Crux Mathematicorum is a problem-solving journal at the secondary and university undergraduate levels, published online by the Canadian Mathematical Society. Its aim is primarily educational; it is not a research journal. Online submission:

```
https://publications.cms.math.ca/cruxbox/
```

Crux Mathematicorum est une publication de résolution de problèmes de niveau secondaire et de premier cycle universitaire publiée par la Société mathématique du Canada. Principalement de nature éducative, le Crux n'est pas une revue scientifique. Soumission en ligne:
https://publications.cms.math.ca/cruxbox/

The Canadian Mathematical Society grants permission to individual readers of this publication to copy articles for their own personal use.
(c) CANADIAN MATHEMATICAL SOCIETY 2020. ALL RIGHTS RESERVED. ISSN 1496-4309 (Online)

La Société mathématique du Canada permet aux lecteurs de reproduire des articles de la présente publication à des fins personnelles uniquement.
© SOCIÉTÉ MATHÉMATIQUE DU CANADA 2020 TOUS DROITS RÉSERVÉS. ISSN 1496-4309 (électronique)

Supported by / Soutenu par :

- Intact Financial Corporation
- University of the Fraser Valley

Editorial Board

Editor-in-Chief	Kseniya Garaschuk	University of the Fraser Valley
MathemAttic Editors	John McLoughlin Shawn Godin Kelly Paton	University of New Brunswick Cairine Wilson Secondary School
	Quest University Canada	

IN THIS ISSUE / DANS CE NUMÉRO
436 MathemAttic: No. 19
436 Problems: MA91-MA95
438 Solutions: MA66-MA70
442 Teaching Problems: No. 12 John McLoughlin
445 Olympiad Corner: No. 387
445 Problems: OC501-OC505
448 Solutions: OC476-OC480
454 Focus On ...: No. 43 Michel Bataille
461 Problems: 4581-4590
465 Solutions: 4531-4540

MATHEMATTIC

No. 19

The problems in this section are intended for students at the secondary school level.

Click here to submit solutions, comments and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by January 15, 2021.

MA91. The points $(1,2,3)$ and $(3,3,2)$ are vertices of a cube. Compute the product of all possible distinct volumes of the cube.

MA92. Eight students attend a soccer practice. At the end of the practice, they decide to take selfies to celebrate the event. Each selfie will have either two or three students in the picture. Compute the minimum number of selfies so that each pair of the eight students appears in exactly one selfie.

MA93. Consider the system of equations

$$
\begin{aligned}
& \log _{4} x+\log _{8}(y z)=2, \\
& \log _{4} y+\log _{8}(x z)=4, \\
& \log _{4} z+\log _{8}(x y)=5 .
\end{aligned}
$$

Given that $x y z$ can be expressed in the form 2^{k}, compute k.
MA94. At each vertex of a regular hexagon, a sector of a circle of radius one-half of the side of the hexagon is removed. Find the fraction of the hexagon remaining.

MA95. Find the smallest and the largest prime factors of M, where

$$
M=1+2+3+\cdots+2017+2018+2019+2018+2017+\cdots+3+2+1 .
$$

\qquad

Les problèmes proposés dans cette section sont appropriés aux étudiants de l'école secondaire.

> Cliquez ici afin de soumettre vos solutions, commentaires ou généralisations aux problèmes proposés dans cette section.

Pour faciliter l'examen des solutions, nous demandons aux lecteurs de les faire parvenir au plus tard le 15 janvier 2021.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à l'Université de Saint-Boniface, d'avoir traduit les problèmes.

MA91. Les points $(1,2,3)$ et $(3,3,2)$ sont sommets d'un cube. Déterminer toutes les valeurs possibles pour le volume du cube.

MA92. Huit étudiants ont assisté à un match de soccer et ont décidé de marquer l'occasion en prenant des autophotos. Chaque autophoto captera soit deux soit trois étudiants. Déterminer le nombre minimum d'autophotos faisant en sorte que chaque paire d'étudiants se retrouve dans exactement une autophoto.

MA93. Soit le système d'équations

$$
\begin{aligned}
& \log _{4} x+\log _{8}(y z)=2, \\
& \log _{4} y+\log _{8}(x z)=4, \\
& \log _{4} z+\log _{8}(x y)=5 .
\end{aligned}
$$

Prenant pour acquis que $x y z$ peut est écrit sous la forme 2^{k}, déterminer k.
MA94. On enlève de chaque coin d'un hexagone régulier une section en pointe de tarte de rayon égal à la moitié de la longueur de côté de l'hexagone. Déterminer la fraction de surface restante.

MA95. Déterminer le plus petit et le plus grand facteurs premiers de M, où

$$
M=1+2+3+\cdots+2017+2018+2019+2018+2017+\cdots+3+2+1
$$

MATHEMATTIC SOLUTIONS

Statements of the problems in this section originally appear in 2020: 46(4), p. 145-148.

MA66. The 16 small squares shown in the diagram each have a side length of 1 unit. How many pairs of vertices (intersections of lines) are there in the diagram whose distance apart is an integer number of units?

Originally Problem 19 of the 2013 UK Senior Mathematical Challenge.
We received 7 submissions of which 5 were correct and complete. We present the solution by Arya Kondur.

Each pair of vertices in the same row or column will be an integer number of units apart. There are five points in a given row or column. Thus, there are $\binom{5}{2}=10$ distinct pairs of vertices in each row or column that have an integer distance between them. Since the figure in the problem statement has 5 rows and 5 columns, this gives us $(5+5) \cdot(10)=100$ pairs of vertices.

The distance of vertices that are not in the same row or column can be found using the Pythagorean Theorem. Suppose the horizontal distance between the two points is x, the vertical distance is y, and the total distance is d. We want to find pairs of vertices such that $x^{2}+y^{2}=d^{2}$ and $x, y \leq 4$. We place this restriction on x and y since the side length of the large square is 4 units.

There is only one Pythagorean triplet in which the smaller two values are at most 4. This triplet is $(3,4,5)$. Thus, we want to find pairs of vertices with a horizontal distance of 4 units and a vertical distance of 3 units (or vice versa). The first scenario is depicted in the left square of figure below and the second scenario is depicted in the right square of figure below.

Notice that from the figure, we have 8 more pairs of vertices that are an integer number of units apart. There are no more Pythagorean triples other than $(3,4,5)$ that fit our specifications. Thus, we can conclude that there are $100+8=108$ total pairs of vertices whose distance apart is an integer number of units.

MA67. Consider numbers of the form $10 n+1$, where n is a positive integer. We shall call such a number grime if it cannot be expressed as the product of two smaller numbers, possibly equal, both of which are of the form $10 k+1$, where k is a positive integer. How many grime numbers are there in the sequence $11,21,31,41, \ldots, 981,991$?

Originally Problem 22 of the 2013 UK Senior Mathematical Challenge.
We received 9 submissions, all of which were correct and complete. We present the solution by Tianqi Jiang.

Call a number special if it is in our sequence $11,21, \cdots, 991$. Note that $\sqrt{991}<41$, so any non-grime in the sequence must have at least one special factor in the set $\{11,21,31\}$.

Note that $\left\lfloor\frac{991}{11}\right\rfloor=90$, so there are $|\{11,21, \cdots, 81\}|=8$ non-grimes in the sequence whose smallest special factor is 11 . Similarly, $\left\lfloor\frac{991}{21}\right\rfloor=47$, so there are $|\{21,31,41\}|=3$ non-grimes in the sequence whose smallest special factor is 21 . Finally, since $31 \cdot 41>991,31^{2}=961$ is the only non-grime in the sequence whose smallest special factor is 31 .

In total, we have $8+3+1=12$ non-grimes in the sequence, meaning that $99-12=$ 87 must be grimes.

MA68. $P Q R S$ is a square. The points T and U are the midpoints of $Q R$ and $R S$ respectively. The line $Q S$ cuts $P T$ and $P U$ at W and V respectively. What fraction of the area of the square $P Q R S$ is the area of the pentagon $R T W V U$?

Originally Problem 23 of the 2013 UK Senior Mathematical Challenge.
We received twelve submissions, all correct. We present the solution provided by Richard Hess.

The pentagon $R T W V U$ covers $1 / 3$ of the area of the square.
Scale the square so that $P Q=1$. Let the points M and N be the midpoints of $U T$ and $V W$ respectively. Then $T U=N P=\frac{\sqrt{2}}{2}$ and $M N=M R=\frac{\sqrt{2}}{4}$, so that $M P=\frac{3 \sqrt{2}}{4}$. Then $\frac{V W}{T U}=\frac{N P}{M P}$ leads to $V W=\frac{\sqrt{2}}{3}$.
From these lengths, we find the area of $R T W V U$ is

$$
\frac{M N(V W+T U)}{2}+\frac{T U^{2}}{4}=\frac{\sqrt{2}}{2}\left(\frac{\sqrt{2}}{3}+\frac{\sqrt{2}}{2}\right) / 2+\frac{1}{8}=\frac{1}{3}
$$

MA69. The diagram shows two straight lines $P R$ and $Q S$ crossing at O. What is the value of x ?

Originally Problem 24 of the 2013 UK Senior Mathematical Challenge.
We received 15 submissions of which 14 were correct and complete.
We present the solution by Šefket Arslanagić. All solutions were essentially the same.

Let $\varphi=\angle S O R$. By the Law of Cosines applied to triangle $S O R$:

$$
\cos \varphi=\frac{|O S|^{2}+|O R|^{2}-|R S|^{2}}{2|O S||O R|}=-\frac{23}{40}
$$

Since $\angle P O Q=\angle S O R=\varphi$, we apply the Law of Cosines to triangle $P O Q$ and obtain

$$
\begin{aligned}
x^{2} & =|P Q|^{2}=|P O|^{2}+|Q O|^{2}-2|P O \| O Q| \cos \varphi \\
& =4^{2}+10^{2}-2 \cdot 4 \cdot 10\left(-\frac{23}{40}\right) \\
& =162 .
\end{aligned}
$$

It follows that $x=9 \sqrt{2}$.

MA70. Challengeborough's underground train network consists of six lines, p, q, r, s, t, u, as shown. Wherever two lines meet, there is a station which enables passengers to change lines. On each line, each train stops at every station. Jessica wants to travel from station X to station Y. She does not want to use any line more than once, nor return to station X after leaving it, nor leave station Y having reached it. How many different routes, satisfying these conditions, can she choose?

Originally 2013 UK Senior Mathematical Challenge, \#25.
We received 3 submissions, all of which were correct and complete.
We present the solution by Dmitry Fleischman with a few edits.
Note that a route with an odd number of trains utilized will end on line s, t or u. Since these lines do not contain Y, Jessica must use an even number of lines.

A route with two lines can use any of the lines s, t, u first, followed by any of the lines p, q, r. This gives $3 \times 3=9$ routes.
A route with four lines can use any of the lines s, t, u first, followed by any of the lines p, q, r second, then there are two choices for the third line, and two for the fourth. This gives a total of $3 \times 3 \times 2 \times 2=36$ routes.

A route with six lines can use any of the lines s, t, u first, followed by any of the lines p, q, r second, then there are two choices for the third line, and two for the fourth. Now the fifth line belongs to the set of s, t, u, but since we've used two such lines already, there is only one choice. Similarly, there is only one choice for the sixth line. This gives a total of $3 \times 3 \times 2 \times 2 \times 1 \times 1=36$ routes.

Summing up gives a total of 81 routes.

TEACHING PROBLEMS

No. 12

John McLoughlin
"Insight" Problems: Mental Mathematical Problem Solving

Discuss these four problems in small groups for at most 15 minutes in total. Ideally write as little as possible in solving these problems. They are referred to as "Insight" Problems in that an observation in each case is likely to make the (method of) solution to be both efficient and evident.

1. Abner wrote down three different prime numbers. The sum of these primes was 40 . What was the product of these primes?
2. A school has 77 girls and 23 boys. If N girls leave the school, then the percentage of girls will become exactly 54%. Determine the value of N. (Assume that no boys left the school.)
3. In isosceles triangle $A B C$, side $A B$ is twice as long as side $A C$. If the perimeter is 200 cm , how long is side $B C$?
4. Circle A has a radius of 3 cm and Circle B has a radius of 4 cm . If Circle C has the same total area as Circles A and B combined, determine the radius (in cm.) of Circle C.

Context

These problems are examples specifically intended to provoke one of two things: small group discussion or individual reflection with a focus on thinking without writing. You could think of these as examples of mental mathematical problems to solve, with the emphasis on the mental math as being part of the problem. That is, the tendency to begin writing and setting up equations or drawing a diagram are to be resisted in an effort to sharpen attention with the idea of identifying the insight.

Discussion of the Insights

Beginning with Question 4, it may be that the idea of $3-4-5$ jumps out when one realizes that there will be squaring and sums. So in fact the radius of Circle C is 5 cm . The problem is Pythagorean in nature without the triangles.

Let us revert to the opening problem. The sum of three prime numbers is an even number. How can that be when primes are odd numbers? Of course, there is the even prime number 2 that can be used. Then it turns out that only 7 and 31
will complete the sum. Typically the question may ask for the three numbers, but instead we are asked for their product giving an answer of 434.

Curiously there is a reason for this unusual "ask" in that this question was featured in a math league game in Newfoundland and Labrador. Since groups of students from different schools are simultaneously working in groups at tables in a common area like a library or cafeteria, it is sensible to have an answer that if overheard may not seem to be obviously recognized as such. Hence, 434 seemed preferable to 2,7 and 31 .

Percentages and a representation of the remaining students could be combined to make equivalent ratios as a method for solving Question 2. However, without writing out such an expression observe that the number of boys must make up 46% of the students remaining in the school. That makes each person (with there being 23 boys) worth 2% and hence the 54% corresponds to 27 girls. Therefore, $77-27$ or 50 girls left the school. Some may have thought of $54 / 100$ as being equivalent to $27 / 50$ and that would have led to the same result, namely $N=50$.

Finally there is the isosceles triangle in Question 3. It is surprising how many decent math students get this question wrong as it seems that 50,50 , and 100 represents the instinctive way of having a repeated number and a double to sum to 100 . However, these numbers with centimetres as lengths do not work to make a triangle. Rather it is 80,80 and 40 that are required. Since $B C$ is the side not involved in the statement that $A B$ is twice as long as $A C$ it follows that $B C$ must have the length that is repeated, as in 80 cm . This problem has offered richness with respect to reinforcing the importance of context. Further, it seems that a $1: 1: 2$ ratio is more natural for us to see than the $2: 2: 1$ or $1: 2: 2$ ratio required to satisfy the triangular constraints.

Closing Comments

In summary, the idea of offering problems to be thought about rather than written about has potential to unearth rich discussion. Also it is likely that some of the less formal problem solvers may step up to gain attention. There is the implicit problem-solving element of not being able to solve a problem the usual way that adds value to the experience. Further value comes from recognizing that the mathematics does not need to be difficult to create a problem. In fact, it is important that the problem setter provide well thought out scenarios or numbers to ensure that the focal point remains getting the insight rather than messing around when that has been found. The combination of familiar ideas nestled in unfamiliar forms with easy to use values brings attention to the thinking and the identification of the critical points in the problems. The four questions that appeared in this piece have come from Shaking Hands in Corner Brook, a collection of problems that appeared over a period of several years in Newfoundland and Labrador senior high school math league games. The complete reference appears below.

Finally, a problem introduced to me by Ed Barbeau has been adapted to close this feature. Know that you are welcome to share any of your insight problems by
sending a note along to me via johngm@unb.ca
Determine the value of $x+y+z$ given that

$$
\frac{x}{9-y}=\frac{z}{5-x}=\frac{y}{10-z}=2
$$

Reference

Shawyer, B., Booth, P., \& Grant McLoughlin, J. (1995). Shaking Hands in Corner Brook and Other Math Problems. Waterloo: Waterloo Mathematics Foundation.

OLYMPIAD CORNER

No. 387

The problems featured in this section have appeared in a regional or national mathematical Olympiad.

Click here to submit solutions, comments and generalizations to any problem in this section

To facilitate their consideration, solutions should be received by January 15, 2021.

OC501. Pavel alternately writes crosses and circles in the cells of a rectangular table (starting with a cross). When the table is completely filled, the resulting score is calculated as the difference $O-X$, where O is the total number of rows and columns containing more circles than crosses and X is the total number of rows and columns containing more crosses than circles.
(a) Prove that for a $2 \times n$ table the resulting score will always be 0 .
(b) Determine the highest possible score achievable for the table $(2 n+1) \times(2 n+1)$ depending on n.

OC502. Find the largest possible number of elements of a set M of integers having the following property: from each three different numbers from M you can select two of them whose sum is a power of 2 with an integer exponent.

OC503. Let $A B C$ be a non-isosceles acute-angled triangle with centroid G. Let M be the midpoint of $B C$, let Ω be the circle with center G and radius $G M$, and let N be the intersection point between Ω and $B C$ that is distinct from M. Let S be the symmetric point of A with respect to N, that is, the point on the line $A N$ such that $A N=N S(A \neq S)$. Prove that $G S$ is perpendicular to $B C$.

OC504. Let \mathcal{F} be the set of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ such that $\max _{0 \leq x \leq 1}|f(x)|=1$ and let $I: \mathcal{F} \rightarrow \mathbb{R}$,

$$
I(f)=\int_{0}^{1} f(x) d x-f(0)+f(1) .
$$

(a) Prove that $I(f)<3$ for all $f \in \mathcal{F}$.
(b) Determine $\sup \{I(f) \mid f \in \mathcal{F}\}$.

OC505. Let n be a positive integer. We will say that a set of positive integers is complete of order n if the set of all remainders obtained by dividing an
element in A by an element in A is $\{0,1,2, \ldots, n\}$. For example, the set $\{3,4,5\}$ is a complete set of order 4. Determine the minimum number of elements of a complete set of order 100 .

Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d'une olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou généralisations aux problèmes proposés dans cette section.

Pour faciliter l'examen des solutions, nous demandons aux lecteurs de les faire parvenir au plus tard le 15 janvier 2021.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à l'Université de Saint-Boniface, d'avoir traduit les problèmes.

OC501. Dans les cases d'un damier rectangulaire, on trace des cercles et des croix. On commence avec une croix et on alterne jusqu'à ce que le damier soit rempli. On compte alors le nombre de rangées et de colonnes ayant plus de cercles que de croix et on dénote ceci par O; de façon similaire, on compte le nombre de rangées et de colonnes ayant plus de croix que de cercles et on dénote ceci par X. Le score est alors $O-X$.
(a) Démontrer que pour un damier $2 \times n$ le score est toujours 0 .
(b) Déterminer, selon n, le plus gros score atteignable sur un damier $(2 n+1) \times$ $(2 n+1)$.

OC502. Un ensemble M est formé d'entiers tels que parmi trois quelconques de ces entiers, on peut en choisir deux dont la somme sera une puissance entière de 2. Déterminer le plus grand nombre possible d'éléments que peut avoir M.

OC503. Soit $A B C$ un triangle acutangle non isocèle de centroïde G. Soit M le point milieu de $B C, \Omega$ le cercle de centre G et rayon $G M$, puis N le point d'intersection entre Ω et $B C$ différent de M. Enfin, soit S le point symétrique à A par rapport à N, c'est-à-dire le point sur la ligne $A N$ tel que $A N=N S(A \neq S)$. Démontrer que $G S$ est perpendiculaire à $B C$.

OC504. Soit F l'ensemble de fonctions continues $f:[0,1] \rightarrow \mathbb{R}$ telles que $\max _{0 \leq x \leq 1}|f(x)|=1$ et soit $I: \mathcal{F} \rightarrow \mathbb{R}$,

$$
I(f)=\int_{0}^{1} f(x) d x-f(0)+f(1) .
$$

(a) Démontrer que $I(f)<3$ pour tout $f \in \mathcal{F}$.
(b) Déterminer $\sup \{I(f) \mid f \in \mathcal{F}\}$.

OC505. Soit n un entier positif. Un ensemble d'entiers positifs A est dit complet d'ordre n si les restes lors de division d'un élément de A par un élément de A donnent $\{0,1,2, \ldots, n\}$. Par exemple, l'ensemble $\{3,4,5\}$ est complet d'ordre 4. Déterminer le plus petit nombre d'éléments possible pour un ensemble complet d'ordre 100.

OLYMPIAD CORNER SOLUTIONS

Statements of the problems in this section originally appear in 2020: 46(4), p. 159-160.

OC476. Let x be a real number such that both sums $S=\sin 64 x+\sin 65 x$ and $C=\cos 64 x+\cos 65 x$ are rational numbers. Prove that in one of these sums, both terms are rational.

Originally Russia Math Olympiad, 1st Problem, Grade 11, Final Round 2017.
We received 14 submissions of which 13 were complete and correct. We present the submission by UCLan Cyprus Problem Solving Group.
We have that

$$
\begin{aligned}
& S^{2}+C^{2} \\
& =(\sin 64 x+\sin 65 x)^{2}+(\cos 64 x+\cos 65 x)^{2} \\
& =\left(\sin ^{2} 64 x+\cos ^{2} 64 x\right)+\left(\sin ^{2} 65 x+\cos ^{2} 65 x\right)+2(\sin 64 x \sin 65 x+\cos 64 x \cos 65 x) \\
& =2+2 \cos (65 x-64 x)=2+2 \cos x
\end{aligned}
$$

is rational. So $\cos x=S^{2} / 2+C^{2} / 2-1$ is rational.
It follows that $\cos 2 x=2 \cos ^{2} x-1$ is rational, as well. Inductively we get that $\cos 64 x=\cos \left(2^{6} x\right)$ is also rational. Then so is $\cos 65 x=C-\cos 64 x$. So both terms of C are rational.

Another way to conclude that $\cos 64 x$ and $\cos 65 x$ are rational, is to use the fact that a rational $\cos x$ implies that $\cos (n x)$ is rational, for any integer n. This follows from either inductively $\cos ((n+1) x)=2 \cos x \cos (n x)-\cos (n-1) x$ or the existence of Chebyshev polynomials that relate $\cos (n x)$ to $\cos x$.
Editor's Comment. All correct submissions follow along the lines of the presented solution.

OC477. Let $A=\{z \in \mathbb{C}| | z \mid=1\}$.
(a) Prove that $(|z+1|-\sqrt{2})(|z-1|-\sqrt{2}) \leq 0 \forall z \in A$.
(b) Prove that for any $z_{1}, z_{2}, \ldots, z_{12} \in A$, there is a choice of signs " \pm " so that

$$
\sum_{k=1}^{12}\left|z_{k} \pm 1\right|<17
$$

Originally Romania Math Olympiad, 4th Problem, Grade 10, District Round 2017.
We received 18 correct submissions. We present two solutions.

Solution 1, by Joel Schlosberg.
(a) Since $|z|=1$,

$$
\begin{aligned}
|z \pm 1|^{2} & =(z \pm 1)(\overline{z \pm 1}) \\
& =(z \pm 1)(\bar{z} \pm 1) \\
& =z \bar{z}+1 \pm(z+\bar{z}) \\
& =|z|^{2}+1 \pm \operatorname{Re}(z) \\
& =2 \pm 2 \operatorname{Re}(z)
\end{aligned}
$$

If $\operatorname{Re}(z)>0$ then $|z+1|-\sqrt{2}>0$ and $|z-1|-\sqrt{2}<0$. If $\operatorname{Re}(z)<0$ then $|z+1|-\sqrt{2}<0$ and $|z-1|-\sqrt{2}>0$. In either case, their product is negative. If $\operatorname{Re}(z)=0$ then $|z+1|-\sqrt{2}=0$ and $|z-1|-\sqrt{2}=0$, so their product is zero.
(b) Define $y_{1}, y_{2}, \ldots, y_{12}$ as follows:

$$
y_{k}=1 \text { if } \operatorname{Re}\left(z_{k}\right)<0 \text { and } y_{k}=-1 \text { if } \operatorname{Re}\left(z_{k}\right) \geq 0
$$

Based on inequalities described in part (a), $\left|z_{k}+y_{k}\right| \leq \sqrt{2}$ for all $k=1, \ldots, 12$. Therefore,

$$
\sum_{k=1}^{12}\left|z_{k}+y_{k}\right| \leq 12 \sqrt{2}=\sqrt{288}<\sqrt{289}=17
$$

Solution 2, proof without words, by Zoltan Retkes.
(a)

(b)

$$
\left(\sum_{m=1}^{12}\left|z_{m} \pm 1\right|\right)^{2} \leq(12 \sqrt{2})^{2}=288<289=17^{2} .
$$

OC478. Consider two non-commuting matrices $A, B \in \mathcal{M}_{2}(\mathbb{R})$.
(a) Knowing that $A^{3}=B^{3}$, prove that A^{n} and B^{n} have the same trace for any nonzero natural number n.
(b) Give an example of two noncommuting matrices $A, B \in \mathcal{M}_{2}(\mathbb{R})$ such that for any nonzero $n \in \mathbb{N}, A^{n} \neq B^{n}$, and A^{n} and B^{n} have different traces.
Originally Romania Math Olympiad, 3rd Problem, Grade 11, District Round 2017.
We received 6 submissions of which 5 were correct and complete. We present the solution by Oliver Geupel.
(a) Let d_{A} and t_{A}, respectively, denote the determinant and the trace of the matrix A. By the Cayley-Hamilton theorem, A satisfies the characteristic equation: $A^{2}-t_{A} A+d_{A} I=0$. Hence,

$$
A^{3}=t_{A} A^{2}-d_{A} A=t_{A}\left(t_{A} A-d_{A} I\right)-d_{A} A=\left(t_{A}^{2}-d_{A}\right) A-t_{A} d_{A} I .
$$

Similarly, with d_{B} and t_{B} denoting the determinant and trace of the matrix B, it holds

$$
B^{3}=\left(t_{B}^{2}-d_{B}\right) B-t_{B} d_{B} I .
$$

By hypothesis,

$$
\left(t_{A}^{2}-d_{A}\right) A-\left(t_{B}^{2}-d_{B}\right) B-\left(t_{A} d_{A}-t_{B} d_{B}\right) I=A^{3}-B^{3}=O_{2}
$$

It follows that

$$
\left(t_{A}^{2}-d_{A}\right) A B=\left(t_{B}^{2}-d_{B}\right) B^{2}+\left(t_{A} d_{A}-t_{B} d_{B}\right) B=\left(t_{A}^{2}-d_{A}\right) B A
$$

Since A and B do not commute, we deduce that $d_{A}=t_{A}^{2}$. Analogously, $d_{B}=t_{B}^{2}$. Thus, $t_{A}^{3}=t_{A} d_{A}=t_{B} d_{B}=t_{B}^{3}$. As traces of real matrices, t_{A} and t_{B} are real numbers. Hence $t_{A}=t_{B}$ and $d_{A}=d_{B}$. Now the eigenvalues λ_{1} and λ_{2} of either matrices A and B are constraint to the conditions $\lambda_{1}+\lambda_{2}=t_{A}$ and $\lambda_{1} \lambda_{2}=d_{A}$, which determine them uniquely. Therefore A and B have identical eigenvalues λ_{1} and λ_{2}, and $\operatorname{tr}\left(A^{n}\right)=\operatorname{tr}\left(B^{n}\right)=\lambda_{1}^{n}+\lambda_{2}^{n}$.
(b) Consider

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right]
$$

A straight forward computation shows that:
A and B do not commute

$$
A B=\left[\begin{array}{ll}
1 & 0 \\
2 & 4
\end{array}\right], \quad B A=\left[\begin{array}{ll}
1 & 0 \\
1 & 4
\end{array}\right]
$$

and A^{n} and B^{n} are not equal for any $n \geq 1$

$$
A^{n}=\left[\begin{array}{cc}
1 & 0 \\
0 & 2^{n}
\end{array}\right], \quad B^{n}=\left[\begin{array}{cc}
1 & 0 \\
2^{n}-1 & 2^{n}
\end{array}\right] .
$$

Moreover A and B have the same eigenvalues: $\lambda_{1}=1$ and $\lambda_{2}=2$. Hence A^{n} and B^{n} have identical traces.

Editor's Comments. As some solvers pointed out, part (b) was interesting when asking for examples of matrices A and B with non-equal powers but with powers of identical trace.

OC479. We say that the function $f: \mathbb{Q}_{+}^{*} \rightarrow \mathbb{Q}$ has the property \mathcal{P} if

$$
f(x y)=f(x)+f(y) \quad \forall x, y \in \mathbb{Q}_{+}^{*}
$$

(a) Prove that there do not exist injective functions with property \mathcal{P}.
(b) Do there exist surjective functions with property \mathcal{P} ?

Originally Romania Math Olympiad, 2nd Problem, Grade 10, Final Round 2017.
We received 12 submissions of which 11 were correct and complete. We present the solution by Kathleen Lewis.
(a) The property P of the function implies first that $f(1)=f(1 \times 1)=f(1)+f(1)$, so $f(1)=0$. Secondly, $f(x)=f((x / y) \times y)=f(x / y)+f(y)$, so we have that $f(x / y)=f(x)-f(y)$ for all $x, y \in \mathbb{Q}_{+}^{*}$.

In particular, $f\left(y^{-1}\right)=f(1 / y)=f(1)-f(y)=-f(y)$.
Moreover, $f\left(x^{2}\right)=f(x \times x)=f(x)+f(x)=2 f(x)$.
By induction on n, we can see that $f\left(x^{n}\right)=n f(x)$ for any integer n.
Let $f(2)=a / b$ and $f(3)=p / q$, for some integers $a, b \neq 0, p, q \neq 0$. Then $f\left(2^{b p}\right)=b p f(2)=a p$ and $f\left(3^{a q}\right)=a q f(3)=a p$. So $f\left(2^{b p}\right)=f\left(3^{a q}\right)$. If $2^{b p} \neq 3^{a q}$ then f is not injective. If $2^{b p}=3^{a q}$ then $b p=a q=0$. In this case $f(2)=f(3)=0$. Again, f is not injective.
(b) From the properties described above, we see that the function f is uniquely defined by its values on prime numbers. Next we select the values of f on the prime numbers to be: $f(2)=1 / 2, f(3)=1 / 3, f(5)=1 / 4$, and so on. In summary, if p_{n} is the $n^{\text {th }}$ prime, then $f\left(p_{n}\right)=1 /(n+1)$. For this specific f, its range is \mathbb{Q}. To see this, let $a / b \in \mathbb{Q}$ with integers a and $b \neq 0$. Note we can assume that $b>1$. If $b=1$ then we can rewrite the rational number as $2 a / 2$. Then $f\left(p_{b-1}\right)=1 / b$, so $f\left(p_{b-1}^{a}\right)=a / b$. In conclusion, the example constructed is a surjective function.

OC480. In the plane, there are points C and D on the same region with respect to the line defined by the segment $A B$ so that the circumcircles of triangles $A B C$ and $A B D$ are the same. Let E be the incenter of triangle $A B C$, let F be the incenter of triangle $A B D$ and let G be the midpoint of the arc $A B$ not containing the points C and D. Prove that points A, B, E, F are on a circle with center G.

Originally Hungary Math Olympiad, 2nd Problem, Category I, Final Round 2017.
We received 12 submissions of which 11 were correct and complete. We present two solutions.

Solution 1, by Miguel Amengual Covas.

Let Γ denote the common circumcircle of $\triangle A B C$ and $\triangle A B D$. Since G is the midpoint of the arc $A B$ of Γ not containing C, we have

$$
\angle A C G=\operatorname{arc} A G / 2=\operatorname{arc} G B / 2=\angle G C B
$$

Thus, G lies on the angle bisector of $\angle A C B$. As the incentre of $\triangle A B C, E$ lies on the angle bisector of $\angle A C B$ and the angle bisector of $\angle C A B$. Thus, C, E, and G are co-linear.

Let $\varphi=\angle A / 2$ and $\psi=\angle C / 2$. We notice that $\angle B A G=\angle B C G=\psi$. So, $\angle E A G=\varphi+\psi$. In addition $\angle A E G=\varphi+\psi$, as the exterior angle of $\triangle A E C$ at E.

In conclusion, triangle $A G E$ is isosceles with $G A=G E$. Similarly, from $\triangle A B D$, $G A=G F$. In turn, the equality of arcs $A G$ and $G B$ implies the equality of the chords $G A$ and $G B$.

Thus, $G B=G A=G E=G F$, placing A, B, E, F on a circle centered at G.

Solution 2, by Corneliu Manescu-Avram.

Choose a complex system of coordinates with the circumcircle of $\triangle A B C$ as the unit circle. Take $A\left(a^{2}\right), B\left(b^{2}\right), C\left(c^{2}\right), D\left(d^{2}\right)$ with $a, b, c, d \in \mathbb{C},|a|=|b|=|c|=|d|=1$ and denote the complex coordinates of remaining points by the same letter: $E(e)$, $F(f), G(g)$. Then we have

$$
e=-a b-b c-c a, f=-a b-b d-d a, g=-a b
$$

Moreover, it is easy to verify that

$$
A G=B G=E G=F G=|a+b|
$$

FOCUS ON...

No. 43

Michel Bataille

Solutions to Exercises from Focus On... No. 37-41

From Focus On... No. 37

1. Let C be a point distinct from the vertices of a triangle $O A B$. Suppose that $\triangle O C D$ and $\triangle C A E$ are directly similar to $\triangle O A B$. Prove that $C D B E$ is a parallelogram.

We take O as the origin and denote by a, b, c, d, e the affixes of A, B, C, D, E, respectively. From the hypotheses, we have that $c=u a, d=u b$ and $a=v a+c, e=$ $v b+c$ for some non-zero complex numbers u, v. Then, we obtain $d-c=u(b-a)$ and

$$
b-e=b-v b-u a=b(1-v)-u a=b \cdot \frac{c}{a}-u a=u a \cdot \frac{b}{a}-u a=u(b-a)
$$

Thus, $b-e=d-c$ so that $\overrightarrow{E B}=\overrightarrow{C D}$ and $C D B E$ is a parallelogram.
2. On the extension of the side $A B$ of the regular pentagon $A B C D E$, let the points F and G be placed in the order F, A, B, G so that $A G=B F=A C$. Compare the area of triangle $F G D$ to the area of pentagon $A B C D E$.

Without loss of generality, we suppose that A, B, C, D, E are the points of the complex plane with respective affixes $a=1, b=\omega, c=\omega^{2}, d=\omega^{3}, e=\omega^{4}$ where
$\omega=e^{2 \pi i / 5}$. Let O be the centre of the circumcircle of $A B C D E$ (the unit circle). The area $[A B C D E]$ of the pentagon is $5 \times[A O B]=\frac{5}{2} \cdot \sin \frac{2 \pi}{5}$. We show that this area equals the area $[F G D]$ of the triangle $F G D$.
Note that $D A=D B=A C, \angle A D B=\frac{1}{2} \angle A O B=\frac{\pi}{5}$, so $\angle B A D=\angle A B D=\frac{2 \pi}{5}$.
Let f and g denote the affixes of F and G. We have $g-a=e^{-2 \pi i / 5}(d-a)$ and $f-b=e^{2 \pi i / 5}(d-b)$, hence $g=1-e^{-2 \pi i / 5}+e^{4 \pi i / 5}$ and $f=2 \cos \frac{2 \pi}{5}-e^{4 \pi i / 5}$. We deduce

$$
g-d=1+2 i \sin \frac{4 \pi}{5}-e^{-2 \pi i / 5} \quad \text { and } \quad \bar{f}-\bar{d}=2 \cos \frac{2 \pi}{5}-2 \cos \frac{4 \pi}{5}=\sqrt{5}
$$

(Recall that $\cos \frac{2 \pi}{5}=\frac{\sqrt{5}-1}{4}$ and $\cos \frac{4 \pi}{5}=\frac{-\sqrt{5}-1}{4}$.)
Observing that the imaginary part of $g-d$ is

$$
\operatorname{Im}(g-d)=2 \sin \frac{4 \pi}{5}+\sin \frac{2 \pi}{5}=\sin \frac{2 \pi}{5}\left(4 \cos \frac{2 \pi}{5}+1\right)=\sqrt{5} \sin \frac{2 \pi}{5}
$$

we obtain

$$
[F G D]=\frac{1}{2}|\operatorname{Im}((g-d)(\bar{f}-\bar{d}))|=\frac{\sqrt{5}}{2}|\operatorname{Im}(g-d)|=\frac{5}{2} \cdot \sin \frac{2 \pi}{5}=[A B C D E]
$$

From Focus On... No. 39

1. Prove the relations

$$
a^{4} S_{A}+b^{4} S_{B}+c^{4} S_{C}-3 S_{A} S_{B} S_{C}=2\left(a^{2}+b^{2}+c^{2}\right) F^{2}=S_{A} S_{B} S_{C}+a^{2} b^{2} c^{2}
$$

and deduce a condition on a, b, c for the nine-point centre N to lie on the circumcircle of $\triangle A B C$.

From $a^{4} S_{A}=S_{A}\left(S_{B}+S_{C}\right)^{2}=S_{A} S_{B}^{2}+S_{A} S_{C}^{2}+2 S_{A} S_{B} S_{C}$ and similar relations, we obtain

$$
\begin{aligned}
& a^{4} S_{A}+b^{4} S_{B}+c^{4} S_{C} \\
& =c^{2} S_{A} S_{B}+b^{2} S_{C} S_{A}+a^{2} S_{B} S_{C}+6 S_{A} S_{B} S_{C} \\
& =c^{2}\left(4 F^{2}-c^{2} S_{C}\right)+b^{2}\left(4 F^{2}-b^{2} S_{B}\right)+a^{2}\left(4 F^{2}-a^{2} S_{A}\right)+6 S_{A} S_{B} S_{C}
\end{aligned}
$$

and so $2\left(a^{4} S_{A}+b^{4} S_{B}+c^{4} S_{C}\right)=4 F^{2}\left(a^{2}+b^{2}+c^{2}\right)+6 S_{A} S_{B} S_{C}$. The first equality follows.

As for the second one, we use the identities:

$$
\begin{aligned}
& (x+y-z)(y+z-x)(z+x-y) \\
& =x y^{2}+x^{2} y+y z^{2}+y^{2} z+z x^{2}+z^{2} x-\left(x^{3}+y^{3}+z^{3}\right)-2 x y z \\
& =(x+y+z)(x y+y z+z x)-5 x y z-\left[3 x y z+(x+y+z)\left(x^{2}+y^{2}+z^{2}-(x y+y z+z x)\right)\right] \\
& =(x+y+z)\left(2 x y+2 y z+2 z x-x^{2}-y^{2}-z^{2}\right)-8 x y z
\end{aligned}
$$

to obtain
$8 S_{A} S_{B} S_{C}=\left(b^{2}+c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)=\left(a^{2}+b^{2}+c^{2}\right) 16 F^{2}-8 a^{2} b^{2} c^{2}$, and the second equality.
Since the equation of the circumcircle Γ of $\triangle A B C$ is $a^{2} y z+b^{2} z x+c^{2} x y=0$, the point N is on Γ if and only if
$a^{2}\left(S_{C} S_{A}+4 F^{2}\right)\left(S_{A} S_{B}+4 F^{2}\right)+b^{2}\left(S_{A} S_{B}+4 F^{2}\right)\left(S_{B} S_{C}+4 F^{2}\right)+c^{2}\left(S_{B} S_{C}+4 F^{2}\right)\left(S_{C} S_{A}+4 F^{2}\right)=0$, which easily rewrites first as

$$
2 S_{A} S_{B} S_{C}+a^{4} S_{A}+b^{4} S_{B}+c^{4} S_{C}+4 F^{2}\left(a^{2}+b^{2}+c^{2}\right)=0
$$

and finally (with the help of the relations above)

$$
5 a^{2} b^{2} c^{2}=16\left(a^{2}+b^{2}+c^{2}\right) F^{2}
$$

2. Use S_{A}, S_{B}, S_{C} to show that O, H and the incenter I are collinear if and only if the triangle $A B C$ is isosceles.
The points O, H, I are collinear if and only if $\delta=0$ where

$$
\delta=\left|\begin{array}{lcc}
S_{A} S_{B}+S_{A} S_{C} & S_{B} S_{C} & a \\
S_{B} S_{C}+S_{A} S_{B} & S_{C} S_{A} & b \\
S_{A} S_{C}+S_{B} S_{C} & S_{A} S_{B} & c
\end{array}\right|
$$

Calculating δ as follows:

$$
\delta=\left(S_{B} S_{C}+S_{C} S_{A}+S_{A} S_{B}\right)\left|\begin{array}{ccc}
1 & S_{B} S_{C} & a \\
1 & S_{C} S_{A} & b \\
1 & S_{A} S_{B} & c
\end{array}\right|=4 F^{2}\left|\begin{array}{ccc}
1 & S_{B} S_{C} & a \\
0 & S_{C}\left(b^{2}-a^{2}\right) & b-a \\
0 & S_{B}\left(c^{2}-a^{2}\right) & c-a
\end{array}\right|
$$

we obtain

$$
\delta=4 F^{2}(b-a)(c-a)\left((a+b) S_{C}-(a+c) S_{B}\right)=2 F^{2}(b-a)(c-a)(b-c)(a+b+c)^{2}
$$

Thus, O, H, I are collinear if and only if $\triangle A B C$ is isosceles.
3. Find the point at infinity of the perpendiculars to $O I$, where O and I are the circumcentre and the incentre of a scalene triangle $A B C$.
From $2 s I=a A+b B+c C$ and $\left(8 F^{2}\right) O=\left(a^{2} S_{A}\right) A+\left(b^{2} S_{B}\right) B+\left(c^{2} S_{C}\right) C$, we deduce that

$$
8 s F^{2} \overrightarrow{O I}=\left(4 a F^{2}-a^{2} s S_{A}\right) A+\left(4 b F^{2}-b^{2} s S_{B}\right) B+\left(4 c F^{2}-c^{2} s S_{C}\right) C
$$

so that the point at infinity of the line $O I$ is $(f: g: h)$ with

$$
f=a\left(4 F^{2}-a s S_{A}\right), g=b\left(4 F^{2}-b s S_{B}\right), h=c\left(4 F^{2}-c s S_{C}\right)
$$

It follows that $g S_{B}-h S_{C}=4 F^{2}\left(b S_{B}-c S_{C}\right)-s\left(b S_{B}-c S_{C}\right)\left(b S_{B}+c S_{C}\right)$.
But we know that $b S_{B}-c S_{C}=2 s(s-a)(c-b)$ and a short calculation gives

$$
2\left(b S_{B}+c S_{C}\right)=b\left(c^{2}+a^{2}-b^{2}\right)+c\left(a^{2}+b^{2}-c^{2}\right)=4(b+c)(s-b)(s-c) .
$$

As a result, we obtain $4\left(g S_{B}-h S_{C}\right)=2 s(s-a)(c-b)\left[16 F^{2}-8(b+c) s(s-b)(s-c)\right]$ and using $16 F^{2}=(a+b+c)(b+c-a)(c+a-b)(a+b-c)$, we readily get
$4\left(g S_{B}-h S_{C}\right)=-2 a s(s-a)(c-b)(a+b+c)(c+a-b)(a+b-c)=a(b-c)\left(16 s F^{2}\right)$.
By cyclic permutation,

$$
4\left(h S_{C}-f S_{A}\right)=b(c-a)\left(16 s F^{2}\right), 4\left(f S_{A}-g S_{B}\right)=c(a-b)\left(16 s F^{2}\right)
$$

and we conclude that the point at infinity of the perpendiculars to $O I$ is

$$
(a(b-c): b(c-a): c(a-b)) .
$$

4. If $M_{1}=\left(x_{1}: y_{1}: z_{1}\right), M_{2}=\left(x_{2}: y_{2}: z_{2}\right)$ with $x_{1}+y_{1}+z_{1}=x_{2}+y_{2}+z_{2}=1$, show that

$$
M_{1} M_{2}^{2}=S_{A}\left(x_{2}-x_{1}\right)^{2}+S_{B}\left(y_{2}-y_{1}\right)^{2}+S_{C}\left(z_{2}-z_{1}\right)^{2} .
$$

We remark that $x_{2}-x_{1}=-\left(y_{2}-y_{1}\right)-\left(z_{2}-z_{1}\right)$ and deduce that

$$
\overrightarrow{M_{1} M_{2}}=\left(x_{2}-x_{1}\right) A+\left(y_{2}-y_{1}\right) B+\left(z_{2}-z_{1}\right) C=\left(y_{2}-y_{1}\right) \overrightarrow{A B}+\left(z_{2}-z_{1}\right) \overrightarrow{A C} .
$$

Thus,

$$
\begin{aligned}
M_{1} M_{2}^{2} & =\left(y_{2}-y_{1}\right)^{2} c^{2}+\left(z_{2}-z_{1}\right)^{2} b^{2}+2\left(y_{2}-y_{1}\right)\left(z_{2}-z_{1}\right) \overrightarrow{A B} \cdot \overrightarrow{A C} \\
& =\left(y_{2}-y_{1}\right)^{2}\left(S_{A}+S_{B}\right)+\left(z_{2}-z_{1}\right)^{2}\left(S_{A}+S_{C}\right)+2 S_{A}\left(y_{2}-y_{1}\right)\left(z_{2}-z_{1}\right) \\
& =S_{A}\left(y_{2}-y_{1}+z_{2}-z_{1}\right)^{2}+S_{B}\left(y_{2}-y_{1}\right)^{2}+S_{C}\left(z_{2}-z_{1}\right)^{2} \\
& =S_{A}\left(x_{2}-x_{1}\right)^{2}+S_{B}\left(y_{2}-y_{1}\right)^{2}+S_{C}\left(z_{2}-z_{1}\right)^{2} .
\end{aligned}
$$

From Focus On... No. 40

1. Let $n \in \mathbb{N}$ and $\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}-\prod_{i=1}^{n} x_{i}$. If $a_{1}, a_{2}, \ldots, a_{n} \in(0,1]$ prove that $\Delta\left(a_{1}, a_{2}, \ldots, a_{n}\right) \geq \Delta\left(\frac{1}{a_{1}}, \frac{1}{a_{2}}, \ldots, \frac{1}{a_{n}}\right)$.
We use induction. Let $\left(R_{n}\right)$ denote the desired result. Since $\Delta\left(a_{1}\right)=0=\Delta\left(1 / a_{1}\right)$, $\left(R_{1}\right)$ holds. Assume that $\left(R_{n}\right)$ holds for some positive integer n and consider $a_{1}, \ldots, a_{n}, a_{n+1}$ in $(0,1]$. We introduce the auxiliary function f defined on $(0,1]$ by

$$
f(x)=x+a_{1}+\cdots+a_{n}-x a_{1} \cdots a_{n}-\left(\frac{1}{x}+\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}}\right)+\frac{1}{x a_{1} \cdots \cdots a_{n}},
$$

that is, $f(x)=\Delta\left(a_{1}, \ldots, a_{n}, x\right)-\Delta\left(\frac{1}{a_{1}}, \ldots, \frac{1}{a_{n}}, \frac{1}{x}\right)$.
The derivative of f satisfies:
$f^{\prime}(x)=1-a_{1} \cdots \cdots a_{n}+\frac{1}{x^{2}}-\frac{1}{x^{2} a_{1} \cdots \cdots a_{n}}=\left(1-a_{1} \cdots \cdots a_{n}\right)\left(1-\frac{1}{x^{2} a_{1} \cdots \cdots a_{n}}\right)$.
Clearly $f^{\prime}(x) \leq 0$ for all $x \in(0,1]$, hence f is nonincreasing on the interval $(0,1]$. As a result,

$$
f\left(a_{n+1}\right) \geq f(1)=\Delta\left(a_{1}, a_{2}, \ldots, a_{n}\right)-\Delta\left(\frac{1}{a_{1}}, \frac{1}{a_{2}}, \ldots, \frac{1}{a_{n}}\right) \geq 0
$$

where the last inequality follows from $\left(R_{n}\right)$. Thus, $\left(R_{n+1}\right)$ holds and the proof is complete.
2. For $y \in(0,1]$, let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)=y^{x}+x^{y}-1$ and $g:(0,1] \rightarrow \mathbb{R}$ be defined by $g(x)=f(x)-\frac{x}{y} \cdot f^{\prime}(x)$. From the study of g deduce that $f(x)>0$ for $x \in(0,1]$.
Note that the result holds if $y=1$ so we will suppose that $y \in(0,1)$. First, we calculate

$$
f^{\prime}(x)=(\ln (y)) y^{x}+y x^{y-1}, \quad f^{\prime \prime}(x)=(\ln (y))^{2} y^{x}+y(y-1) x^{y-2}
$$

and deduce that

$$
g^{\prime}(x)=\frac{y-1}{y} \cdot f^{\prime}(x)-\frac{x}{y} \cdot f^{\prime \prime}(x)=\frac{y^{x}(\ln (y))^{2}}{y}\left(\frac{y-1}{\ln (y)}-x\right)
$$

Since $\ln (y)<y-1<0$, we have $0<\frac{y-1}{\ln (y)}<1$ and the variations of g on $(0,1]$ give $g(x)>\min \left(\lim _{x \rightarrow 0} g, g(1)\right)$ for any foranyx $\in(0,1)$. Since $\lim _{x \rightarrow 0} g=0$ and $g(1)=y-1-\ln (y)>0$, we conclude that $g(x)>0$ if $x \in(0,1]$.
Now f, being continuous on $[0,1]$, attains its minimum, say at x_{0}. Should we have $x_{0} \in(0,1)$, we would then have $f^{\prime}\left(x_{0}\right)=0$ and so

$$
f(0) \geq f\left(x_{0}\right)>\frac{x_{0}}{y} f^{\prime}\left(x_{0}\right)=0
$$

(using $g\left(x_{0}\right)>0$). But this contradicts $f(0)=0$, hence the minimum of f on $[0,1]$ must be attained at 0 or 1 . Since $f(1)>f(0)$, this minimum is $f(0)=0$, attained only at 0 and we can conclude that $f(x)>0$ for all $x \in(0,1)$.
3. Let m be an integer with $m \geq 2$ and r a real number in $[1, \infty)$. Prove that

$$
\left(\frac{1+r^{m}}{1+r^{m-1}}\right)^{m+1} \geq \frac{1+r^{m+1}}{2}
$$

[Hint: first determine the sign of $u(x)=(m-1)\left(1+x^{m+1}\right)-x\left(1+x^{m-1}\right)$ for $x \geq 1$.]

First, we study the sign of $u(x)$. Straightforward calculations lead to

$$
u^{\prime}(x)=\left(m^{2}-1\right) x^{m}-m x^{m-1}-1, \quad u^{\prime \prime}(x)=m(m-1) x^{m-2}[(m+1) x-1] .
$$

Since $u^{\prime \prime}(x)>0$ for $x \geq 1$, the function u^{\prime} is increasing on $[1, \infty)$ and so $u^{\prime}(x) \geq$ $u^{\prime}(1)=(m+1)(m-2)$.
Therefore $u^{\prime}(x) \geq 0$ for $x \in[1, \infty)$ and, similarly, $u(x) \geq u(1)=2(m-2)$. We conclude that $u(x) \geq 0$ if $x \geq 1$.
Taking logarithms, we see that the desired inequality holds if $f(r) \leq \ln (2)$ where

$$
f(x)=\ln \left(1+x^{m+1}\right)-(m+1)\left[\ln \left(1+x^{m}\right)-\ln \left(1+x^{m-1}\right)\right]
$$

Since $f(1)=\ln (2)$, it is sufficient to show that $f^{\prime}(x) \leq 0$ when $x \geq 1$. We calculate

$$
f^{\prime}(x)=(m+1) x^{m-2}\left(\frac{x^{2}}{1+x^{m+1}}-\frac{m x}{1+x^{m}}+\frac{m-1}{1+x^{m-1}}\right)
$$

which has the same sign as
$N(x)=x^{2}\left(1+x^{m-1}\right)\left(1+x^{m}\right)-m x\left(1+x^{m-1}\right)\left(1+x^{m+1}\right)+(m-1)\left(1+x^{m}\right)\left(1+x^{m+1}\right)$.
Expanding and arranging yield

$$
\begin{aligned}
N(x) & =\left(m x^{m+1}-x^{m}-(m-1) x^{m+2}\right)+\left(x^{2}-m x+(m-1)\right) \\
& =x^{m}(x-1)(1-(m-1) x)+(x-1)(x-(m-1))
\end{aligned}
$$

and finally $N(x)=(1-x) u(x)$. Thus $N(x) \leq 0$ if $x \geq 1$ and we are done.

From Focus On... No. 41

1. Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$
(a b+b c+c a)\left(\frac{a}{b^{2}+b}+\frac{b}{c^{2}+c}+\frac{c}{a^{2}+a}\right) \geq \frac{3}{4}
$$

The function $f: x \mapsto\left(x+x^{2}\right)^{-1}$ is convex on $(0, \infty)$ (its second derivative $f^{\prime \prime}$, given by $f^{\prime \prime}(x)=2\left(x+x^{2}\right)^{-3}\left(3 x^{2}+3 x+1\right)$, is positive $)$. Since $a+b+c=1$, Jensen's inequality yields

$$
\frac{a}{b^{2}+b}+\frac{b}{c^{2}+c}+\frac{c}{a^{2}+a}=a f(b)+b f(c)+c f(a) \geq f(\sigma)
$$

where we set $a b+b c+c a=\sigma$. It follows that

$$
(a b+b c+c a)\left(\frac{a}{b^{2}+b}+\frac{b}{c^{2}+c}+\frac{c}{a^{2}+a}\right) \geq \sigma f(\sigma)=\frac{1}{\sigma+1}
$$

But $\quad 1=(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a) \geq 3(a b+b c+c a)$, hence $\sigma \leq \frac{1}{3}$ and $\frac{1}{\sigma+1} \geq \frac{3}{4}$. The result follows.
2. Prove, for real numbers a, b, x, y with $a>b>1$ and $x>y>1$, that

$$
\frac{a^{x}-b^{y}}{x-y}>\left(\frac{a+b}{2}\right)^{\frac{x+y}{2}} \log \left(\frac{a+b}{2}\right)
$$

(Hint: first apply Hadamard's inequality to the function $t \mapsto m^{t}$ on $[y, x]$, where $m=\frac{a+b}{2}$).
[We slightly extend the result by supposing only $x>y>0$.]
Let $m=\frac{a+b}{2}$. The function $t \mapsto m^{t}$ is continuous and convex on $(0, \infty)$, hence for $x>y>0$, we have

$$
m^{\frac{x+y}{2}} \leq \frac{1}{x-y} \int_{y}^{x} m^{t} d t
$$

(from Hadamard's inequality). Since $m>1$, we have $\log (m)>0$ and so

$$
\left(\frac{a+b}{2}\right)^{\frac{x+y}{2}} \log \left(\frac{a+b}{2}\right)=(\log (m)) m^{\frac{x+y}{2}} \leq \frac{1}{x-y} \int_{y}^{x}(\log (m)) m^{t} d t=\frac{m^{x}-m^{y}}{x-y}
$$

Thus, it is sufficient to prove that $m^{x}-m^{y}<a^{x}-b^{y}$, that is,

$$
\begin{equation*}
b^{y}-m^{y}<a^{x}-m^{x} \tag{1}
\end{equation*}
$$

Now, since $x, y>0$, the functions $t \mapsto t^{x}$ and $t \mapsto t^{y}$ are strictly increasing on $(0, \infty)$, therefore $b^{y}<m^{y}$ and $m^{x}<a^{x}$ (since $b<m<a$) and (1) clearly holds.

PROBLEMS

Click here to submit problems proposals as well as solutions, comments and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by January 15, 2021.

4581. Proposed by Mihaela Berindeanu.

Let $A B C$ be a triangle, with $A B<A C$ and with circumcircle Γ, circumcenter O and incenter I. Denote $A I \cap \Gamma=A_{1}, B I \cap A_{1} O=B_{1}, C I \cap A_{1} O=C_{1}$. Prove that

$$
\frac{B C_{1}-C_{1} I}{B_{1} I+B_{1} C}=\frac{B I \cdot A_{1} C_{1}}{C I \cdot A_{1} B_{1}}
$$

4582. Proposed by Leonard Giugiuc.

Let $k>9$ be a fixed real number. Consider the following system of equations with $a \leq b \leq c \leq d$:

$$
\left\{\begin{array}{l}
a+b+c+d=3+k \\
a^{2}+b^{2}+c^{2}+d^{2}=3+k^{2} \\
a b c d=k
\end{array}\right.
$$

a) Find all solutions in positive reals.
b) Determine the number of real solutions.
4583. Proposed by Daniel Sitaru.

Let

$$
A=\left(\begin{array}{ccc}
\frac{a^{2}}{(a+b)^{2}} & \frac{2 a b}{(a+b)^{2}} & \frac{b^{2}}{(a+b)^{2}} \\
\frac{c^{2}}{(b+c)^{2}} & \frac{b^{2}}{(b+c)^{2}} & \frac{2 b c}{(b+c)^{2}} \\
\frac{2 c a}{(c+a)^{2}} & \frac{a^{2}}{(c+a)^{2}} & \frac{c^{2}}{(c+a)^{2}}
\end{array}\right)
$$

where a, b and c are positive real numbers. Find the value of the sum of all the entries of A^{n}, where n is a natural number, $n \geq 2$.
4584. Proposed by Michel Bataille.

For $n \in \mathbb{N}$, let

$$
S_{n}=\sum_{k=1}^{n} \frac{k}{n+\sqrt{k+n^{2}}}
$$

Find real numbers a, b such that $\lim _{n \rightarrow \infty}\left(S_{n}-a n\right)=b$.

4585. Proposed by George Stoica.

Let $P(x)$ be a real polynomial of degree n whose n roots are all real. Then for all $k=0, \ldots, n-2$, prove that, for $c \in \mathbb{R}$:

$$
P^{(k)}(c) \neq 0, P^{(k+1)}(c)=0 \Rightarrow P^{(k+2)}(c) \neq 0
$$

4586. Proposed by Nguyen Viet Hung.

Find all triples (m, n, p) where m, n are two non-negative integers and p is a prime, satisfying the equation

$$
m^{4}=4\left(p^{n}-1\right) .
$$

4587. Proposed by Kai Wang.

Find an elementary proof of $\tan \frac{2 \pi}{7}=-\sqrt{7}+4 \sin \frac{4 \pi}{7}$.
4588. Proposed by the Editorial Board.

If a, b, c are positive real numbers such that $a b+b c+c a=3$, prove that $a^{n}+b^{n}+$ $c^{n} \geq 3$ for all integers n.
4589. Proposed by Lorian Saceanu.

Let a, b, c be real numbers, not all zero, such that $a^{2}+b^{2}+c^{2}=2(a b+b c+c a)$. Prove that

$$
2 \leq \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} \leq \frac{12}{5}
$$

4590. Proposed by George Apostolopoulos.

Let $A B C$ be an acute angled triangle. Prove that

$$
\sum \frac{\sin ^{2} A}{\cos ^{2} B+\cos ^{2} C} \leq \frac{9}{2}
$$

where the sum is taken over all cyclic permutations of (A, B, C).

Cliquez ici afin de proposer de nouveaux problèmes, de même que pour offrir des solutions, commentaires ou généralisations aux problèmes proposeś dans cette section.

Pour faciliter l'examen des solutions, nous demandons aux lecteurs de les faire parvenir au plus tard le 15 janvier 2021.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à l'Université de Saint-Boniface, d'avoir traduit les problèmes.

4581. Proposeé par Mihaela Berindeanu.

Soit $A B C$ un triangle tel que $A B<A C$ et soit Γ son cercle circonscrit, de centre O; soit aussi I le centre de son cercle inscrit. Dénotons

$$
A I \cap \Gamma=A_{1}, B I \cap A_{1} O=B_{1}, C I \cap A_{1} O=C_{1}
$$

Démontrer que

$$
\frac{B C_{1}-C_{1} I}{B_{1} I+B_{1} C}=\frac{B I \cdot A_{1} C_{1}}{C I \cdot A_{1} B_{1}}
$$

4582. Proposeé par Leonard Giugiuc.

Soit $k>9$ un nombre réel quelconque. Considérons le système d'équations qui suit, où $a \leq b \leq c \leq d$:

$$
\left\{\begin{array}{l}
a+b+c+d=3+k \\
a^{2}+b^{2}+c^{2}+d^{2}=3+k^{2} \\
a b c d=k
\end{array}\right.
$$

a) Déterminer toutes les solutions réelles positives.
b) Déterminer le nombre de solutions réelles.
4583. Proposeé par Daniel Sitaru.

Soit

$$
A=\left(\begin{array}{ccc}
\frac{a^{2}}{(a+b)^{2}} & \frac{2 a b}{(a+b)^{2}} & \frac{b^{2}}{(a+b)^{2}} \\
\frac{c^{2}}{(b+c)^{2}} & \frac{b^{2}}{(b+c)^{2}} & \frac{2 b c}{(b+c)^{2}} \\
\frac{2 c a}{(c+a)^{2}} & \frac{a^{2}}{(c+a)^{2}} & \frac{c^{2}}{(c+a)^{2}}
\end{array}\right)
$$

où a, b et c sont des nombres réels positifs. Déterminer la somme de toutes les valeurs dans A^{n}, où n est un nombre naturel $n \geq 2$.

4584. Proposeé par Michel Bataille.

Pour $n \in \mathbb{N}$, soit

$$
S_{n}=\sum_{k=1}^{n} \frac{k}{n+\sqrt{k+n^{2}}} .
$$

Déterminer des nombres réels a et b tels que $\lim _{n \rightarrow \infty}\left(S_{n}-a n\right)=b$.
4585. Proposeé par George Stoica.

Soit $P(x)$ un polynôme réel de degré n dont les n racines sont réelles. Démontrer que pour $k=0, \ldots, n-2$ et $c \in \mathbb{R}$ la suivante tient:

$$
P^{(k)}(c) \neq 0, P^{(k+1)}(c)=0 \Rightarrow P^{(k+2)}(c) \neq 0
$$

4586. Proposeé par Nguyen Viet Hung.

Déterminer tous les triplets (m, n, p) où m et n sont des entiers non négatifs et p est premier, tels que

$$
m^{4}=4\left(p^{n}-1\right) .
$$

4587. Proposeé par Kai Wang.

Donner une preuve élémentaire de $\tan \frac{2 \pi}{7}=-\sqrt{7}+4 \sin \frac{4 \pi}{7}$.
4588. Propose par le comit ditorial.

Soient a, b, c des nombres réels positifs tels que $a b+b c+c a=3$. Démontrer que $a^{n}+b^{n}+c^{n} \geq 3$ pour tout entier n.
4589. Proposeé par Lorian Saceanu.

Soient a, b, c des nombres réels, pas tous zéro, tels que $a^{2}+b^{2}+c^{2}=2(a b+b c+c a)$. Démontrer que

$$
2 \leq \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} \leq \frac{12}{5} .
$$

4590. Proposeé par George Apostolopoulos.

Soit $A B C$ un triangle acutangle. Démontrer que

$$
\sum \frac{\sin ^{2} A}{\cos ^{2} B+\cos ^{2} C} \leq \frac{9}{2}
$$

où la somme est prise par rapport à toutes les permutations cycliques de (A, B, C).

SOLUTIONS

No problem is ever permanently closed. The editor is always pleased to consider for publication new solutions or new insights on past problems.
Statements of the problems in this section originally appear in 2020: 46(4), p. 175-180.

4531. Proposed by Leonard Giugiuc and Dan Stefan Marinescu.

Let a, b and c be positive real numbers and let x, y and z be real numbers. Suppose that $a+b+c=2$ and $x a+y b+z c=1$. Prove that

$$
x+y+z-(x y+y z+z x) \geq \frac{3}{4}
$$

We received 10 submissions, including the one from the proposers. As it turned out, the statement of the problem as printed was incorrect due to a small but inadvertent modification. Except for the proposers, 7 submissions all gave simple counter-examples, and 2 solvers actually gave wrong "proofs" for the incorrect version. Furthermore, two solvers showed that the claimed inequality holds under various additional assumptions. We present below a complete solution with added condition.

Solution by Michel Bataille to the modified and correct statement.
The problem, as stated, was incorrect. For example, if $(a, b, c)=\left(\frac{3}{2},-\frac{5}{2},-\frac{5}{2}\right)$, then it is readily verified that $(x+y+z)-(x y+y z+z x)=-\frac{9}{4}$. We now show that the claim is true if we add the condition that a, b, c are the side lengths of a triangle.

Let (I) denote the inequality to be proven, namely

$$
\begin{equation*}
x+y+z-(x y+y z+z x) \geq \frac{3}{4} \tag{I}
\end{equation*}
$$

We set $u=x-\frac{1}{2}, v=y-\frac{1}{2}$, and $w=z-\frac{1}{2}$. Then

$$
\begin{equation*}
u a+v b+w c=x a+y b+z c-\frac{a+b+c}{2}=1-1=0 \tag{1}
\end{equation*}
$$

and (I) becomes

$$
\begin{equation*}
-(u v+v w+w u) \geq 0 \tag{II}
\end{equation*}
$$

From (1) we deduce that $a u w+b v w=-c w^{2}, b v u+c w u=-a u^{2}, c w v+a u v=b v^{2}$, so

$$
\begin{align*}
a c^{2} w u+b c^{2} v w & =-c^{3} w^{2} \tag{2}\\
a b c u v+a c^{2} w u & =-c a^{2} u^{2} \tag{3}
\end{align*}
$$

$$
\begin{equation*}
b c^{2} v w+a b c u v=-b^{2} c v^{2} \tag{4}
\end{equation*}
$$

From $(3)+(4)-(2)$ we obtain

$$
2 a b c u v=c\left(c^{2} w^{2}-a^{2} u^{2}-b^{2} v^{2}\right)
$$

Similarly, we get

$$
2 a b c v w=a\left(a^{2} u^{2}-b^{2} v^{2}-c^{2} w^{2}\right) \quad \text { and } \quad 2 a b c w u=b\left(b^{2} v^{2}-c^{2} w^{2}-a^{2} u^{2}\right)
$$

Hence
$-2 a b c(u v+v w+w u)=(a u)^{2}(b+c-a)+(b v)^{2}(c+a-b)+(c w)^{2}(a+b-c) \geq 0$
from which it follows that $-(u v+v w+w u) \geq 0$ so $(I I)$ holds and we are done.

4532. Proposed by Marius Stănean.

Let $A B C$ be a triangle with circumcircle Γ and let M, N, P be points on the sides $B C, C A, A B$, respectively. Let $M^{\prime}, N^{\prime}, P^{\prime}$ be the intersections of $A M, B N, C P$ with Γ different from the vertices of the triangle. Prove that

$$
M M^{\prime} \cdot N N^{\prime} \cdot P P^{\prime} \leq \frac{R^{2} r}{4}
$$

where R and r are the circumradius and the inradius of triangle $A B C$.
We received 12 solutions, 11 of which were correct. We present 2 solutions.
Solution 1, by UCLan Cyprus Problem Solving Group.
By power of the point M we have $(A M)\left(M M^{\prime}\right)=(B M)(M C)$. Let $A_{1}=\angle B A M$ and $A_{2}=\angle C A M$. By the Sine Rule in the triangle $B A M$ and $C A M$ we have

$$
B M=A M \frac{\sin A_{1}}{\sin B} \quad \text { and } \quad C M=A M \frac{\sin A_{2}}{\sin C}
$$

So we get

$$
M M^{\prime}=\frac{(B M)(M C)}{A M}=\sqrt{(B M)(M C)} \cdot \sqrt{\frac{\sin A_{1} \sin A_{2}}{\sin B \sin C}}
$$

By Cauchy-Schwarz we have

$$
(B M)(M C) \leq \frac{(B M+M C)^{2}}{4}=\frac{a^{2}}{4}=R^{2} \sin ^{2} A
$$

We also have

$$
\begin{aligned}
\sin A_{1} \sin A_{2} & =\frac{\cos \left(A_{1}-A_{2}\right)-\cos \left(A_{1}+A_{2}\right)}{2} \\
& \leq \frac{1-\cos \left(A_{1}+A_{2}\right)}{2}=\sin ^{2}\left(\frac{A_{1}+A_{2}}{2}\right)=\sin ^{2}\left(\frac{A}{2}\right)
\end{aligned}
$$

So

$$
M M^{\prime} \leq R \sin \left(\frac{A}{2}\right) \sqrt{\frac{\sin ^{2} A}{\sin B \sin C}}
$$

Multiplying with the analogous inequalities for $N N^{\prime}$ and $P P^{\prime}$ we get

$$
\left(M M^{\prime}\right)\left(N N^{\prime}\right)\left(P P^{\prime}\right) \leq R^{3} \sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right)=\frac{R^{2} r}{4} .
$$

Here we have used the formula

$$
r=4 R \sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right) .
$$

Solution 2, by Sorin Rubinescu.

The power of M with respect to Γ is $A M \cdot M M^{\prime}=R^{2}-O M^{2}$, with O being the circumcenter of $A B C$. The power of M is also

$$
R^{2}-O M^{2}=B M \cdot M C \leq\left(\frac{B M+M C}{2}\right)^{2}=\frac{B C^{2}}{4}=\frac{a^{2}}{4}
$$

and the equality holds for $A M=m_{a}$ (when $[A M]$ is a median). But

$$
m_{a}^{2}=\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4} \geq \frac{(b+c)^{2}-a^{2}}{4}=\frac{(b+c-a)(b+c+a)}{4}=s(s-a),
$$

with s being the semiperimeter. We have that $m_{a} \geq \sqrt{s(s-a)}$, so $M M^{\prime} \leq \frac{a^{2}}{4 m_{a}}$. By writing the analogous relations for $N N^{\prime}$ and $P P^{\prime}$ we get that
$M M^{\prime} \cdot N N^{\prime} \cdot P P^{\prime} \leq \frac{a^{2}}{4 m_{a}} \cdot \frac{b^{2}}{4 m_{b}} \cdot \frac{c^{2}}{4 m_{c}}=\frac{a^{2} b^{2} c^{2}}{64 m_{a} m_{b} m_{c}} \leq \frac{(a b c)^{2}}{64 s \sqrt{s(s-a)(s-b)(s-c)}}$.
If $S=s r$ is the area of $\triangle A B C$, then $S=\sqrt{s(s-a)(s-b)(s-c)}$ and $a b c=4 R S$, so it follows that

$$
M M^{\prime} \cdot N N^{\prime} \cdot P P^{\prime} \leq \frac{16 R^{2} r^{2} s^{2}}{64 r s^{2}}=\frac{R^{2} r}{4} .
$$

4533. Proposed by Leonard Giugiuc and Kadir Altintas.

Let K be the symmedian point of $A B C$. Let k_{a}, k_{b} and k_{c} be the lengths of the altitudes from K to the sides $B C, A C$ and $A B$, respectively. If r is the inradius and s is the semiperimeter, prove that

$$
\left(\frac{1}{r}\right)^{2}+\left(\frac{3}{s}\right)^{2} \geq \frac{2}{k_{a}^{2}+k_{b}^{2}+k_{c}^{2}} .
$$

We received 16 submissions, all of which were correct and complete.
On the lefthand side of the inequality to be proved, a ' + ' was printed instead of a '-', what was intended by the proposers. This gives a strictly weaker result. Many solvers suspected this misprint and solved the intended problem. The techniques used in the solutions of the misprinted problem are enough (with minor tweaks) to prove the intended problem, and so we count such solutions as correct.

We present the solution by Debmalya Biswas. Almost all solutions used similar ideas.

Let a, b, c be the lengths of the sides $B C, A C, A B$, respectively. Also let Δ denote the area of the triangle $A B C$. We use the following well-known fact about the symmedian point (also called the Lemoine point), namely

$$
\begin{equation*}
\frac{k_{a}}{a}=\frac{k_{b}}{b}=\frac{k_{c}}{c}=t \tag{1}
\end{equation*}
$$

Since $\triangle K A B+\Delta K B C+\Delta K A C=\Delta$, we have

$$
a k_{a}+b k_{a}+c k_{c}=2 \Delta
$$

and so from (1):

$$
\left(a^{2}+b^{2}+c^{2}\right) t=2 \Delta, \quad \text { or } \quad t=\frac{2 \Delta}{a^{2}+b^{2}+c^{2}}
$$

This gives

$$
\begin{equation*}
k_{a}^{2}+k_{b}^{2}+k_{c}^{2}=(a t)^{2}+(b t)^{2}+(c t)^{2}=\frac{4 \Delta^{2}}{a^{2}+b^{2}+c^{2}} \tag{2}
\end{equation*}
$$

Now the inequality to be proved:

$$
\left(\frac{1}{r}\right)^{2}-\left(\frac{3}{s}\right)^{2} \geq \frac{2}{k_{a}^{2}+k_{b}^{2}+k_{c}^{2}}
$$

by (2) is equivalent to

$$
\begin{equation*}
2 s^{2}-18 r^{2} \geq a^{2}+b^{2}+c^{2} \tag{3}
\end{equation*}
$$

By Heron's area formula, we have that

$$
r^{2} s^{2}=s(s-a)(s-b)(s-c)
$$

Upon substitution of $r^{2},(3)$ becomes

$$
\begin{equation*}
2 s^{2}-\frac{18(s-a)(s-b)(s-c)}{s} \geq a^{2}+b^{2}+c^{2} \tag{4}
\end{equation*}
$$

Define the positive reals $x=s-a, y=s-b, z=s-c$. Now (4) is equivalent to

$$
2(x+y+z)^{2}-\frac{18}{x y z} x+y+z \geq(x+y)^{2}+(y+z)^{2}+(x+z)^{2}
$$

which simplified and rearranged is

$$
(x+y+z)(x y+y z+x z) \geq 9 x y z
$$

The above holds by the AM-GM inequality applied to both factors on the lefthand side above. Equality holds if and only if $x=y=z$, or $a=b=c$, i.e. $A B C$ is an equilateral triangle.

4534. Proposed by Michel Bataille.

For $n \in \mathbb{N}$, evaluate

$$
\frac{\sum_{k=0}^{\infty} \frac{1}{k!(n+k+1)}}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(n+k+1)!}}
$$

We received 20 submissions, all correct. We present the solution by Marie-Nicole Gras, enhanced slightly by the editor.

Let $S_{n}=\sum_{k=0}^{\infty} \frac{1}{k!(n+k+1)}$ and $T_{n}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(n+k+1)!}$. We prove that

$$
\begin{equation*}
\frac{S_{n}}{T_{n}}=n!e \tag{1}
\end{equation*}
$$

Since $\sum_{k=0}^{\infty} \frac{1}{k!}=e$, we have

$$
\begin{align*}
(n+1) S_{n} & =\sum_{k=0}^{\infty} \frac{(n+1+k)-k}{k!(n+k+1)} \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}-\sum_{k=1}^{\infty} \frac{k}{k!(n+k+1)}=e-\sum_{k=1}^{\infty} \frac{1}{(k-1)!(n+k+1)} \\
& =e-\sum_{k=0}^{\infty} \frac{1}{k!(n+1+k+1)}=e-S_{n+1} \tag{2}
\end{align*}
$$

Next, we derive some relation between S_{n} and S_{n+1} as well as some relation between T_{n} and T_{n+1}. We have

$$
\begin{align*}
(n+1) S_{n} & =\sum_{k=0}^{\infty} \frac{(n+1+k)-k}{k!(n+k+1)} \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}-\sum_{k=1}^{\infty} \frac{1}{(k-1)![(n+1)+(k-1)+1]} \\
& =e-\sum_{k=0}^{\infty} \frac{1}{k!(n+1+k+1)}=e-S_{n+1} . \tag{3}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\frac{S_{n+1}}{(n+1)!}+\frac{S_{n}}{n!}=\frac{e}{(n+1)!} . \tag{4}
\end{equation*}
$$

Also,

$$
\begin{align*}
T_{n} & =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(n+k+1)!} \\
& =\frac{1}{(n+1)!}-\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{[(n+1)+(k-1)+1]!} \\
& =\frac{1}{(n+1)!}-\sum_{k=0}^{\infty} \frac{(-1)^{k}}{((n+1)+(k+1))!}=\frac{1}{(n+1)!}-T_{n+1} . \tag{5}
\end{align*}
$$

Now we are ready to prove (1) by induction on n.
When $n=0$, we have

$$
S_{0}=\sum_{k=0}^{\infty} \frac{1}{(k+1)!}=e-1
$$

and

$$
T_{0}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+1)!}=1-\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(k+1)!}=1-e^{-1}
$$

so

$$
\frac{S_{0}}{T_{0}}=\frac{e-1}{1-e^{-1}}=e=0!e .
$$

Suppose $\frac{S_{n}}{T_{n}}=n$!e for some $n \in \mathbb{N} \cup\{0\}$. Then

$$
\frac{S_{n}}{n!}=e T_{n} \Longrightarrow \frac{S_{n+1}}{(n+1)!}=\frac{e}{(n+1)!}-\frac{S_{n}}{n!}=\frac{e}{(n+1)!}-e T_{n}=e T_{n+1}
$$

so $\frac{S_{n+1}}{T_{n+1}}=n!e$, completing the induction and the proof.

4535. Proposed by Mihaela Berindeanu.

Let $A B C$ be an acute triangle with orthocenter H, and let E be the reflection of H in the midpoint D of side $B C$. If the perpendicular to $D E$ at H intersects $A B$ at X and $A C$ at Y, prove that $H X \cdot E C+Y C \cdot H E=E X \cdot B E$.
15 correct solutions were received. A further solution which made use of a computer package resulting in unnecessarily complicated workings was not accepted, in view of the transparent arguments that were available.

Solution 1, by Michel Bataille, Prithwijit De, Dimitrić Ivko, Madhav Modak, Ion Patrascu, Vedaant Srivastava, Muhammad Thoriq, and the proposer (independently).

Since $B D=D C$ and $H D=D E$, then $B E C H$ is a parallelogram, so that $B E$ is equal and parallel to $H C$. Since $B E \| C H$ and $C H \perp A B$, then $B E \perp A B$ and $\angle A B E=90^{\circ}$. Similarly, $\angle A C E=90^{\circ}$. Thus, $A B E C$ is concyclic and E lies on the circumcircle of $A B C$.
Since the opposite angles at H and C are right, $E C Y H$ is concyclic and $\angle H E Y=$ $\angle H C Y=90^{\circ}-\angle B A C$. Similarly, $\angle H E X=\angle H B X=90^{\circ}-\angle B A C$, so that $\angle H E Y=\angle H E X$. Thus right triangles $E H X$ and $E H Y$ are congruent and $E X=E Y, H X=H Y$.
Applying Ptolemy's theorem to $E C Y H$, we obtain that

$$
H X \cdot E C+Y C \cdot H E=H Y \cdot E C+Y C \cdot H E=E Y \cdot H C=E X \cdot B E .
$$

Solution 2, by Jiahao Chen, Todor Zaharinov, and UCLan Cyprus Problem Solving Group (independently).

Let $B P$ and $C Q$ be altitudes (with common point H). Then B, C, P, Q lie on a circle with centre D. Since $D H \perp X Y, H$ is the midpoint of the chord through X and Y. Applying the Butterfly theorem to the chords $B P$ and $C Q$ through H, we find that $H X=H Y$. Since $H E$ right bisects $X Y, E Y=E X$. As in Solution 1, we show that $H C=B E$ and obtain the desired result.

Solution 3, by C.R. Pranesachar.

Suppose that O is the circumcentre of triangle $A B C$. Then $A H \| O D$ and $A H=$ $2 O D$ (consider the central similarity through the centroid with factor -2 taking O to H and D to A). Let $A O$ and $H D$ intersect in F. Then, since triangles $F O D$ and $F A H$ are similar, $H F=2 D F$ and $A F=2 O F$, so that $H D=D F$ and $O F=A O$, a radius of the circumcircle. Thus $E=F, E$ lies on the circumcircle and $A E$ is a diameter. Hence $\angle Y C E=\angle A C E=90^{\circ}=\angle E H Y$ and $H E C Y$ is concyclic. As in Solution 1, it can be shown that $X H=H Y$ and Ptolemy's theorem can be used to obtain the result.

Solution 4, by Cristóbal Sánchez-Rubio.

Since $A X \perp C H$ and $X Y \perp E H, \angle A X Y=\angle E H C$. Since $A B \perp C H$ and $A C \perp E C, \angle B A C=\angle E C H$. Therefore, triangle $A X Y$ and $C H E$ are similar. Also $\angle H A X=\angle H C D=90^{\circ}-\angle A B C$, so that in the similarity, $A H$ and $C D$ correspond. Since $C D$ is a median of triangle $C H E$, then $A H$ is a median of triangle $A X Y$, so that $X H=H Y$ and so $E X=E Y$. We can now apply Ptolemy's theorem to the concyclic quadrilateral to achieve the desired result.

Solution 5, by Marie-Nicole Gras.

As in the foregoing solutions, we show that $H E C Y$ is concyclic. Triangles $A H Y$ and $C D E$ are similar, as are triangles $H A X$ and $D C H$. This is because (1) $\angle H Y A=180^{\circ}-\angle H Y C=\angle D E C ;(2) \angle H A Y=90^{\circ}-\angle A C B=\angle D C E$; (3) $\angle A H X=180^{\circ}-\angle A H Y=180^{\circ}-\angle C D E=\angle C D H$; and (4) $\angle H A X=$ $90^{\circ}-\angle A B C=\angle D C H$. Hence $H Y: D E=H A: D C=H X: D H$, so that $H Y=H X$. Therefore $E X=E Y$ and we can apply Ptolemy's theorem to get the result.

Comment by the editor. It is interesting to explore when the configuration is possible, i.e., when $X Y$ is internal to the triangle. Place the triangle in the coordinate plane: $A \sim(1, a), B \sim(0,0), C \sim(2 c, 0)$, where $b, c>0$. Then $D \sim(c, 0)$ and $H \sim(1,(2 c-1) / a)$. The triangle is right if and only if either (1) $c=1$ or $(2) a=(2 c-1) / a$ or $a^{2}=2 c-1$. It is acute if and only if $c>1$ and $a^{2}>2 c-1$.

The slope of $A C$ is $-a /(2 c-1)$ and of $H D$ is $-(2 c-1) /(a(c-1))$. The segment $X Y$ perpendicular to $H D$ will lie in the triangle if and only if the line $H D$ is at
least as steep as $A C$, or

$$
\frac{2 c-1}{a(c-1)} \geq \frac{a}{2 c-1} \quad \Leftrightarrow \quad a^{2} \leq \frac{(2 c-1)^{2}}{c-1}
$$

The situation can be illustrated by some special cases. When $(a, c)=(3,5)$, we get a right triangle. When $(a, c)=(3,2)$, we find that $H D \| A C, X=B, Y=P$ and $B H=H P$. When $(a, c)=(4,3)$, then X falls outside $A B$.
4536. Proposed by Leonard Giugiuc and Rovsan Pirkuliev.

Let $A B C$ be a triangle with $\angle A B C=60^{\circ}$. Consider a point M on the side $A C$. Find the angles of the triangle, given that

$$
\sqrt{3} B M=A C+\max \{A M, M C\}
$$

Of the 16 submissions, all but one were complete and correct. We feature the solution by Fahreezan Sheraz Diyaldin, slightly shortened by the editor.

We shall see that the angles of $\triangle A B C$ are either $90^{\circ}, 60^{\circ}, 30^{\circ}$, or they are all 60°. Denote the circumcircle by Ω, with circumcenter O and circumradius R. Since point M is inside Ω, the power of M with respect to Ω equals $-A M \cdot M C=$ $O M^{2}-R^{2}$. By the triangle inequality we have

$$
B M \leq B O+O M=R+\sqrt{R^{2}-A M \cdot M C}
$$

so that

$$
\begin{equation*}
\frac{A C+\max \{A M, M C\}}{\sqrt{3}} \leq R+\sqrt{R^{2}-A M \cdot M C} \tag{1}
\end{equation*}
$$

By the Law of Sines,

$$
\begin{equation*}
R=\frac{A C}{2 \sin \angle A B C}=\frac{A C}{2 \sin 60^{\circ}}=\frac{A C}{\sqrt{3}} \tag{2}
\end{equation*}
$$

Because the vertices A and C play symmetric roles, we may assume (without loss of generality) that $A M \geq M C$. Substituting equation (2) into the inequality (1), we get the equivalent inequalities

$$
\begin{aligned}
\frac{A C+A M}{\sqrt{3}} & \leq \frac{A C}{\sqrt{3}}+\sqrt{\frac{A C^{2}}{3}-A M \cdot M C} \\
\frac{A M}{\sqrt{3}} & \leq \sqrt{\frac{(A M+M C)^{2}}{3}-A M \cdot M C} \\
A M^{2} & \leq A M^{2}-A M \cdot M C+M C^{2} \\
A M \cdot M C & \leq M C^{2} .
\end{aligned}
$$

There arise two cases:

- Case 1: $M C=0$.
$M C=0$ indicates that the points M and C coincide, in which case

$$
B C=B M=\frac{A C+A M}{\sqrt{3}}=\frac{2 A C}{\sqrt{3}}=2 R
$$

This implies that $B C$ is the diameter of Ω, whence $\angle B A C$ must be a right angle and $\angle B C A=30^{\circ}$.

- Case 2: $M C \neq 0$.

Now the last inequality further reduces to $A M \leq M C$; but we also have $A M \geq M C$, whence $A M=M C$. In other words, M is the midpoint of $A C$. Moreover, the inequalities are all equalities; in particular, $B M=B O+O M$, which implies that M is on the line $B O$, and $B M \perp A C$. Because M is the midpoint of $A C$ as well as the foot of the perpendicular from B, we deduce that $B A=B C$ which, together with $\angle A B C=60^{\circ}$, implies that $A B C$ is an equilateral triangle (and all angles are 60°). This completes the argument.

Editor's comment. Some geometers exclude the vertices in their definition for the side of a triangle. Readers who used that convention concluded that only the equilateral triangle satisfied all the requirements of the problem.

4537. Proposed by Arsalan Wares.

Let A be a regular hexagon with vertices $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ and A_{6}. The six midpoints on the six sides of hexagon A are connected to the six vertices with 12 line segments as shown. The dodecagon formed by these 12 line segments has been shaded. What part of hexagon A has been shaded?

We received 21 submissions, out of which twelve were correct and complete. The incorrect submissions all overlooked that the dodecagon in the question is not regular. We present the solution by the Missouri State Problem Solving Group, lightly edited.

Let O be the center of the hexagon and B_{1}, B_{2}, B_{3} be the midpoints of $A_{6} A_{1}$, $A_{1} A_{2}$ and $A_{2} A_{3}$. By symmetry, the lines $A_{6} B_{2}, A_{2} B_{1}$, and $O A_{1}$ intersect in a point, which we call C_{1}. Similarly we define C_{2} as the intersection of $A_{1} B_{3}, A_{3} B_{2}$, and $O A_{2}$ and we let D be the intersection of $A_{2} B_{1}, A_{1} B_{3}$, and $O B_{2}$. Finally we define X as the intersection of $A_{6} A_{2}$ and $O A_{1}$. Since $O A_{6} A_{1} A_{2}$ is a rhombus, X is also the midpoint of $O A_{1}$.

The hexagon can be partitioned into twelve triangles that are all congruent to $\Delta O A_{1} B_{2}$, whereas the dodecagon can be partitioned into twelve triangles, all congruent to $\Delta O C_{1} D$. Therefore the ratio of the area of the dodecagon to that of the hexagon is equal to the ratio of the area of $\Delta O C_{1} D$ to that of $\Delta O A_{1} B_{2}$.

Consider the triangle $A_{1} A_{2} A_{6}$. Since $A_{2} B_{1}$ and $A_{6} B_{2}$ are medians, C_{1} is the centroid. Therefore $\left|A_{1} C_{1}\right|=\frac{2}{3}\left|X A_{1}\right|=\frac{1}{3}\left|O A_{1}\right|$. Similarly $\left|A_{2} C_{2}\right|=\frac{1}{3}\left|O A_{2}\right|$. Consider the triangle $O A_{1} A_{2}$. The point D is the intersection of the three cevians $O B_{2}, A_{1} C_{2}$, and $A_{2} C_{1}$. Therefore

$$
\frac{O D}{D B_{2}}=\frac{O C_{1}}{C_{1} A_{1}}+\frac{O C_{2}}{C_{2} A_{2}}=2+2=4,
$$

and thus $|O D| /\left|O B_{2}\right|=4 / 5$. Finally, using the sine law,

$$
\begin{aligned}
\frac{\left[O C_{1} D\right]}{\left[O A_{1} B_{2}\right]} & =\frac{\frac{1}{2} \cdot\left|O C_{1}\right| \cdot|O D| \cdot \sin \angle C_{1} O D}{\frac{1}{2} \cdot\left|O A_{1}\right| \cdot\left|O B_{2}\right| \cdot \sin \angle A_{1} O B_{2}} \\
& =\frac{\mid O C_{1}}{\left|O A_{1}\right|} \cdot \frac{|O D|}{\left|O B_{2}\right|} \\
& =\frac{2}{3} \cdot \frac{4}{5} \\
& =\frac{8}{15} .
\end{aligned}
$$

Therefore the ratio of the area of the dodecagon to the area of the hexagon is $8 / 15$.

4538. Proposed by Nguyen Viet Hung.

Let $a_{1}, a_{2}, \ldots, a_{n}$ be non-negative real numbers. Prove that

$$
\sum_{1 \leq i \leq n} \sqrt{1+a_{i}^{2}}+\sum_{1 \leq i<j \leq n} a_{i} a_{j} \geq n-1+\sqrt{1+\left(\sum_{1 \leq i \leq n} a_{i}\right)^{2}} .
$$

When does equality occur?
We received 16 submissions, of which 13 were correct and complete. We present two solutions.

Solution 1 by Jiahao Chen, slightly edited.

We will prove the given inequality by induction on n, and show that equality occurs if and only if $n-1$ of the numbers a_{1}, \ldots, a_{n} are zero.
When $n=1$, equality holds trivially. Let us consider the case $n=2$; to simplify the presentation, we use x and y instead of a_{1} and a_{2}. That is, we have to prove that

$$
\sqrt{1+x^{2}}+\sqrt{1+y^{2}}+x y \geq 1+\sqrt{1+(x+y)^{2}}
$$

which by rearranging is equivalent to

$$
\begin{align*}
\sqrt{1+x^{2}}-1+x y & \geq \sqrt{1+(x+y)^{2}}-\sqrt{1+y^{2}} \\
\frac{x^{2}+x y\left(\sqrt{1+x^{2}}+1\right)}{\sqrt{1+x^{2}}+1} & \geq \frac{x^{2}+2 x y}{\sqrt{1+(x+y)^{2}}+\sqrt{1+y^{2}}} \tag{1}
\end{align*}
$$

The condition $x, y \geq 0$ allows us to note that the numerator on the left-hand side is greater than or equal to the numerator on the right-hand side, while the denominator on the left-hand side is smaller than or equal to the denominator on the right-hand side; moreover, when x and y are both non-zero, these inequalities are strict. Hence the inequality in (1) holds.

Consider non-negative real numbers a_{1}, \ldots, a_{n} for $n=k+1$, where $k \geq 2$. Let $x=\sum_{j=1}^{k} a_{j}$. From the case $n=2$ we know that

$$
\sqrt{1+a_{k+1}^{2}}+\sqrt{1+x^{2}}+a_{k+1} x \geq 1+\sqrt{1+\left(a_{k+1}+x\right)^{2}}
$$

with equality if at least one of a_{k+1} and x are zero (note that $x=0$ implies $a_{j}=0$ for all $1 \leq j \leq k$). On the other hand, by the induction hypothesis, for a_{1}, \ldots, a_{k} we have

$$
\sum_{j=1}^{k} \sqrt{1+a_{j}^{2}}+\sum_{1 \leq i<j \leq k} a_{i} a_{j} \geq(k-1)+\sqrt{1+x^{2}}
$$

with equality if and only if $k-1$ of the a_{j} 's are zero.
Combining these two inequalities gives us the desired result.

Solution 2 by Marian Dincă, completed and corrected by the editor.
Note that

$$
\sum_{1 \leq i<j \leq n} a_{i} a_{j}=\frac{1}{2}\left(\left(\sum_{i=1}^{n} a_{i}\right)^{2}-\sum_{i=1}^{n} a_{i}^{2}\right)
$$

The inequality we want to prove can thus be rewritten as

$$
\sum_{i=1}^{n}\left(\sqrt{1+a_{i}^{2}}-\frac{a_{i}^{2}}{2}-1\right) \geq \sqrt{1+\left(\sum_{i=1}^{n} a_{i}\right)^{2}}-\frac{1}{2}\left(\sum_{i=1}^{n} a_{i}\right)^{2}-1
$$

Define $f:[0, \infty) \rightarrow \mathbb{R}$ by $f(x)=\sqrt{1+x^{2}}-\frac{x^{2}}{2}-1$; note $f(0)=0$. We need to show that

$$
\sum_{i=1}^{n} f\left(a_{i}\right) \geq f\left(\sum_{i=1}^{n} a_{i}\right)
$$

We will use Jensen's Inequality. First we will show that the function f is concave. We have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x}{\sqrt{1+x^{2}}}-x \text { and } \\
f^{\prime \prime}(x) & =\frac{1}{\left(1+x^{2}\right)^{3 / 2}}-1
\end{aligned}
$$

so $f^{\prime \prime}(x)<0$ for $x>0$, concluding the proof that f is concave. For $1 \leq j \leq n$ we have $0 \leq a_{j} \leq \sum_{i=1}^{n} a_{i}$, so there exists $\lambda_{j} \in[0,1]$ such that $a_{j}=\lambda_{j} \cdot \sum_{i=1}^{n} a_{i}$. Note that if $\sum_{i=1}^{n} a_{i} \neq 0$ we must have $\sum_{j=1}^{n} \lambda_{j}=1$; we can ensure this is always the case by choosing $\lambda_{1}=\ldots=\lambda_{n}=\frac{1}{n}$ when $a_{i}=0$ for all i. Applying Jensen's Inequality to each term we have

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(a_{i}\right) & =\sum_{i=1}^{n} f\left(\lambda_{i} \sum_{j=1}^{n} a_{j}+\left(1-\lambda_{i}\right) 0\right) \\
& \geq \sum_{i=1}^{n} \lambda_{i} f\left(\sum_{j=1}^{n} a_{j}\right)+\left(1-\lambda_{i}\right) f(0) \\
& =f\left(\sum_{j=1}^{n} a_{j}\right)
\end{aligned}
$$

Clearly if $a_{1}=\cdots=a_{n}=0$ then equality holds. Suppose there exists a k such that $a_{k} \neq 0$. From the definition of the λ_{j} 's, we must also have $\lambda_{k} \neq 0$. Then Jensen's Inequality will give us a strict inequality for that term (and hence for the overall inequality) unless $\lambda_{k}=1$. If $\lambda_{k}=1$ then $\lambda_{j}=0$ for all other j (and thus $a_{j}=0$ for $j \neq k$), which means that equality holds for all the other terms as well. In conclusion, equality holds for the given inequality if and only if at most one of the a_{n} 's are non-zero.

4539. Proposed by Leonard Giugiuc.

Let $A B C$ be a triangle with centroid G, incircle ω, circumradius R and semiperimeter s. Show that $24 R \sqrt{6} \geq 25 s$ given that G lies on ω.

We received 12 submissions, all correct, and feature the solution by Theo Koupelis.
Let a, b, c, F be the side lengths and area, respectively, of the triangle. It is known (see, for example, page 51 of O. Bottema et al., Geometric Inequalities (1968)), that the distance between the centroid G and incenter I is given by

$$
9 G I^{2}=5 r^{2}-16 R r+s^{2}
$$

where r is the radius of ω. Because $G I=r$ is given, it follows that $4 r^{2}+16 R r-s^{2}=$ 0 or, recalling that the area is given by $F=r s=\frac{a b c}{4 R}$, we have

$$
4 F^{2}+4 s a b c-s^{4}=0
$$

Making the substitutions $a=x+y, b=y+z$, and $c=z+x$ (where x, y, z are positive for a nondegenerate triangle), we get

$$
\begin{gathered}
s=x+y+z, \quad F=\sqrt{(x+y+z) x y z} \\
a b c=(x+y)(y+z)(z+x)=(x+y+z)(x y+y z+z x)-x y z
\end{gathered}
$$

Therefore, the given condition becomes

$$
\begin{equation*}
(x+y+z)^{2}=4(x y+y z+z x) \tag{1}
\end{equation*}
$$

or

$$
x^{2}+y^{2}+z^{2}=2(x y+y z+z x)
$$

Treating the last equation as a quadratic in z, we find that G lies on the incircle if and only if

$$
\begin{equation*}
z_{ \pm}=(\sqrt{x} \pm \sqrt{y})^{2}=x+y \pm 2 \sqrt{x y} \tag{2}
\end{equation*}
$$

We observe that the required inequality, namely $24 R \sqrt{6} \geq 25 s$, is equivalent to $F s \leq \frac{6 \sqrt{6}}{25} a b c$. Squaring and using $4 a b c=(x+y+z)^{3}-4 x y z$ (from equation (1)), the inequality becomes

$$
\left[(x+y+z)^{3}-54 x y z\right]\left[(x+y+z)^{3}-\frac{8}{27} x y z\right] \geq 0
$$

However by AM-GM, $(x+y+z)^{3} \geq 27 x y z>\frac{8}{27} x y z$, so that finally, the given inequality becomes

$$
(x+y+z)^{3} \geq 54 x y z
$$

This last inequality clearly holds when $G \in \omega$ because (from (2))

$$
\left(x+y+z_{ \pm}\right)^{3}-54 x y z_{ \pm}=2(\sqrt{x} \mp \sqrt{y})^{2}(2 \sqrt{x} \pm \sqrt{y})^{2}(\sqrt{x} \pm 2 \sqrt{y})^{2}
$$

Equality occurs if and only if $(x, y, z)=(t, t, 4 t)$ with $t>0$, or its cyclic permutations, which leads to an isosceles triangle with side lengths $2 t, 5 t$, and $5 t$.

4540. Proposed by Prithwijit De.

Given a prime p and an odd natural number k, do there exist infinitely many natural numbers n such that p divides $n^{k}+k^{n}$? Justify your answer.

We received 26 submissions of which 25 were correct and complete. We present the solution by the Missouri State University Problem Solving Group and Roy Barbara (done indepedently), slightly modified.
The answer is positive. We show the existence by constructing n explicitly. There are the following two cases.

- If $p \mid k$, then one can take n to be any multiple of p.
- If $p \nmid k$, then one can take any positive integer

$$
n \equiv p-1(\bmod p(p-1)) .
$$

Since $n \equiv-1(\bmod p)$ and k is odd, we have $n^{k} \equiv(-1)^{k} \equiv-1(\bmod p)$. Since $n \equiv 0(\bmod p-1)$ and $p \nmid k$, by Fermat's little theorem, $k^{n} \equiv 1$ $(\bmod p)$. Hence, $n^{k}+k^{n} \equiv-1+1 \equiv 0(\bmod p)$.
Editor's Comment. As pointed out by UCLan Cyprus Problem Solving Group, the condition that k is odd is necessary. For example, if $k=4$ and $p=3$, then $n^{4}+4^{n}$ is never a multiple of 3 since $n^{4}+4^{n} \equiv 2(\bmod 3)$ when $3 \nmid n$ and $n^{4}+4^{n} \equiv 1$ $(\bmod 3)$ when $3 \mid n$.

