimal repre-
sentations of fractions with numerator 1 and whose denominator is a factor of 999,
we get

1

1
= 1

1

999
= 0.001

1

3
= 0.3

1

333
= 0.003

1

9
= 0.1

1

111
= 0.009

1

27
= 0.037

1

37
= 0.027

Our conjecture is false, in general, but seems to be true in many cases. If we
rewrite

1

3
= 0.3 = 0.333 333 3 · · · = 0.333

and similarly 1
9 = 0.111 we see that these two only fail because they are repeating

with a smaller period. However, these two decimal representations can be thought
of as periodic with period 3. Usually, where we talk about the period of some-
thing that is periodic we mean the smallest period. However, if we reexamine the
definition of what it means to be periodic, then something that is periodic with
period 3 is also periodic with period 6, 9, 12, . . . .

Finally, if we recall from earlier that 1 = 0.999 999 9 · · · = 0.9 = 0.999 we see that
we were actually correct, as long as we realize when we say “period 3”, it isn’t
necessarily the smallest period of the decimal representation.

Copyright © Canadian Mathematical Society, 2021
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You may have also noticed something else in the decimal representations written
above. That is, if a× b = 999 where a and b are positive integers, then

1

a
= 0.B and

1

b
= 0.A

where A is the three digit number formed by the digits of a, with possibly one or
two zeroes appended to the front to make it three digits in length (and similarly
with B and b). That is, if a = 27, then b = 37, A = 027, and B = 037.

We may think we are done with periodic decimals with period 3, but what about
things like 0.5197 and 0.29197? Clearly, these are not numbers that can be written
as a proper fraction with denominator 999. However, if we play with things we
will find

0.5197 = 0.5 + 0.0197 0.29197 = 0.29 + 0.00197

= 0.5 +
1

10
× 0.197 = 0.29 +

1

100
× 0.197

=
5

10
+

197

9990
=

29

100
+

197

99 900

=
5192

9990
=

29 168

99 900

We will find that if a decimal is periodic with period 3, where n decimals occur
after the decimal point before the first collection of repeating decimals, then the
number can be written as a fraction with denominator 999× 10n. I will leave the
exploration and verification of this to the reader.

We seem to have completely investigated numbers whose decimal representation
is periodic with period 3. Where do we go from there? The natural place would
be to describe all periodic decimals. Many of you may already know the decimal
representations that have period 1:

1

9
= 0.111 · · · = 0.1

2

9
= 0.222 · · · = 0.2

3

9
=

1

3
= 0.333 · · · = 0.3

4

9
= 0.444 · · · = 0.4

5

9
= 0.555 · · · = 0.5

6

9
=

2

3
= 0.666 · · · = 0.6

7

9
= 0.777 · · · = 0.7

8

9
= 0.888 · · · = 0.8

Recalling our earlier work we can generate some fractions that are periodic with
period 1 where the repeating decimals start later in the representation. For exam-
ple:

17

90
= 0.188 888 · · · = 0.18

851

900
= 0.945 555 · · · = 0.945

4431

9000
= 0.492 333 · · · = 0.4923

Crux Mathematicorum, Vol. 47(9), November 2021
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To investigate representations that are periodic with period 2, we will look at an
example 0.121 212 1 · · · = 0.12. Following our procedure from earlier, if we let
x represent our number we get 100x = 12.12, and hence, after subtracting the
original value, 99x = 12 so x = 12

99 = 4
33 . The common thread seems to be the

denominators 9, 99, 999, 9999, . . . , and their factors. For the period 2 case we
have

1× 99 = 99
1

1
= 1 = 0.99

1

99
= 0.01

3× 33 = 99
1

3
= 0.33

1

33
= 0.03

9× 11 = 99
1

9
= 0.11

1

11
= 0.09

so we see that if a factor of 99 is our denominator, the fraction is periodic with
period 2 (not necessarily the smallest period) and if a× b = 99 then 1

a = 0.B and
1
b = 0.A where A and B are as defined earlier (refined for the period 2 case).

At this point in our investigation we can make a few conjectures. Noting that︷ ︸︸ ︷
999 . . . 9
k 9s

= 10k − 1, we conjecture:

1. The periodic representation of k
10n−1 , where k < 10n − 1, is periodic with

period n (not necessarily the smallest).

2. The repetend of the decimal representation of k
10n−1 is just the digits of k

possibly with a number of zeros attached to the left to make the repetend n
digits long.

3. If d | (10n − 1) then fractions with denominator d are periodic with period
n (not necessarily the smallest).

4. If a × b = 10n − 1 then 1
a = 0.B and 1

b = 0.A where A and B are n digit
repetends, that when treated as whole numbers satisfy A = a and B = b
(i.e. they may have some “leading zeros”).

If we think about it we can see that 1 implies 3, while 1 and 2 implies 4 (I will
leave the details to the reader), so if we can prove the first two conjectures the
last two must be true.

Playing with an example might give us a sense of what is going on. Consider
x = 1234

9999 , then

9999x = 1234

104x− x = 1234

104x = 1234 + x

x =
1234

104
+

x

104

Now, this equation isn’t really useful in this form, as it defines x in terms of itself.
However, if we consider this a recursive definition, we can substitute the equation
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back into itself over and over to get

x =
1234

104
+

1234
104 + x

104

104
=

1234

104
+

1234

108
+

x

108

=
1234

104
+

1234

108
+

1234

1012
+

x

1012

=
1234

104
+

1234

108
+

1234

1012
+

1234

1016
+

x

1016

...

=
1234

104
+

1234

108
+

1234

1012
+

1234

1016
+ · · · = 0.1234

Now what we have done isn’t really a proof, but we probably start to believe that
conjectures 1 and 2 are indeed true. Applying the method we used earlier to turn
repeating decimals into fractions we can construct a more solid proof. This is left
to the reader.

The interesting thing that ends up happening is the more questions we answer,
the more questions arise. As we investigate, if one question seems too hard, we
can ask an easier related question or some other question. It is amazing the places
you can end up if you follow this process. Next time you answer a question, ask
your own questions and see how far you can take it!

Below are a few further investigations based on what we have done so far.

1. Determine under what conditions would a fraction have a terminating deci-
mal like 1

2 = 0.5 and 57
80 = 0.7125.

2. Show that all primes except 2 and 5 divide many numbers of the form 10n−1
(modular arithmetic will be useful). This can be used to deduce which
fractions will yield periodic decimal representations.

3. Notice that 10n − 1 = 9 ×
n 1s︷ ︸︸ ︷

111 . . . 11, where

n 1s︷ ︸︸ ︷
111 . . . 11 is a n-digit repunit

number (we talked about them in an earlier column [2019:45(6), p. 313-
317]). Determine under what conditions will a repunit number be a factor
of another repunit number.

4. Does our strange method of solving an equation work in general? That is,
for the equation 9x = 18, if we successively rewrote it as 10x = 18 + x and
then x = 1.8+ x

10 , would the recursive method give the correct result? Under
what conditions would it work for a linear equation? (Note, a similar method
can be used for quadratic equations that will lead to continued fraction
expansions of some quadratic irrationals. If interested, you may want to
research continued fractions.)
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The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by January 30, 2022.

OC551. A semicircle k with diameter PQ is given. A chord BC of fixed length
d is constructed on it, the endpoints of which are different from the points P and
Q. From point B draw a ray so that this ray cuts the diameter PQ at a point A
such that ∠PAB = ∠QAC. Prove that the magnitude of ∠BAC does not depend
on the position of the chord BC on the semicircle k.

OC552. Let a and b be two distinct positive real numbers. Consider the
equation

bax+ bc = bbx+ ac,
where byc denotes the integer part of the real number y. Prove that there exists
an interval of length at least

1

max{a, b}
all of whose points are solutions of the given equation.

OC553. Determine all the pairs of integers (a, b) such that a2 + 2b2 + 2a + 1
is a divisor of 2ab.

OC554. Let ABCD be a rectangle and let E ∈ CD and F ∈ AD. The
perpendicular line through point E to line FB intersects line BC at point P and
the perpendicular line through point F to line EB intersects line AB at point Q.
Prove that points P,D,Q are collinear.

OC555. Let p > 3 be a prime. Let K be the number of permutations
(a1, a2, . . . , ap) of {1, 2, . . . , p} such that

a1a2 + a2a3 + · · ·+ ap−1ap + apa1

is divisible by p. Prove K + p is divisible by p2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 janvier 2022.

OC551. Soit k un demi cercle de diamètre PQ. On y construit une corde BC
d’une longueur prédéterminée d, dont les extrémités sont différentes de P et Q. À
partir du point B, on trace un rayon qui rencontre le diamètre PQ en un point A
tel que ∠PAB = ∠QAC. Démontrer que la mesure de l’angle ∠BAC ne dépend
pas des points où les extrémités de BC sont situées sur le demi cercle k.

OC552. Soient a et b deux nombres réels distincts positifs et soit

bax+ bc = bbx+ ac,

une équation, où byc dénote la partie entière du nombre réel y. Démontrer qu’il
existe un intervalle de longueur au moins

1

max{a, b} ,

dont tous les points sont solutions de l’équation donnée.

OC553. Déterminer toutes les paires d’entiers (a, b), telles que a2+2b2+2a+1
est un diviseur de 2ab.

OC554. Soit ABCD un rectangle; soient aussi E ∈ CD et F ∈ AD. La
perpendiculaire vers la ligne FB au point E rencontre la ligne BC au point P ;
la perpendiculaire vers la ligne EB au point F rencontre la ligne AB au point Q.
Démontrer que P , D et Q sont alignés.

OC555. Soit p > 3 un nombre premier. Aussi, soit K le nombre de permuta-
tions (a1, a2, . . . , ap) de {1, 2, . . . , p} telles que

a1a2 + a2a3 + · · ·+ ap−1ap + apa1

est divisible par p. Démontrer que K + p est divisible par p2.
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Statements of the problems in this section originally appear in 2021: 47(4), p. 178–179.

OC526. Let ABC be a triangle. The circle ωA through A is tangent to line
BC at B. The circle ωC through C is tangent to line AB at B. Let ωA and ωC
meet again at D. Let M be the midpoint of line segment BC, and let E be the
intersection of lines MD and AC. Show that E lies on ωA.

Originally Problem 3 from the 12th Benelux Mathematical Olympiad, May 2020.

We received 7 submissions, of which 6 were correct and complete. We present two
solutions.

Solution 1, by UCLan Cyprus Problem Solving Group.

Let E′ be the point of intersection of AC with ωA and let M ′ be the point of
intersection of E′D with BC. It suffices to show that M ′ is the midpoint of BC.

Since A,B,D,E′ are concyclic, then ∠M ′E′C = ∠DE′C = ∠DBA. Since AB is
tangent to ωC , then ∠DBA = ∠DCB. Thus, ∠M ′E′C = ∠DCM ′. This together
with the fact that ∠CM ′D and ∠CM ′E′ are identical imply that 4M ′E′C and
4M ′CD are similar.

Thus, M ′C/M ′D = M ′E′/M ′C or equivalently, (M ′C)2 = (M ′D)(M ′E). But
(M ′D)(M ′E) is the power of M ′ with respect to ωA. Since M ′B is tangent to ωA
the power of M ′ is equal to (M ′B)2, as well. It follows that (M ′B)2 = (M ′C)2

and M ′ = M , as required.
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Solution 2, by Corneliu Manescu-Avram.

[Ed.: please note that the diagram from Solution 1 does not apply.]

We have ∠CBD = ∠BAD and ∠DBA = ∠DCB as in any circle the angle between
a chord and a tangent through one of the end points of the chord is equal to the
angle in the alternate segment. It follows that 4DAB and 4DBC are similar.

Let N be the midpoint of AB. Then 4AND and 4BMD are similar. Therefore,

∠BND = 180◦ − ∠DNA = 180◦ − ∠DMB,

and the quadrilateral BNDM is cyclic. However, MN ‖ AC and

∠DBA = ∠DBN = ∠DMN = ∠EMN = ∠MEC = 180◦ − ∠DEA.

In conclusion, the quadrilateral EADB is cyclic, and E lies on ωA.

OC527. Anna and Boris play a game with n counters. Anna goes first,
and turns alternate thereafter. In each move, a player takes either 1 counter or a
number of counters equal to a prime divisor of the remaining number of counters.
The player who takes the last counter wins. For which n does Anna have a winning
strategy?

Originally from the Tournament of Towns Junior O-level Contest, in Fall 2020,
proposed by Fedor Ivlev.

We received 8 submissions, all of which were correct. We present a typical solution.

The first player, Anna, has a winning strategy if n is not divisible by 4. The
second player, Boris, has a winning strategy if n is a multiple of 4. Let P (n) be
the respective statement for a given natural number n. We prove P (n) by complete
induction on n.

If n ≤ 3 then the first player wins immediately by taking all counters. Let n ≥ 4.
To complete the induction proof, we need to establish that P (n) holds assuming
that P (k) are true for 1 ≤ k ≤ n − 1. Note that the first player always takes a
number of counters, c, that is not divisible by 4.

If n is a multiple of 4, the number of counters, n− c, left for the second player is
not divisible by 4. Based on the induction hypothesis, P (n− c), the second player
has a strategy to win, and so the first player loses.

If n is not a multiple of 4, the first player aims to take a number of counters such
that n − c is a multiple of 4. This is possible. Indeed, if n ≡ 1 mod 4, the first
player removes 1 counter. If n ≡ 2 mod 4, the first player removes 2 counters. If
n ≡ 3 mod 4, then n must have a prime divisor p of the form p ≡ 3 mod 4. The
first player then removes p counters. Based on the induction hypothesis, P (n− c),
the second player does not have a strategy to win, and so the first player wins.
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OC528. Let {zn}n≥1 be a sequence of complex numbers, whose odd-indexed
terms are real, even-indexed terms are purely imaginary, and for every positive
integer k, |zkzk+1| = 2k. Denote fn = |z1 + z2 + · · ·+ zn|, for n = 1, 2, . . . .

(1) Find the minimum of f2020.

(2) Find the minimum of f2020 · f2021.

Originally Problem 1 from the 2021 China National Olympiad, Day 1.

We received 6 submissions, of which 5 were correct and complete. We present the
solution by Oliver Geupel.

For convenience let us write c = z1. A simple proof by induction gives that for any
n = 0, 1, . . . : z2n+1 = 2nσnc and z2n+2 = 2n+1τni/c for some σn, τn ∈ {−1, 1}.
Let k =

∑1009
n=0 2nσn and ` =

∑1009
n=0 2nτn. We have |k| ≥ 1, |`| ≥ 1, and

z1 + z2 + · · ·+ z2020 = ck +
2

c
`i.

Then,

f22020 = c2k2 +
4

c2
`2 ≥ c2 +

4

c2
= 4 +

Å
c− 2

c

ã2
≥ 4.

Thus, f2020 ≥ 2.

The equality holds when c =
√

2 and k = l = 1 implied by the selection σ0 = σ1 =
· · · = σ1008 = −1, τ0 = τ1 = · · · = τ1008 = −1, and σ1009 = τ1009 = 1. Thus, the
minimum of f2020 is 2, which completes part (1).

Let m = k+21010σ1010, so that |m| ≥ 1 and z1 +z2 + · · ·+z2021 = cm+ 2
c `i. Then,

f22020f
2
2021 =

Å
c2k2 +

4`2

c2

ãÅ
c2m2 +

4`2

c2

ã
≥
Å
c2k2 +

4

c2

ãÅ
c2m2 +

4

c2

ã
= 4(k −m)2 +

Å
c2km+

4

c2

ã2
≥ 4(k −m)2 = 4 · 21010·2 = 22022.

Thus, f2020f2021 ≥ 21011.

The equality holds if k and m have opposite signs, c = 4

…
− 4

km
, and l = 1. This

can be achieved with the selection σ0 = σ1 = · · · = σ1008 = 1, σ1009 = −1,
σ1010 = 1, τ0 = τ1 = · · · = τ1008 = −1, and τ1009 = 1. Indeed, k = −1, l = 1,
m = −1 + 21010 > 0, and

f22020f
2
2021 =

Å
c2k2 +

4`2

c2

ãÅ
c2m2 +

4`2

c2

ã
= c4k2m2 +

16`4

c4
+ 4`2m2 + 4`2k2

= −4km− 4`4km+ 4`2(m2 + k2) = 4(k −m)2 = 22022.

Consequently, the minimum of f2020f2021 is 21011, and part (2) is complete.
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OC529. Let ABCD be a cyclic quadrilateral with E, an interior point such
that AB = AD = AE = BC. Let DE meet the circumcircle of BEC again at
F . Suppose a common tangent to the circumcircle of BEC and DEC touches the
circles at F and G respectively. Show that GE is the external angle bisector of
angle BEF .

Originally Problem 5 from the 2021 Nigerian Senior MO, Round 2.

We received 2 submissions, both correct and complete. We present the solution by
Theo Koupelis.

The points B,E,D are on a circle of center A and radius AB, and thus

∠FEB = 180◦ − ∠BED =
1

2
∠BAD.

Also, points B,E,C, F are concyclic, and therefore,

∠FCB = ∠FEB =
1

2
∠BAD.

Now let ∠GFC = θ and ∠FGC = φ. Then ∠CEF = θ, because GF is tangent
to the circumcircle of BEC. Also ∠CEG = φ, because FG is tangent to the
circumcircle of DEC. Thus ∠FEG = θ + φ. The quadrilateral DECG is cyclic
and therefore ∠CGD = ∠CEF = θ, and ∠CDG = ∠CEG = φ. Thus, 4FCG
and 4GCD are similar; therefore,

∠FCG = ∠GCD = 180◦ − (θ + φ),

and thus ∠FCD = 2(θ + φ) = 2∠FEG.
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Let P,Q be the intersection points of DC with FG and BE, respectively. The
cyclic quadrilateral ABCD is an isosceles trapezium because BC = AD and there-
fore ∠BAD = ∠ABC = ∠PCB. But ∠FCB = 1

2∠BAD, and thus

∠PCF = ∠PCB − ∠FCB =
1

2
∠BAD = ∠FEB.

Therefore,

180◦ = ∠PCF + ∠FCD = ∠FEB + 2∠FEG = ∠GEB + ∠FEG

= 180◦ − ∠GEQ+ ∠FEG.

Thus, ∠GEQ = ∠GEF, and so GE is the external angle bisector of angle BEF.

OC530. Let n > 3 be a fixed integer and x1, x2, . . . , xn positive real numbers.
Find in terms of n, all possible values of

x1
xn + x1 + x2

+
x2

x1 + x2 + x3
+ · · ·+ xn−1

xn−2 + xn−1 + xn
+

xn
xn−1 + xn + x1

.

Originally Problem 6 from the 31st Brazilian Mathematical Olympiad, 2009, Third
Round, Second Day.

We received 2 submissions, of which 1 was correct and complete. We present an
edited version of the solution by UCLan Cyprus Problem Solving Group.

We show that the expression can take any value in (1, b(n− 1)/2c), where by bxc
we mean the greatest integer that is less than or equal to x. Throughout the
proof we use the convention that an index strictly greater than n is understood
as modulo n; for example by xn+2 we mean x2. We denote by f(x1, . . . , xn) the
expression described in the question.

We start by proving the following preparatory lemma.

Lemma. Assume x1, . . . , xn is a sequence of at least 4 positive integers. The
following facts hold.

(a) There is an integer k, 1 ≤ k ≤ n, such that xk ≤ xk+3 and xk+4 ≤ xk+1.

(b) There is an integer k, 1 ≤ k ≤ n, such that xk+3 ≤ xk and xk+1 ≤ xk+4.

Proof. We can assume without loss of generality that x1 is the smallest of
x1, . . . , xn, so x1 ≤ x4. Further, assume that xl+1 < xl+4 for any 1 ≤ l ≤ n − 1.
Summing all n inequalities we obtain the contradiction that x1 + · · · + xn <
x1 + · · · + xn. Therefore, there exists at least one l, 1 ≤ l ≤ n − 1, such that
xl+4 ≤ xl+1. Let k be the smallest such l. As we assumed that x1 ≤ x4, we must
have that xk ≤ xk+3 and xk+4 ≤ xk+1. This concludes part (a). Part (b) can be
established using a similar proof by contradiction.
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We continue by establishing that the lower bound of the expression is 1. Let k be
the index identified in the Lemma, part (a). Then

xk+1

xk + xk+1 + xk+2
+

xk+2

xk+1 + xk+2 + xk+3
+

xk+3

xk+2 + xk+3 + xk+4

>
xk+1 + xk+2 + xk+3

xk+1 + xk+2 + xk+3
= 1,

and f(x1, . . . , xn) ≥ 1. Since f has four or more strictly positive terms, it follows
that f(x1, . . . , xn) > 1 for all x1 ≥ 0, . . . , xn ≥ 0. Therefore, 1 is a lower bound
for the expression. In fact, 1 is the largest lower bound. This is because

f(a, a2, . . . , an) =
a

an + a+ a2
+

(n− 2)a

1 + a+ a2
+

an

an−1 + an + a

converges to 1 as a approaches infinity.

For the upper bound, we consider separately the cases of odd n and even n. Note
that for any x > 0, y > 0, z > 0, w > 0 we have the inequality

y

x+ y + z
+

z

y + z + w
<

y

y + z
+

z

y + z
= 1 .

If n is even, by pairing consecutive terms and using the above inequality we get
that f(x1, . . . , xn) < n/2. Moreover, since

f(1, a, . . . , 1, a) =
n

2
× 1

2a+ 1
+
n

2
× a

a+ 2

converges to n/2 as a converges to infinity, it follows that n/2 is the smallest upper
bound.

If n is odd, we select the index identified in the Lemma, part (b) and obtain:

xk+1

xk + xk+1 + xk+2
+

xk+2

xk+1 + xk+2 + xk+3
+

xk+3

xk+2 + xk+3 + xk+4

6
xk+1 + xk+2 + xk+3

xk+1 + xk+2 + xk+3
= 1.

By grouping the terms of the expression f into a triplet, the triplet on the previous
line, and pairs of consecutive terms we obtain that f(x1, . . . , xn) < (n− 1)/2. In
addition,

f(1, a, . . . , 1, a, 1) =
n− 3

2
× 1

2a+ 1
+
n− 1

2
× a

a+ 2
+ 2× 1

a+ 2

converges to n−1
2 as a approaches infinity. This shows that for odd n, (n− 1)/2 is

the smallest upper bound.

To complete the proof, we note that f is a continuous function of x1, . . . , xn. As a
continuous function, f maps a connected set into a connected set. Therefore, the
image of f must be an interval, the open interval (1, b(n− 1)/2c).
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FOCUS ON...
No. 48

Michel Bataille

Solutions to Exercises from Focus On... No. 42 - 46

From Focus On... No. 42

1. Let the line parallel to BC through H intersect AB at P and AC at Q and let
the perpendicular to AC through A intersect the line PQ at Y . Let X be the point
of intersection other than A of the circle with diameter AC and the circumcircle
of ∆APQ. Prove that C,X, Y are collinear.

For Z 6= A, let Γz denote the circle with diameter AZ. The circles Γy,Γp,Γq, which
all pass through H, invert into the lines through A′ perpendicular to AY,AP,AQ,
respectively. It follows that P1 = I(P ) (resp. Q1 = I(Q)) is the projection of A′

onto AB (resp. AC) and that the line I(Γy) is perpendicular to BB′ (since AY
and BB′ are parallel). Let I(Γy) and BB′ intersect at X1. Since A′ is on the
circumcircle Γb of ∆ABB′, the points P1, X1, Q1 are collinear (on the Simson line
of A′) and therefore I(X1) is on the circumcircle of ∆APQ (the inverse of the line
P1Q1) and on Γc = I(BB′). We deduce that I(X1) = X. In consequence, X being
on Γc and on Γy, the lines Y X,CX coincide (they are both perpendicular to AX
at X).

2. Let A1 be the reflection of A in the line BC. The circle passing through A1

and tangent to BC at B intersects Γ at D (D 6= B). Prove that TD = TA.

Let ΓB (resp. ΓC) be the circle through A1 and tangent to BC at B (resp. C). We
introduce the reflections B1 and C1 of A about B and C, respectively. Note that
B1 is also the reflection of A1 in the diameter of ΓB through B, hence B1 ∈ ΓB .
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Similarly, C1 ∈ ΓC .

Note also that B1, A1, C1 are on the parallel to BC through A1 (since they are
the images of B,A′, C under the homothety with centre A and factor 2) and that
ΓC is the circumcircle of ∆A1CC1.

Since J(ΓB) is a circle tangent to BC = J(BC) at C = J(B), passing through
A1 = J(A1) (note that TA = TA1), we obtain J(ΓB) = ΓC .

From ∠(DB,DA1) = ∠(B1B,B1A1) = ∠(BA,BC), we deduce that

∠(DA1, DC) = ∠(DA1, DB) + ∠(DB,DC)

= ∠(BC,BA) + ∠(AB,AC)

= ∠(CB,CA) = ∠(C1A1, C1C)

and therefore D is on ΓC .

Now, J(D) is on ΓC (since D is on ΓB) and also on Γ = J(Γ). In addition,
J(D) 6= C (since D 6= B), hence J(D) = D and TD = TA follows.

From Focus On... No. 44

1. Let u be a complex number with |u| = 1. Show that the solutions to the equation

z2 − 2z(1− u)− u = 0

are unimodular if and only if |1− u| ≤ 1.

Let z1, z2 be the solutions of z2 − 2z(1− u)− u = 0.

First, suppose that |z1| = |z2| = 1. Then we have

2|1− u| = |z1 + z2| ≤ |z1|+ |z2| ≤ 2,
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hence |1− u| ≤ 1.

Conversely, suppose that |1 − u| ≤ 1. Since |z1||z2| = |z1z2| = | − u| = 1, we
have z1 = reiα1 , z2 = 1

r e
iα2 for some real numbers r, α1, α2 with r > 0. From

z1 + z2 = 2− 2u = 2 + 2z1z2, we obtain

reiα1 +
1

r
eiα2 = 2 + 2ei(α1+α2).

Multiplying both sides by exp
Ä
− i(α1+α2)

2

ä
and setting w = r exp

Ä
i(α1−α2)

2

ä
, we

readily obtain that w + 1
w is a real number. Thus, w + 1

w = w + 1
w , that is,

(w − w)(|w|2 − 1) = 0.

If |w|2 = 1, then r = 1 and we are done. If w − w = 0, then sin
(
α1−α2

2

)
= 0,

hence eiα1 = eiα2 . But this implies

r +
1

r
= |2(1− u)| ≤ 2, or (r − 1)2 ≤ 0

and therefore r = 1 again.

2. Let x, y, z, a, b be positive real numbers satisfying x2 + xy + y2 = a2

y2 + yz + z2 = b2

z2 + zx+ x2 = a2 + b2.

Express s = x+ y + z as a function of a and b.

Let s = x+ y + z. Subtracting each of the first two equations from the third, we

obtain z − y = b2

s and x − y = a2

s , hence we also have z − x = b2−a2
s . It follows

that

zx−y2 = s(z−y)+xy−z2 = b2+xy−z2 and zx−y2 = s(x−y)+yz−x2 = a2+yz−x2.

Since zx − y2 = ys (by addition of the first two equations, taking the third into
account), we deduce that

3ys = 3(zx− y2) = zx− y2 + b2 + xy − z2 + a2 + yz − x2

= a2 + b2 − (x2 + y2 + z2 − (xy + yz + zx)). (1)

But

2(x2+y2+z2−(xy+yz+zx)) = (x−y)2+(y−z)2+(z−x)2 =
a4 + b4 + (b2 − a2)2

s2

and

s− 3y = x− y + z − y =
a2 + b2

s
,

hence 3ys = s2 − (a2 + b2), so that (1) becomes

s2 − (a2 + b2) = (a2 + b2)− a4 + b4 + (b2 − a2)2

2s2
,
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which leads to the biquadratic equation

s4 − 2(a2 + b2)s2 + (a4 + b4 − a2b2) = 0.

Since s > 0 and s2 > a2 + b2 (since s2 = a2 + b2 + 3ys), solving this equation
provides

s =

»
a2 + b2 + ab

√
3.

Note. The courageous readers will deduce that y = ab
√
3

3
√
a2+b2+ab

√
3
, and then that

x =
a
√

3(b+ a
√

3)

3
√
a2 + b2 + ab

√
3
, z =

b
√

3(a+ b
√

3)

3
√
a2 + b2 + ab

√
3
.

The most courageous will check that this triple (x, y, z) is indeed a solution to the
system.

From Focus On... No. 45

1. Let p be a real number such that 13
32 < p < 8. Prove that the equation

x3 − 6x2 + 2(p− 2)x− p = 0 has only one real solution.

Let
P (x) = x3 − 6x2 + 2(p− 2)x− p.

The discriminant of the quadratic polynomial P ′(x) = 3x2 − 12x + 2p − 4 is
24(8 − p) > 0, hence P ′ has two distinct real roots, say u, v with u < v. Since
P ′(2) = 2(p − 8) < 0, we have u < 2 < v and since P is a decreasing function
on [u, v], we have P (v) < P (2) = 3(p − 8) < 0. As a result, P has a real root in
(v,∞) and from the variations of P , we deduce that it is sufficient to prove that
P (u) < 0 (since then P (x) ≤ P (u) < 0 for x ∈ (−∞, v]).

It is readily checked that

3P (x) = (x− 2)P ′(x) + (p− 8)(4x+ 1)

and it follows that 3P (u) = (p − 8)(4u + 1). But from P ′(−1/4) = 2p − 13
16 > 0

and − 1
4 < 2, we see that we must even have − 1

4 < u. In consequence, we have
3P (u) < 0, as desired.

2. Let P (x) = x4 + ax3 + bx2 + cx+ d where a, b, c, d are complex numbers. Prove
that the sum of two of its roots is equal to the sum of the two remaining roots if
and only if P ′ and P ′′′ have a common root. Application: find the roots of the
polynomial x4 + 2x3 + 2x2 + x+ 1

16

Let x1, x2, x3, x4 be the list of the roots of P (x) and suppose that x1+x2 = x3+x4.
Let p1 = x1x2 and p2 = x3x4. Then, setting s = x1 + x2 = x3 + x4, we obtain
that

P (x) = (x2 − sx+ p1)(x2 − sx+ p2)
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and simple calculations give

P ′(x) = (2x− s)(2x2 − 2sx+ p1 + p2),

P ′′′(x) = 12(2x− s).
Thus, P ′ and P ′′′ have the common root s

2 .

Conversely, suppose that P ′(a) = P ′′′(a) = 0 for some complex number a. Taylor’s
formula yields

P (x+ a) = P (a) +
P ′′(a)

2
x2 + x4,

hence
P (x+ a) = (x2 − α2)(x2 − β2)

for some α, β ∈ C. It follows that the roots of P (x) are α+a,−α+a, β+a,−β+a.
Clearly, the sum of the first two roots is equal to the sum of the two remaining
roots.

Application: If P (x) = x4 + 2x3 + 2x2 + x + 1
16 , then it is readily checked that

P ′(−1/2) = P ′′′(−1/2) = 0. Inspired by the proof above, we form P (x− 1/2):

P (x− 1/2) = x4 +
x2

2
− 1

8
.

The equation P (x−1/2) = 0 is easily solved and we deduce that the roots of P (x)
are

−1 +
√√

3− 1

2
,
−1−

√√
3− 1

2
,
−1 + i

√√
3 + 1

2
,
−1− i

√√
3 + 1

2
.

From Focus On... No. 46

1. Use the Cesàro-Stolz theorem to prove that
n∑
k=1

1

nα
∼ n1−α

1− α when 0 < α < 1.

On the one hand, we have

1

1− α
n∑
k=1

(k1−α − (k − 1)1−α) =
n1−α

1− α

and on the other hand,

n1−α−(n−1)1−α = n1−α
Ç

1−
Å

1− 1

n

ã1−αå
= n1−α

Å
1− α
n

+ o(1/n)

ã
∼ 1− α

nα
.

Since
∞∑
n=1

1

nα
is a divergent series, the Cesàro-Stolz theorem gives

n∑
k=1

1

kα
∼ n1−α

1− α.
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2. Prove that n
√
n! = n

e + 1
2e ln(n) + o(lnn).

We deduce the desired result from the following calculations:

n
√
n! = exp

Å
ln(n!)

n

ã
= exp

Å
ln(n)− 1 +

ln(n)

2n
+ o(ln(n)/n)

ã
=
n

e
exp

Å
ln(n)

2n
+ o(ln(n)/n)

ã
=
n

e

Å
1 +

ln(n)

2n
+ o(ln(n)/n)

ã
=
n

e
+

ln(n)

2e
+ o(ln(n)).

3. Let n ∈ N and let On = 1 + 1
3 + · · ·+ 1

2n−1 . Calculate

lim
n→∞

1

n

Å
1 +

2On
n

ãn
.

Let Un = 1
n

(
1 + 2On

n

)n
. We show that lim

n→∞
Un = 4eγ where γ denotes the Euler

constant.

We have

2On = 2

Å
1 +

1

2
+

1

3
+ · · ·+ 1

2n− 1
+

1

2n
− 1

2

Å
1 +

1

2
+ · · ·+ 1

n

ãã
= 2H2n −Hn = 2(ln(2n) + γ + o(1))− (ln(n) + γ + o(1))

= ln(n) + 2 ln(2) + γ + o(1).

Thus, 1 + 2On

n = 1 + an where an = ln(n)
n + 2 ln(2)+γ

n + o(1/n). Since lim
n→∞

an = 0

and ln(1 + x) = x+O(x2) as x→ 0, we see that

n ln

Å
1 +

2On
n

ã
= nan + na2nαn

for some bounded sequence (αn).

Now, na2n ∼ (ln(n))2

n so that lim
n→∞

na2n = 0 = lim
n→∞

na2nαn (since (αn) is bounded).

We deduce that

n ln

Å
1 +

2On
n

ã
= ln(n) + (2 ln(2) + γ) + o(1),

whence

ln(Un) = n ln

Å
1 +

2On
n

ã
− ln(n) = 2 ln(2) + γ + o(1).

Thus, lim
n→∞

ln(Un) = ln(4) + γ and the announced result follows.
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4. For each positive integer n, let

sn = −2
√
n+

n∑
k=1

1√
k

and lim
n→∞

sn = s, the Ioachimescu constant. Find lim
n→∞

(sn − s) 2n
√
n!.

The required limit is 1
2
√
e
.

First, we have
2n
√
n! ∼

…
n

e
. (2)

Second, let t1 = s1 and for n ≥ 2, tn = sn − sn−1. Then, for all n ≥ 1, we have

tn =
1√
n
−2(
√
n−
√
n− 1) =

1√
n
− 2√

n+
√
n− 1

=
1√
n

(
1− 2

Ç
1 +

Å
1− 1

n

ã1/2å−1)
and

1− 2

Ç
1 +

Å
1− 1

n

ã1/2å−1
= 1− 2

Å
1 + 1− 1

2n
+ o(1/n)

ã−1
= 1−

Å
1− 1

4n
+ o(1/n)

ã−1
= 1−

Å
1 +

1

4n
+ o(1/n)

ã
= − 1

4n
+ o(1/n).

so that

tn ∼ −
1

4n
√
n
.

This result, besides confirming the convergence of the series
∞∑
k=1

tk (clearly we have

∞∑
k=1

tk = s1 +
∞∑
k=2

(sk − sk−1) = lim
n→∞

sn = s), gives

∞∑
k=n+1

tk ∼ −
1

4

∞∑
k=n+1

1

k3/2
∼ −1

4
· 2√

n
.

It follows that

s−
n∑
k=1

tk = s− sn ∼
−1

2
√
n
. (3)

Now, from (2) and (3), we obtain

(sn − s) 2n
√
n! ∼ 1

2
√
n
·
√
n√
e

=
1

2
√
e
.
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Unexpected Applications of
Newton’s Theorem

Aditya Khurmi, Aatman Supkar, Arindam
Bhattacharyya and Shuborno Das

1 Newton’s Theorem

We found the name “Newton’s Theorem“ given to the following result in Lemmas
in Olympiad Geometry by Cosmin Pohoata, Sam Korsky, and Titu Andreescu (it
can also be found at https://www.math.ust.hk/excalibur/v10_n3.pdf:

Theorem 1 (Newton’s Theorem) Let ABCD be a quadrilateral which has an in-
scribed circle ω. Let M,N,P,Q be the tangency points of ω with AB,CD,DA,BC,
respectively. Then {MP,NQ,BD} and {MN,PQ,AC,BD} are 2 tuples of con-
current lines.

We talk about a result that is just the second concurrency, but present it in a way
that shows how powerful it can be when used properly. In this article, whenever
we use the term “Newton’s Theorem”, we would mean the following lemma instead
of the statement given above:

Figure 1: Newton’s Theorem (the case when γ is a circle)

Lemma 1 (Newton’s Theorem) Let A1, B1, A2, B2 be points on a conic γ. Let
C1, C2 be the intersection of tangents to γ at {A1, B1} and {A2, B2} respectively.
Let T = A1A2 ∩B1B2. Then C1, T, C2 are collinear.

Proof 1. Apply Pascal’s theorem on A1A1A2B1B1B2 to get C1, T and A2B1∩B2A1

are collinear. Then apply Pascal’s theorem on A2A2A1B2B2B1 to get C2, T and
A2B1 ∩B2A1 are collinear. This proves the result. 2
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Proof 2. Let C1T meet γ in X,Y. Then A1XB1Y is a harmonic quadrilateral and
so

−1 = (A1, B1;X,Y )
T
= (A2, B2;Y,X).

Hence, (A2, B2;Y,X) is also harmonic, therefore implying that C2 = A2A2∩B2B2

lies on Y X ≡ C1T. 2

We make some remarks to show its usefulness in practice:

1. Say that C2 is a point on the tangent at A2. Then if C1C2, A1A2, B1B2

concur, then C2B2 is also a tangent. This point is especially useful in showing
tangencies.

2. Since the proof was projective, the order of A1, A2, B1, B2 does not matter.
So A1A2 ∩B1B2 can be inside γ, or even outside it.

3. Even though the result is stated for a conic, the case when γ is a circle would
be more useful for standard olympiad problems.

Figure 2: Remarks 1 and 2 respectively.

2 Examples of Applications

We now present walkthroughs so that you can work along and learn how to use
this lemma.

Problem 1 (Bicentric Quadrilaterals) Let ABCD be a bicentric quadrilateral,
i.e. a quadrilateral which has both an incircle and a circumcircle. Let the incenter
be I and circumcenter be O. Let the diagonals meet at E. Prove that O, I,E are
collinear.

This is a classical application of Newton’s theorem.

(a) Let the incircle be γ. Let X = AB ∩ CD and Y = AD ∩ BC. Show that
OE ⊥ XY.

Copyright © Canadian Mathematical Society, 2021



442/ Unexpected Applications of Newton’s Theorem

(b) Introduce the tangency points of γ with ABCD. Use Newton’s Theorem and
La Hire’s theorem to conclude that XY is the polar of E with respect to γ.

(c) Show that IE ⊥ XY.
(d) Conclude.

Time for an application of the lemma to solve a problem related to conics.

Problem 2 (Pole of conic chords) Let C be a conic with center O, and A,B ∈ C.
Let M be the midpoint of AB, and X be its pole with respect to C.

• Suppose that MX meets C in K,L. Show that the tangents to C at K,L are
both parallel to AB.

• Show that XM passes through O.

This problem is no doubt a gem, and quite a challenge for anyone seeking a syn-
thetic solution (without falling to techniques such as projective transforms or mov-
ing points). Hence, small things like an urge to use Newton’s Theorem can be very
useful.

(a) Suppose tangents to C at K,L intersect at Y. Apply Newton’s Theorem to
conclude that X,Y and Z = AL ∩BK are collinear.

(b) Show that Y lies on AB. Hence it suffices to show XZ ‖ AB.
(c) Project the cross ratio (X,M ;K,L) onto the line AB from Z to conclude

XZ ‖ AB.
Thus, we have the first part.

(d) Conclude the second part of the problem by using the fact that the center
of any parallelogram on C is O.

Time for a challenging olympiad problem, which is one of our favorite applications
of this lemma.

Problem 3 (IMO 2008 P6, with addition by Aditya Khurmi.) Let ABCD be a
convex quadrilateral with BA 6= BC. Denote the incircles of triangles ABC and
ADC by ω1 and ω2 respectively. Suppose that there exists a circle ω with center I
tangent to ray BA beyond A at X1, and to the ray BC beyond C at X2, which is
also tangent to the lines AD and CD in Y2, Y1, respectively.

• Prove that the lines X1X2, Y1Y2, and the line through I perpendicular to BD
concur.

• Prove that the common external tangents to ω1 and ω2 intersect on ω.

Guessing the point is an essential step for the second part. In fact, if the point
is guessed properly (using a good diagram), the problem is not harder than a
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standard IMO problem 1/4. But it’s not so direct, so we motivate it through more
natural means (which also proves the first part).

(a) Let ω1, ω2 meet AC in X,Y respectively. Use Pitot’s Theorem to show that
AX = CY.

(b) Conclude that Y is the B extouch point in 4BAC. What can you now say
about BY ∩ ω1?

(c) Let I1, I2 be the centers of ω1, ω2 respectively. Use Monge’s theorem to get
AC ∩DB = Z lies on I1I2 (and is the insimilicenter of ω1, ω2).

Let X1X1 ∩ Y1Y1 = Z1 and X2X2 ∩ Y2Y2 = Z2.

Looking at the plethora of tangents, we force the use of Newton’s Theorem.

(d) Use the lemma on {X1, X2, Y1, Y2} in all possible combinations (!) to get
Z = X1Y1 ∩X2Y2, and conclude that {X1X2, Y1Y2, AC}, {X1Y2, X2Y1, BD}
concur (say, at M,N).

(e) Use Brocard’s theorem on X1Y1Y2X2 to get that MNZ is self polar with
orthocenter I. So we can conclude IN ⊥ AC, i.e. IN ‖ I2Y, I1X.

(f) Conclude the first part of the problem.

At this point, we have all the good constructions. Try and guess (you are drawing
large and accurate diagrams, correct?) the desired point now, which should be
I1I2 ∩ ω.

(g) If you have guessed the point right, then you should be able to finish the
proof now. (Hint: Combine homothety with (b))

3 Problems

Try the following problems (and if you find any other problem(s) that use this
lemma, feel free to share it with any one of us). At this point, we must break it to
you that even though Newton’s Theorem might be an essential part of a problem,
might even motivate an obscure construction, you would still need ingenuity to
make your way through the remaining problem using standard techniques.

Problem 3.1 For any triangle ABC with circumcircle γ, let the A,B,C symme-
dians meet γ in X,Y, Z. Call XY Z the sym triangle of ABC. Prove that if 42 is
the sym triangle of 41, then 41 is also the sym triangle of 42. In other words,
being sym is a symmetric relation.

Problem 3.2 (Brocard’s Theorem) Let ABCD be points on a conic γ. Let
AB ∩ CD = X,AC ∩ BD = Y and AD ∩ BC = Z. Show that the triangle XY Z
is self-polar with respect to γ.
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Problem 3.3 (Midpoints and Contact Triangle) Let ABC be a triangle and
M,N be the midpoints of BC,BA. Let γ,4DEF be the incircle, contact triangle
of 4ABC respectively. Let AI meet BC in T. Let D∗ be the D antipode in γ.
Finally, define X = AD∗ ∩ γ 6= D∗ and Y (6= D) ∈ γ so that TY is tangent to γ.
Show that MA ∩ FY and MN ∩AI both lie on DE.

Problem 3.4 (Iran TST 2017/6) Let γ be the incircle of a triangle ABC.
Points P and Q are on AB and AC, such that PQ is parallel to BC and also
tangent to γ. Let AB,AC touch γ at F,E, respectively. Let M denote the mid-
point of PQ, and let T be the intersection point of EF and BC. Prove that TM
is tangent to γ.

Problem 3.5 (SORY P6) Let the incircle be tangent to the sides BC,CA,AB
at D,E, F respectively. Let P be the foot of the perpendicular from D onto EF.
Assume that BP,CP intersect the sides AC,AB in Y, Z respectively. Finally, let
the rays IP, Y Z meet the circumcircle of 4ABC in R,X respectively. Prove that
the tangent from X to the incircle and the line RD meet on the circumcircle of
4ABC.
(Note: SORY was a mock Olympiad conducted on AoPS by Aditya Khurmi and
Satyam Mishra.

See: https://artofproblemsolving.com/community/q1h1906972p13051397.)

Problem 3.6 (STEMS 2019/B6) Triangle ABC has incenter I and intouch
triangle DEF. Let Q be the foot from D to EF and extend ray DQ to meet the
incircle again at R. Ray AQ meets BC at T. Ray AR meets the incircle again
at P, and the circumcircle again at S. Finally, let O denote the circumcenter of
4PAD. Prove that O, T, I, S are collinear.

4 Solutions to Walkthroughs

Problem 4 (Bicentric Quadrilaterals) Let ABCD be a bicentric quadrilateral,
i.e. a quadrilateral which has both an incircle and a circumcircle. Let the incenter
be I and circumcenter be O. Let the diagonals meet at E. prove that O, I,E are
collinear.

Solution. Let AB ∩ CD = X and AD ∩ BC = Y. By Brocard’s Theorem, XY is
the polar of E with respect to the circumcircle of ABCD, and hence, OE ⊥ XY.
To show O, I,E collinear it thus suffices to show IE ⊥ XY.
Let γ be the incircle. All polars from here on are with respect to γ. Let γ be
tangent to AB,BC,CD,DA in K,L,M,N respectively. By Newton’s Theorem
on {KL,MN}, we find that KM ∩LN ∈ BD. Similarly, KM ∩LN ∈ AC giving
KM ∩ LN = E.

Since KM is the polar of X and E ∈ KM, by La Hire’s theorem X lies on the
polar of E. Similarly, Y lies on the polar of E. However, since the polar of E is

Crux Mathematicorum, Vol. 47(9), November 2021

https://artofproblemsolving.com/community/q1h1906972p13051397


Aditya Khurmi, Aatman Supkar, Arindam Bhattacharyya and Shuborno Das /445

a straight line, it must be XY. Thus, XY is the polar of E with respect to γ
implying IE ⊥ XY, as desired. 2

Problem 5 (Pole of conic chords) Let C be a conic with center O, and let A,B ∈
C. Let M be the midpoint of AB, and X be its pole with respect to C.

• Suppose that MX meets C in K,L. Show that the tangents to C at K,L are
both parallel to AB.

• Show that XM passes through O.

Solution. Let KK ∩ LL = Y. Applying Newton’s Theorem on {L,K}, {A,B}, we
find that AL ∩KB, say Z, lies on XY.

Since the tangents at A,B meet on the diagonal KL in quadrilateral AKBL,
hence by a well known property we find that (A,B;K,L) = −1. This also gives
that Y = KK ∩ LL lies on AB. So it suffices to prove that XZ ‖ AB. For this,
observe that

−1 = (A,B;K,L)
A
= (X,M ;K,L)

Z
= (ZX ∩AB,M ;B,A),

where we first projected through A onto the line KL, then through Z onto the
line AB.

This property is more known for harmonic quadrilaterals. However, it is true for general
conics too. The simplest reasoning is by the projective transform taking the conic to a circle (as
projective transforms preserve cross ratios).
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Now since (ZX∩AB,M ;B,A) = −1 and M is the midpoint of AB, hence by a fa-
mous property (see for instance problem 0 here: https://alexanderrem.weebly.
com/uploads/7/2/5/6/72566533/projectivegeometry.pdf), we must have that
ZX ∩AB is the point at infinity on AB. This means ZX ‖ AB, as desired.

For the second part of the problem, note that KKLL is a (degenerate) parallel-
ogram on C. Hence, its center must be the center of C, which is O. This implies
O ∈ KL (and that O is the midpoint of KL). Hence the second part has also been
proven. 2

Comment 4.1 The property that XM passes through O is a generalization of the
same property for circles (a chord is bisected by the line through its pole and the
circle’s center). While the result for circles is easily proven using congruent tri-
angles, that’s not the case for conics. Proving it synthetically is quite a challenge,
especially since centers of conics don’t have a lot of synthetic properties. Hence,
the first part of the problem serves as an ingenious and important step in the proof
of this beautiful result.

Problem 6 (IMO 2008 P6, and more) Let ABCD be a convex quadrilateral with
BA 6= BC. Denote the incircles of triangles ABC and ADC by ω1 and ω2 respec-
tively. Suppose that there exists a circle ω with center I tangent to ray BA beyond
A at X1, and to the ray BC beyond C at X2, which is also tangent to the lines
AD and CD in Y2, Y1 respectively.

• Prove that the lines X1X2, Y1Y2 and the line through I perpendicular to BD
concur.

• Prove that the common external tangents to ω1 and ω2 intersect on ω.
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Solution. Let S, T be the antipodes of Y,X in their respective circles. Also, let
I1, I2, I be the centers of ω1, ω2, ω respectively.

Figure 3: IMO 2008/6

By Pitot’s theorem, we find AB −BC = CD −AD, and hence

2AX = AB +AC −BC = CD +AC −AD = 2CY.

Thus, AX = CY. Hence, X is the B-excircle touch point of 4BAC, implying that
B, T,X are collinear.

• By Newton’s Theorem on {X1, X2}{Y1, Y2}, we find that X1Y1∩X2Y2 lies on
BD. By applying the lemma on {X1, Y2}, {X2, Y1} we find M = X1X2∩Y1Y2
lies on AC. Hence, AC is the polar of N.

Further by Newton’s Theorem on {X1, Y1}, {Y2, X2}, we get Z1 = X1X1 ∩
Y1Y1, Z2 = X2X2∩Y2Y2 and N are collinear. Thus, X1Y1∩X2Y2 is the pole
of Z1Z2, and so by the dual of this (using La Hire’s theorem), we get that
X1Y1 ∩X2Y2 lies on the polar of N, which is AC. Hence X1Y1 ∩X2Y2 = Z.
(We could have reduced this entire paragraph to a one line application of
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Brocard’s theorem. We, however, wanted to showcase the power of this
lemma).

Since Z1Z1 is the polar of Z, it passes through M, as NM is the polar
of Z by Brocard’s theorem. Since I is the orthocenter of MNZ, we get
IM ⊥ NZ ≡ BD. So we are done with the first part of the problem.

• Let the perpendicular from I to AC meet ω in P, so that P lies on the ray
IN. Then the homothety at B taking ω1 7→ ω takes I1 7→ I, T 7→ P. Hence
B, T, P are collinear, and Y also lies on this line (as shown before). Similarly,
P, S,D,X are collinear. Thus, Y D,BX meet at the point P on ω.

Further, it is clear that a homothety at P takes SY to XT, and hence ω2 to
ω1. Thus, P is the intersection of the external tangents to these two circles.
Thus, we are done. 2

5 A note on the Authors

All the authors are Indians and are IMOTCers (IMOTC is the International Math-
ematical Olympiad Training Camp in India), which means they have cleared the
Indian National Mathematical Olympiad, which is the third tier in the Indian
team selection procedure for the International Mathematical Olympiad.

• Aditya Khurmi is currently a freshman majoring in maths in the University
of Massachusetts, Amherst.

• Shuborno Das is currently a freshman majoring in maths and computer
science in the University of Oxford.

• Aatman Supkar is currently a second year student at Indian Institute of
Science studying maths.

• Arindam Bhattacharyya is currently a second year student at Chennai Math-
ematical Institute studying maths and computer science.
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by January 30, 2022.

4681. Proposed by Michel Bataille.

Let n be a positive integer and

Pn(x) =
n∏
k=1

Å
x+ 4 sin2 2kπ

2n+ 1

ã
.

Evaluate Pn(0) and P ′n(0).

4682. Proposed by Goran Conar.

Determine the infimum and supremum (if they exist) of the set{
mn
√
m+ n : m,n ∈ N

}
.

4683. Proposed by Warut Suksompong.

For a non-negative integer n, let S(n) be the sum of digits in the decimal repre-
sentation of n. Let P (x) be a non-constant polynomial with integer coefficients.
Prove that for any real number r, there exists an integer k such that S(|P (k)|) > r.

4684. Proposed by Alin Creţu.

Let ABCDEFG be a regular heptagon with the vertices on the circle Ω. Suppose
that BH ∩ Ω = {I} and that G,D,H are collinear. If DH = DC, show that
HI = IB.

Copyright © Canadian Mathematical Society, 2021

https://publications.cms.math.ca/cruxbox/


450/ Problems

4685. Proposed by Abdollah Zohrabi.

There are 24 students in a school with two classrooms, each with capacity to sit
12 people. Every student goes to school every day, and goes to exactly one of the
classrooms. Prove that the students can attend school for 14 days in such a way
that each pair of students are present in the same classroom at least once.

4686. Proposed by Nguyen Viet Hung.

Let a, b, c be positive real numbers. Prove that

a2

b+ c
+

b2

c+ a
+

c2

a+ b
≥ a

2
+

3

…
b3 + c3

2
.

4687. Proposed by Ovidiu Furdui and Alina Ŝıntămărian.

Calculate
∞∑
n=1

Å
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
− ln 2 +

1

4n

ã
.

4688. Proposed by Mihaela Berindeanu.

Let ABCD be a square, with M,P ∈ (CD) and N ∈ (BC) so that DM =
MC, NB = 3NC and PN ⊥ AN . If K is the middle point of segment MN , show
that ] (PAM) ≡ ] (KAN) .

4689. Proposed by Daniel Sitaru.

Solve for positive real numbers x, y and z such that x+ y + z = 3:

xx
2 · yy2 · zz2 =

1

(x2)xz · (y2)yx · (z2)zy
.

4690. Proposed by Leonard Giugiuc.

Let x, y and z be nonnegative real numbers such that xy + yz + zx > 3 and
xy + yz + zx+ xyz < 4. Prove that

x+ y + z > xy + yz + zx.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 janvier 2022.

4681. Proposé par Michel Bataille.

Soient n un entier positif et

Pn(x) =
n∏
k=1

Å
x+ 4 sin2 2kπ

2n+ 1

ã
.

Évaluer Pn(0) et P ′n(0).

4682. Proposé par Goran Conar.

S’ils existent, déterminer l’infimum et le suprémum de l’ensemble{
mn
√
m+ n : m,n ∈ N

}
.

4683. Proposé par Warut Suksompong.

Pour un entier non négatif n, soit S(n) la somme de ses chiffres lorsqu’il est
représenté sous forme décimale. Soit aussi P (x) un polynôme à coefficients entiers,
non constant. Démontrer que pour tout nombre réel r, il existe un nombre entier
k tel que S(|P (k)|) > r.

4684. Proposé par Alin Creţu.

Soit ABCDEFG un heptagone dont tous les sommets se trouvent sur le cercle
Ω. Soit alors H tel que BH ∩ Ω = {I} et tel que G, D et H soient alignés. Si
DH = DC, démontrer que HI = IB.
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4685. Proposé par Abdollah Zohrabi.

Une école avec deux classes, chacune de capacité 12, accueille 24 élèves. Tout
élève va à l’école chaque jour et s’y présente à une seule des classes. Démontrer la
possibilité, sur une période de 14 jours, que toute paire d’élèves se présente dans
la même classe au moins une fois.

4686. Proposé par Nguyen Viet Hung.

Soient a, b, c des nombres réels positifs. Démontrer que

a2

b+ c
+

b2

c+ a
+

c2

a+ b
≥ a

2
+

3

…
b3 + c3

2
.

4687. Proposé par Ovidiu Furdui et Alina Ŝıntămărian.

Calculer
∞∑
n=1

Å
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
− ln 2 +

1

4n

ã
.

4688. Proposé par Mihaela Berindeanu.

Soit ABCD un carré, où M,P ∈ (CD) et N ∈ (BC), tels que DM = MC,
NB = 3NC et PN ⊥ AN . Si K est le point milieu du segment MN , démontrer
que ] (PAM) ≡ ] (KAN) .

4689. Proposé par Daniel Sitaru.

Déterminer les nombres réels positifs x, y et z tels que x+ y + z = 3 et

xx
2 · yy2 · zz2 =

1

(x2)xz · (y2)yx · (z2)zy
.

4690. Proposé par Leonard Giugiuc.

Soient x, y et z des nombres réels non négatifs tels que xy + yz + zx > 3 et
xy + yz + zx+ xyz < 4. Démontrer que

x+ y + z > xy + yz + zx.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2021: 47(4), p. 199–203.

4631 (corrected). Proposed by Nguyen Viet Hung.

Let P be any point on a triangular face of a regular tetrahedron with centroid
O and let L,M,N be respectively projections of P onto the other three triangu-
lar faces. Prove that PO passes through the centroid G of triangle LMN and

determine ratio PO

PG
.

Editor’s comment: This problem has been corrected by inserting ‘regular’ before
‘tetrahedron’. This correction should also apply to the original statement of the
problem, seen in issue 47 (4), pp. 199 and 201.

We received 7 submissions. All but one of them corrected the statement of problem
4631 as it had appeared in 47(4), then proved the modified result; the other provided
only a counterexample. We shall feature the two solutions that were sent to us by
the UCLan Cyprus Problem Solving Group.

It is easily seen that the assertion fails to hold for an arbitrary tetrahedron. We
shall verify it for the case where the given tetrahedron is regular.

Solution 1.

Because the given tetrahedron is regular, we may assume that the coordinates of
its vertices are

A = (1, 1, 1), B = (1,−1,−1), C = (−1, 1,−1), and D = (−1,−1, 1).

Its centroid is then O = (0, 0, 0). The equation of the plane through B,C,D is
x+ y+ z = −1. Let P belong to this plane, say P = (b, c, d) where b+ c+d = −1.

The equation of the plane through A,B,C is x+y− z = 1. The projection L of P
on this plane is (b+ t, c+ t, d− t) where t ∈ R satisfies (b+ t)+(c+ t)− (d− t) = 1.
This gives

t =
1 + d− (b+ c)

3
=

2 + 2d

3
.

Thus

L =

Å
3b+ 2d+ 2

3
,

3c+ 2d+ 2

3
,
d− 2

3

ã
.

Analogously we get

M =

Å
b− 2

3
,

3c+ 2b+ 2

3
,

3d+ 2b+ 2

3

ã
andN =

Å
3b+ 2c+ 2

3
,
c− 2

3
,

3d+ 2c+ 2

3

ã
.
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So

G =
1

9
(5b+2(b+ c+d)+2, 5c+2(b+ c+d)+2, 2(b+ c+d)+5d+2) =

5

9
(b, c, d) .

So
−−→
GP = 4

9

−−→
OP and, thus, PO passes through G with PO/PG = 9

4 .

Solution 2.

The transformation that projects an arbitrary point of 3-space onto a plane is
affine, as is the transformation that maps a triple of points onto the centroid of
the triangle formed by those points; it follows that given three fixed planes, there
exists an affine transformation, f : R3 → R3, that maps an arbitrary point to the
centroid G of the triangle formed by the projection of that point onto the three
planes.

We may again assume that the centroid O of the given regular tetrahedron is the
origin of R3. Let a,b, c,d be the position vectors of its vertices, while BCD is the
face that contains the given point P . In the limiting case when P coincides with
the vertex B, the triangle KLM is the degenerate triangle with vertices B,B,B′

where (since ABCD is regular), B′ is the centroid of the face ACD. So

f(b) =
b + b + b′

3
=

b + b + a+c+d
3

3
=

(a + b + c + d) + 5b

9
=

5b

9
.

Analogously we have

f(c) =
5c

9
and f(d) =

5d

9
.

Now any point P in the plane of B,C,D has position vector p = λb + µc + νd
where λ+ µ+ ν = 1. Since f is affine we have f(p) = Tp + v for some matrix T
and some vector v. Then

f(p) = T (λb + µc + νd) + v

= λ(Tb + v) + µ(Tc + v) + ν(Tνd + v)

= λf(b) + µf(c) + νf(d)

=
5

9
(λb + µc + νd) =

5

9
p .

So P,O,G are collinear with PO/PG = 9/4 as in Solution 1.

Editor’s comments. The original statement of problem 4631 erroneously omitted
the word regular. It is easy to produce an example of a nonregular tetrahedron
ABCD with centroid O together with a specific point P on one face whose pro-
jections on the other faces form a triangle whose centroid G is not on the line PO.
Three solvers produced such an example. The UCLan Cyprus Problem Solving
Group went further and proved that should the resulting centroid G lie on PO for
all points P on the surface of the tetrahedron, then that tetrahedron would have
to be regular.
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4632. Proposed by Michel Bataille.

Let Hn =
n∑
k=1

1
k be the nth harmonic number. Prove that for n ≥ 1,

n∑
k=1

Ç
2n+ 1

2k − 1

å
H2k−1

2k
=

n∑
k=1

Ç
2n+ 1

2k

å
H2k

2k + 1
.

We received 11 correct solutions and 1 incorrect submission. We present 4 solu-
tions.

Solution 1, by Marie-Nicole Gras.

We recall that for n ≥ 1, we have Hn =
∑n
k=1

(
n
k

) (−1)k−1

k . This can be established
by induction with the induction step

n+1∑
k=1

Ç
n+ 1

k

å
(−1)k−1

k
=

(−1)n

n+ 1
+

n∑
k=1

Ç
n

k

å
(−1)k−1

k
+

n∑
k=1

Ç
n

k − 1

å
(−1)k−1

k

=
(−1)n

n+ 1
+Hn +

1

n+ 1

n∑
k=1

Ç
n+ 1

k

å
(−1)k−1

= Hn +
1

n+ 1

n+1∑
k=1

Ç
n+ 1

k

å
(−1)k−1

= Hn −
1

n+ 1
[(1− 1)n+1 − 1] = Hn+1.

Multiplying the desired equation by 2n+ 2 and taking the difference between the
two sides, we obtain

n∑
k=1

ñÇ
2n+ 2

2k

å
H2k−1 −

Ç
2n+ 2

2k + 1

å
H2k

ô
=

n∑
k=1

ñÇ
2n+ 1

2k − 1

å
H2k−1 +

Ç
2n+ 1

2k

å
(H2k−1 −H2k)−

Ç
2n+ 1

2k + 1

å
H2k

ô
=

[Ç
2n+ 1

1

å
+
n−1∑
k=1

Ç
2n+ 1

2k + 1

å
(H2k+1 −H2k)−

Ç
2n+ 1

2n+ 1

å
H2n

]

+
n∑
k=1

Ç
2n+ 1

2k

å
(H2k−1 −H2k)

= (2n+ 1) +
2n∑
j=2

(−1)j−1
Ç

2n+ 1

j

å
(Hj −Hj−1) +

Å
1

2n+ 1
−H2n+1

ã
=

2n+1∑
j=1

(−1)j−1

j

Ç
2n+ 1

j

å
−H2n+1 = 0, which establishes the result.
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Solution 2, based on the independent solutions of Adnan Ali and UCLan Cyprus
Problem Solving Group.

Along with the representation of Hn in the previous solution, we need this result:

1

n
=

n∑
k=1

(−1)k−1
Ç
n

k

å
Hk.

To see this, note that

n∑
k=1

(−1)k−1
Ç
n

k

å
Hk =

n∑
k=1

(−1)k−1
Ç
n

k

å k∑
j=1

1

j
=

n∑
j=1

1

j

n∑
k=j

(−1)k−1
Ç
n

k

å
=

n∑
j=1

1

j
(−1)j−1

Ç
n− 1

j − 1

å
=

1

n

n∑
j=1

(−1)j−1
Ç
n

j

å
=

1

n
[1− (1− 1)n] =

1

n
.

Multiplying the desired equation by 2n+ 2 and taking the difference between the
two sides, we obtain

n∑
k=1

ñÇ
2n+ 2

2k

å
H2k−1 −

Ç
2n+ 2

2k + 1

å
H2k

ô
=

2n∑
j=1

(−1)j+1

Ç
2n+ 2

j + 1

å
Hj

=
2n∑
j=1

(−1)j+1

Ç
2n+ 2

j + 1

åÅ
Hj+1 −

1

j + 1

ã
=

2n+1∑
k=2

(−1)k
Ç

2n+ 2

k

å
Hk −

2n+1∑
k=2

(−1)k
Ç

2n+ 2

k

å
1

k

=
2n+2∑
k=1

(−1)k
Ç

2n+ 2

k

å
Hk + (2n+ 2)−H2n+2

+
2n+2∑
k=1

(−1)k−1
Ç

2n+ 2

k

å
1

k
− (2n+ 2) +

1

2n+ 2

= − 1

2n+ 2
+ (2n+ 2)−H2n+2 +H2n+2 − (2n+ 2) +

1

2n+ 2
= 0,

from which the desired equality follows.

Solution 3, by M. Bello, M. Benito, Ó. Ciaurri and E. Fernández.

Let aj = (−1)j
(
2n+1
j

) Hj

j+1 and S =
∑2n
j=1 aj . It is required to show that S = 0.

Since Hj =
∫ 1

0
(1− tj)(1− t)−1 dt,

S =

∫ 1

0

f(1)− f(t)

1− t dt where f(t) =
2n∑
j=1

Ç
2n+ 1

j

å
(−1)jtj

j + 1
.
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Let g(s) = (1−s)2n+1+s2n−1 =
∑2n
i=1(−1)j

(
2n+1
j

)
sj and h(t) =

∫ t
0
g(s) ds. Then

tf(t) =
∫ t
0
g(s) ds = h(t), so that

S =

∫ 1

0

th(1)− h(t)

t(1− t) dt =

∫ 1

0

(1− t)h(1)− h(1− t)
t(1− t) dt

=
1

2

∫ 1

0

h(1)− (h(t) + h(1− t))
t(1− t) dt.

Since g(s) = g(1− s),

h(t) + h(1− t) =

∫ t

0

g(s) ds+

∫ 1−t

0

g(s) ds

=

∫ t

0

g(s) ds+

∫ 1−t

0

g(1− s) ds

=

∫ t

0

g(s) ds+

∫ 1

t

g(s) ds =

∫ 1

0

g(s) ds = h(1).

Therefore S = 0.

Solution 4, by G.C. Greubel.

We recall some preliminary results.Ç
m

k

å
=

Γ(m+ 1)

Γ(k + 1)Γ(m− k + 1)

=
1

2πi

∮
|z|=1

(1 + z)m

zk+1
dz.

The partial derivatives of
(
m
k

)
with respect to m and k are respectively given by

∂m

Ç
m

k

å
=

Ç
m

k

å
(ψ(m+1)−ψ(m−k+1)) =

1

2πi

∮
|z|=1

(z+1)mz−k−1 ln(z+1) dz,

and

∂k

Ç
m

k

å
=

Ç
m

k

å
(ψ(m− k + 1)− ψ(k + 1)) = − 1

2πi

∮
|z|=1

(z + 1)mz−k−1 ln z dz,

where

ψ(z) =
d

dz
ln Γ(z) =

Γ′(z)

Γ(z)

and

ψ(z + 1) =
Γ′(z + 1)

Γ(z + 1)
=
zΓ′(z) + Γ(z)

zΓ(z)
= ψ(z) +

1

z
.

The generating function for the sequence {Hn} is

∞∑
k=1

Hkz
k =
− ln(1− z)

1− z .
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Observe also that
m∑
k=1

(−1)k+1

Ç
m+ 1

k + 1

å
Hk =

∞∑
k=1

(−1)k+1

Ç
m+ 1

k + 1

å
Hk

since
(
m+1
k+1

)
= 0 for k ≥ m+ 1.

For each positive integer m,

m∑
k=1

(−1)k−1
Ç
m+ 1

k + 1

å
Hk =

1

2πi

∮
|z|=1

(z + 1)m+1z−2

(
m∑
k=1

(−1)k−1z−kHk

)
dz

=
1

2πi

∮
|z|=1

(z + 1)m+1z−2

[
z

1 + z
ln

Å
1 +

1

z

ã
+

∞∑
k=m+1

(−z)kHk

]
dz

=
1

2πi

∮
|z|=1

(z + 1)mz−1(ln(z + 1)− ln(z)) dz −
[ ∞∑
k=m+1

(−1)k−1
Ç
m+ 1

k + 1

å
Hk

]

=
1

2πi

∮
|z|=1

(z + 1)mz−1(ln(z + 1)− ln(z)) dz

s

=

ñ
∂m

Ç
m

k

å
+ ∂k

Ç
m

k

åô
k=0

s

=

ñÇ
m

k

å
(ψ(m+ 1)− ψ(k + 1))

ô
k=0

= ψ(m+ 1)− ψ(1) = Hm.

Setting m = 2n+ 1 and subtracting H2n+1 from each side yields

2n∑
j=1

(−1)j+1

Ç
2n+ 2

j + 1

å
Hj = 0,

from which the result follows.

Editor’s comments. C.R. Pranesachar took the difference of the two sides and
worked out the coefficients of each integer reciprocal to find that the difference is
equal to

n∑
k=1

1

2k − 1

Ç
−1 +

Ç
2n+ 1

2k − 1

åå
+

n∑
k=1

1

2k

Ç
−1−

Ç
2n+ 1

2k

åå
=

2n∑
j=1

(−1)j−1

j

Ç
2n+ 1

j

å
−H2n

=
2n+1∑
j=1

(−1)j−1

j
−H2n+1 = 0.
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4633. Proposed by Nguyen Viet Hung.

Let A1A2 . . . An be a a regular n−sided polygon with center O and let M be any
point inside the polygon. Suppose that the line OM intersects the lines AiAi+1

at Ni (i = 1, 2, . . . , n and An+1 ≡ A1), respectively. Find

n∑
i=1

MNi
ONi

.

We feature the solution by Adnan Ali, which is a typical example of the 12 similar
submissions that we received.

We shall prove that the desired sum is equal to n.

Let a be the side-length of the polygon and d be the common distance from O
to one of its sides. Let Pi and Qi, 1 ≤ i ≤ n, be the feet of the perpendiculars
dropped to the side AiAi+1 from points O and M respectively. Note that the
resulting pairs of right triangles, 4OPiNi and 4MQiNi are similar (since their
sides are parallel). Thus

MNi
ONi

=
MQi
OPi

=
MQi
d

1 ≤ i ≤ n. (1)

Using square brackets to denote area, we have

MQi =
2[MAiAi+1]

AiAi+1
=

2[MAiAi+1]

a
. (2)

It follows that the desired sum becomes

n∑
i=1

MNi
ONi

=(1)
1

d

n∑
i=1

MQi =(2)
2

ad

n∑
i=1

[MAiAi+1] =
[A1A2 . . . An]

ad
2

=
n · ad2
ad
2

= n.
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4634. Proposed by George Stoica.

Let
∞∑
n=1

an <∞ for an > 0, n = 1, 2, . . . Find lim
n→∞

n · n
√
a1 · · · an.

We received 11 submissions of which 7 were correct and complete. We present the
solution of the proposer, lightly edited.

Let us denote Sn := a1 + · · ·+ an and let L be the limit of the sequence (Sn)n∈N

(which exists since
∞∑
n=1

an <∞). We will first show that

lim
n→∞

n
√
n! · a1 · an = 0,

and use this to conclude that the desired limit is likewise 0.

By the Arithmetic Mean - Geometric Mean inequality, we have

n
√
n! · a1 · · · an ≤

a1 + 2a2 + · · ·+ nan
n

=
S1 + 2(S2 − S1) + · · ·+ n(Sn − Sn−1)

n

= Sn −
S1 + S2 + · · ·+ Sn−1

n
. (1)

By the Stolz-Cesàro Theorem,

Sn → L implies
S1 + · · ·+ Sn

n
→ L

and it easily follows that
S1 + · · ·+ Sn−1

n
→ L

as well. Therefore,

Sn −
S1 + S2 + · · ·+ Sn−1

n
→ 0 as n→∞,

and, applying the Squeeze Theorem to (1), we also get

lim
n→∞

n
√
n! · a1 · an = 0.

Finally, since lim
n→∞

n√
n!

n
=

1

e
, we obtain that

lim
n→∞

n · n
√
a1 · · · an = lim

n→∞

n
n
√
n!
· lim
n→∞

n
√
n! · a1 · · · an = 0.
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4635∗. Proposed by S. Chandrasekhar.

For a prime p dividing n!, let ep(n!) denote the highest power of p in n!, that
is if ep(n!) = k, it means pk | n! whereas pk+1 - n!. Prove or disprove that
e3(n!) | e2(n!) for infinitely many n.

We received comments from Marie-Nicole Gras, Carl Pomerance, and David Stone.
Until very recently, this was an unsolved research-level problem. However, in May
2021, Lukas Spiegelhofer confirmed that there are infinitely many n such that
e2(n!) = 2e3(n!) in an arXiv preprint titled Collisions of the binary and ternary
sum-of-digits functions (https: // arxiv. org/ abs/ 2105. 11173 ). We summa-
rized a few basic ideas to solve the problem.

Let p be a prime and n be a positive integer. It is not hard to see that Legendre’s
Formula

ep(n!) =
∞∑
k=1

õ
n

pk

û
implies that

ep(n!) =
n− sp(n)

p− 1
,

where sp(n) denotes the sum of the digits in the base-p expansion of n. It is easy
to show that limn→∞ sp(n)/n = 0. Therefore,

lim
n→∞

ep(n!)

n
=

1

p− 1
.

In particular, e2(n!) = n + o(n) and e3(n!) = n/2 + o(n), as n → ∞. Therefore,
when n is large enough,

e3(n!) | e2(n!) ⇐⇒ e2(n!) = 2e3(n!) ⇐⇒ s2(n) = s3(n). (1)

In fact, by computation, one can show that equation (1) holds for n ≥ 6. Thus, it
suffices to show that there are infinitely many n such that s2(n) = s3(n).

Lukas Spiegelhofer managed to prove the following stronger theorem: for each
ε > 0, there is Cε > 0, such that

#
{
n ≤ N : s2(n) = s3(n)

}
≥ CεN

log 3
log 4−ε (2)

holds for all positive integers N . Note that log 3/ log 4 ≈ 0.792. The proof is not
constructive, meaning that the proof did not give an algorithm to find integers n
such that s2(n) = s3(n).

The proof of the main theorem essentially follows from the following weaker state-
ment: there exist infinitely many positive integers n such that n ≡ 9 (mod 12) and
s2(n) − s3(n) ∈ {0, 1}. The reason is the following: if there are infinitely many
n ≡ 9 (mod 12) such that s2(n)−s3(n) = 0, then we are done; otherwise, there are
infinitely many n ≡ 9 (mod 12) (i.e., n ≡ 0 (mod 3) and n ≡ 1 (mod 4)) such that
s2(n)− s3(n) = 1, which implies that s3(n+ 1) = s3(n) + 1 = s2(n) = s2(n+ 1).
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Editor’s Comment. A list of the smallest 10000 numbers n such that s2(n) = s3(n)
can be found in https://oeis.org/A037301/b037301.txt. Readers are encour-
aged to refer to Spiegelhofer’s paper for a complete proof of the main theorem as
well as discussions on related problems. In particular, he suggested the following
interesting question (which might be very difficult): determine if there are infinitely
many prime numbers p such that s2(p) = s3(p). He also provided a probabilistic
heuristic that the natural density of the set of integers n with s2(n) = s3(n) is
zero.

4636. Proposed by Mihaela Berindeanu.

Solve the following equation over the set of real numbers:

(3x + 7)
log4 3 − (4x − 7)

log3 4
= 4x − 3x − 14.

We received 15 submissions of which 12 were correct and complete. We present
the solution by the UCLan Cyprus Problem Solving Group.

Let a = 4x−7, b = 3x+7 and t = log3 4. Then 1
t = log4 3, so the equation becomes

b1/t + b = at + a .

This has the obvious solution a = b1/t. It cannot have any other solution because
if a > b1/t then a+at > b1/t+b and if a < b1/t then a+at < b1/t+b. Let log denote
the base e logarithm function. Since a = b1/t we get log b = t log a = log 4

log 3 log a.

Thus f(x) = 0 where

f(x) = log 4 log (4x − 7)− log 3 log (3x + 7) .

The function f is defined on (log4 7,∞). We claim that f is strictly increasing in
this domain. Indeed

f ′(x) =
(log 4)2 · 4x

4x − 7
− (log 3)2 · 3x

3x + 7

=
12x[(log 4)2 − (log 3)2] + 7[(log 4)2 · 4x − (log 3)2 · 3x]

(4x − 7)(3x + 7)
> 0.

We now observe that x = 2 is a solution and since f is strictly increasing, x = 2
must be the unique solution.

4637. Proposed by Titu Zvonaru.

Let the incircle of triangle ABC touch the sides BC,CA, and AB at points D,E,
and F , respectively. The internal bisector of the angle ∠BCA intersects the line
EF at M . Let P be the reflection of the point E with respect to M . Prove that
the triangle BPF is isosceles.

We received 16 submissions, some containing 2 and even 3 solutions based on
different ideas. A variety of analytic tools were used including vectors, complex
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numbers and barycentric coordinates. Pure geometric solutions can be classified as
angle-chasing and length-chasing solutions.

Solution 1, by Adnan Ali.

Denote by a, b, c and s the sides BC, CA, AB and the semi-perimeter of the
triangle, respectively. Then we know that AE = AF = s− a, BF = BD = s− b
and CD = CE = s− c.

Now construct a line ` through B parallel to AC and let it intersect EF at P ′.
From this construction we obtain 4BP ′F ∼ 4AEF . Thus AE = AF implies
BP ′ = BF = s− b, and hence 4BP ′F is isosceles. Now let the internal bisector
of ∠BCA meet ` at G. Clearly, 4P ′GM ∼ 4ECM . Next observe that P ′G ‖ EC
implies

∠P ′GM = ∠MCE = ∠MCB,

which implies that 4CBG is isosceles with CB = BG. Since BG = a > s − b =
BP ′, we get

P ′G = BG−BP ′ = BC −BF = BC −BD = CD = CE

so

4P ′GM ∼= 4ECM ⇒ P ′M = ME,

and hence M is the midpoint of P ′E. But from the problem statement, we know
that M is the midpoint of PE and thus P = P ′. The problem follows.

Solution 2, by Ivko Dimitrić.

We use barycentric coordinates in reference to triangle ABC where A = (1 : 0 :
0), B = (0 : 1 : 0), C = (0 : 0 : 1). If I is the incenter of ABC and a, b, c are the
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side lengths opposite the corresponding vertices and s is the semi-perimeter, then

E = (s− c : 0 : s− a), F = (s− b : s− a : 0), I = (a : b : c).

The line CI has an equation∣∣∣∣∣∣
x y z
a b c
0 0 1

∣∣∣∣∣∣ = 0 ⇐⇒ bx− ay = 0,

whereas the line EF has an equation∣∣∣∣∣∣
x y z

s− c 0 s− a
s− b s− a 0

∣∣∣∣∣∣ = 0 ⇐⇒ −(s− a)x+ (s− b)y + (s− c)z = 0.

Then the intersection point M of these two lines is found to be

M = (a : b : b− a) =
1

2b
(a, b, b− a).

The normalized coordinates of E are E =
(
s−c
b , 0 , s−a

b

)
. Since M is the midpoint

of EP ,

P = 2M − E =

Å
s− b
b

, 1 , −s− b
b

ã
= (s− b : b : −(s− b))

The line BP is then∣∣∣∣∣∣
x y z

s− b b −(s− b)
0 1 0

∣∣∣∣∣∣ = 0 ⇐⇒ x+ z = 0.

Therefore, the lines AC (y = 0) and BP have the same point at infinity BP∞ =
AC∞ = (1 : 0 : −1), which means that they are parallel.

Then,
∠BPF = ∠FEA = ∠EFA = ∠PFB,

which shows that 4BPF is isosceles with BF = BP.

Solution 3, by Michel Bataille.

We use the familiar notations for the elements of the triangle ABC.
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Since AE = AF (= s − a) and ∠PFB = ∠AFE, the triangle BPF is isosceles if
∠FBP = ∠FAE, or, equivalently, if BP and AC are parallel.

Now, using barycentric coordinates relative to (A,B,C), the points E,F satisfy

bE = (s− c)A+ (s− a)C, cF = (s− b)A+ (s− a)B,

so that the equation of the line EF is

x(s− a)− y(s− b)− z(s− c) = 0.

Since I = (a : b : c), the equation of CI is bx−ay = 0, and we readily deduce that
M = (a : b : b− a), that is,

2bM = aA+ bB + (b− a)C.

Now, from
−−→
PM =

−−→
ME, we have P = 2M − E or

bP = 2bM−bE = aA+bB+(b−a)C−(s−c)A−(s−a)C = (s−b)A+bB−(s−b)C.

Thus, b(P −B) = (s− b)(A−C), that is, b
−−→
BP = (s− b)−→CA and BP ‖ CA follows.

4638. Proposed by Marie-Nicole Gras.

We consider a square ABCD of side AB = 6a, a ∈ R ; we put on the side AB
points A1, A2, A3 such that AA1 = 2a, A1A2 = A2A3 = a, then we draw the
squares A1B1C1D1, A2B2C2D2 and A3B3C3D3 as shown on the figure.

A A1 A2 A3 B

B1

B2

B3

CC1C2C3D

D1

D2

D3

The region common to the interiors of the three squares is a dodecagon. Find the
relationship between the areas of the dodecagon and the largest square.

This problem was inspired by 4449.

We received 15 submissions, all are correct. We present two solutions.
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Solution 1, by Missouri State University Problem Solving Group, which contains
a generalisation.

More generally, we will consider the case when

A = (−1,−1), B = (1,−1), C = (1, 1), D = (−1, 1),

and A1A2 = A2A3 = λ, 0 < λ < 1. Denote the intersection of C1D1 and C3B1

by P , the intersection of C2B2 and C3B3 by Q, and the intersection of C1B1 and
C2B2 by R. Let O denote the origin. The dodecagon we are investigating con-
sists of eight triangles congruent to4OPQ and four triangles congruent to4OQR.

The equation of the line through C1 and D1 is

y =
1− λ
1 + λ

x+
1 + λ2

1 + λ
.

The point P corresponds to the y-intercept of this line, so

P =

Å
0,

1 + λ2

1 + λ

ã
.

The equation of the line through B3 and C3 is

y = −1− λ
1 + λ

x+
1 + λ2

1 + λ

and the equation of the line through B2 and C2 is y = 1 − x. Finding the inter-
section of these two lines gives

Q =

Å
1− λ

2
,

1 + λ

2

ã
.

By symmetry, we have

R =

Å
1 + λ

2
,

1− λ
2

ã
.

The area of 4OPQ is

1

2
det

ï
(1− λ)/2 (1 + λ)/2

0
(
1 + λ2

)
/ (1 + λ)

ò
=

(1− λ)
(
1 + λ2

)
4(1 + λ)

.

The area of 4OQR is

1

2
det

ï
(1 + λ)/2 (1− λ)/2
(1− λ)/2 (1 + λ)/2

ò
=
λ

2
.

Therefore the area of the dodecagon is

8 · (1− λ)
(
1 + λ2

)
4(1 + λ)

+ 4 · λ
2

=
2
(
1 + 2λ2 − λ3

)
1 + λ

.
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The area of the larger square is 4, so the ratio of the area of the dodecagon to that
of the square is

1 + 2λ2 − λ3
2(1 + λ)

.

In the problem posed, λ = 1/3 and we obtain a ratio of 4/9.

We note in passing that for a fixed larger square, the dodecagon’s area is smallest
when

λ =

√
17− 3

4
.

Solution 2, by Peter DeVries.

Divide the square ABCD into a 6×6 square grid, partitioning the area of ABCD
into 36 squares of side length a as in Figure 1.

A B

CD

A1

B1

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

By calculation of the points of intersection of the sides of the smaller squares and
symmetry of the construction, we can see that the dodecagon contains 12 small
squares of side length a, 4 triangles with base a and height a, and 4 triangles with
base 2a and height 1

2a. Therefore, the area of the dodecagon is 16a2 compared to
square ABCD’s area of 36a2. Thus, the ratio of the dodecagon’s area to that of

ABCD is
16

36
=

4

9
.

Editor’s Comments. As Brian Beasley points out, it is interesting to note as well
that while the octagon in Problem 4449 was equilateral but not equiangular, the
dodecagon in this problem is neither equilateral nor equiangular.
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4639. Proposed by Seán Stewart.

If m ∈ N ∪ {0} and n ∈ N, show that

n∑
k=1

(−1)k+1

k(k +m)!(n− k)!
=

1

m!n!

n∑
k=1

1

m+ k
.

We received 13 submissions, all correct. We present the solution by Theo Koupelis,
slightly modified by the editor.

Let Hn =
n∑
k=1

1

k
denote the nth Harmonic number. Then Hn =

∫ 1

0

1− xn
1− x dx,

with H0 = 0. Therefore,

n∑
k=1

1

m+ k
= Hm+n −Hm =

∫ 1

0

1− xn+m
1− x dx−

∫ 1

0

1− xm
1− x dx.

Setting u = 1− x, we then have

n∑
k=1

1

m+ k
= −

∫ 1

0

1

u
(1− u)m · ((1− u)n − 1) du

= −
∫ 1

0

1

u
(1− u)m

n∑
k=1

(−1)k
Ç
n

k

å
ukdu

= −
n∑
k=1

(−1)k
Ç
n

k

å∫ 1

0

uk−1(1− u)mdu

= −
n∑
k=1

(−1)k
Ç
n

k

å
B(k,m+ 1)

= −
n∑
k+1

(−1)k
Ç
n

k

å
Γ(k)Γ(m+ 1)

Γ(k +m+ 1)

where B and Γ denote the beta and gamma functions, respectively. It follows that

n∑
k=1

1

m+ k
= −

n∑
k=1

(−1)k
n!

k!(n− k)!

(k − 1)!m!

(k +m)!

=
n∑
k=1

(−1)k+1 m!n!

k(k +m)!(n− k)!

from which the result follows, completing the proof.

Editor’s comment: More than half of the submitted solutions are similar to the
one presented above. They all use one or more of Harmonic function, Gamma
function, and Beta function.
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4640. Proposed by Mihaela Berindeanu.

Let ABC be an acute triangle and A1, B1, C1 be the feet of the medians from
A,B,C respectively. Denote by I1 and I2 the centers of the inscribed circles
of M ABA1 and M AA1C respectively. The circumcircle of M ABI1 cuts the
circumcircle of M AI2C for the second time in A′. Define B′ and C ′ analogously.

Show that if
−−−→
A′A1 +

−−−→
B′B1 +

−−−→
C ′C1 =

−→
0 , then M ABC is an equilateral triangle.

We received six submissions, all correct, and we feature the solution by Oliver
Geupel.

Since the angle A is acute, the circle with center A1 and radius A1B meets the
median AA1 at an interior point A′′. We have

∠AI1B = 180◦ − ∠A1BA+ ∠BAA1

2

= 90◦ +
∠AA1B

2
= 90◦ +

∠A′′A1B

2
= 180◦ − ∠BA′′A1 = ∠AA′′B;

whence, the points A, A′′, B, and I1 are concyclic. Analogously, the points A, A′′,
C, and I2 are concyclic. As a consequence, A′ = A′′. With similar arguments for
B′ and C ′, we deduce that the segments A1A

′, B1B
′, and C1C

′ are each half as
long as their corresponding sides a = BC, b = CA, and c = AB.

Using the centroid G of ∆ABC, let us define points A0, B0, and C0 by the condi-
tions

−−→
GA0 =

−−−→
A1A

′,
−−→
GB0 =

−−−→
B1B

′, and
−−→
GC0 =

−−−→
C1C

′.
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By hypothesis,

−−→
GA0 +

−−→
GB0 +

−−→
GC0 =

−−−→
A1A

′ +
−−−→
B1B

′ +
−−−→
C1C

′ =
−→
0 ;

whence, G is the common centroid of the triangles ABC and A0B0C0. Moreover,
because each of the triplets {G,A,A0}, {G,B,B0}, and {G,C,C0} of points is
collinear, there is a real number λ > 0 such that

−−→
GA0 +

−−→
GB0 =

−−→
C0G = λ

−−→
CG = λ(

−→
GA+

−−→
GB).

Since the vectors
−→
GA and

−−→
GB are linearly independent, it readily follows that−−→

GA0 = λ
−→
GA and

−−→
GB0 = λ

−−→
GB. Thus, 4ABC and 4A0B0C0 are homothetic.

As a consequence, the median lengths ma, mb, and mc of 4ABC are proportional
to its sides a, b, and c; that is, there is a real number µ > 0 such that

4m2
a = 2(b2 + c2)− a2 = µa2, (1)

4m2
b = 2(c2 + a2)− b2 = µb2, (2)

4m2
c = 2(a2 + b2)− c2 = µc2. (3)

By adding (1), (2), and (3), we obtain µ = 3. Hence, by (3),

2c2 = a2 + b2.

Plugging this into (1), we deduce that a2 = b2. Analogously, a2 = c2. It follows
that the triangle ABC is equilateral.
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Robo Creativity – Answers

1. The robot PP creates itself.
2. The robot QQ destroys itself.
3. The robot SS is a friend of itself.
4. The robot PFP creates its best friend.
5. The robot SES is a friend of its worst enemy.
6. The robot FRFR is the best friend of one of its enemies.
7. The robots PCP and CPCP create each other.
8. The robots QDQ and DQDQ destroy each other.
9. The robot CQCQ creates the robot QCQ while QCQ destroys CQCQ.

Alternatively, the robot PDP creates the robot DPDP while DPDP destroys
PDP.

10. The robot CSCS creates the robot SCS while SCS is a friend of CSCS,
though not the best friend of CSCS.

11. The robot FQEFQ is the best friend of the robot QEFQ while QEFE de-
stroys EFQRFQ, the worst enemy of FQEFQ.

12. The robot CFQECFQ creates the robot FQECFQ the best friend of the
robot QECFQ, while QECFQ destroys the robot ECFQECFQ, the worst
enemy of CFQECFQ. Alternatively, the robot PFDEP creates the robot
FDEPFDEP, the best friend of the robot DEPFDEP, while DEPFDEP
destroys the robot EPFDP, the worst enemy of PFDEP.
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