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Editorial /221

EDITORIAL
Tomorrow is my daughter’s 5th birthday and we have been looking at her pictures,
seeing how she grew and changed over time. When she was really little, I was often
puzzled about which measurements doctors considered most important at which
age. So I looked up models for children’s height and weight and started using them
in my class to motivate the study of functions. Then she got appendicitis and I
used the ultrasound images of her belly to talk about Riemann sums and volumes of
revolution. Then the pandemic happened and exponential functions, log-log plots,
rate of disease spread, overall disease dynamics, probabilities of all sorts saturated
the news. I had no shortage of content to bring to the classroom and, for once,
I didn’t even have to try hard to explain the significance and vital importance of
mathematical analysis of these concepts. Current events made certain things in
mathematics presently relevant. But this fall I’m teaching a history of mathematics
course. How do I relate that to my students’ everyday lives and experiences? What
historical developments are important to highlight? What cultural context should
be emphasized?

When we think of the history of math, we tend to think about ancient Greeks. On
that front, I highly recommend the podcast “Opinionated History of Mathematics”
by Viktor Blasjö that I binge-listened to. This no-frills podcast will get you to
think about ancient Greek math as it relates to how we approach math today.
But what about other cultures? This year, I have been reading a lot of historical
books with strong, loose and seemingly no ties to math. I’m an omnivore when it
comes to books. I’ve discovered many things I barely knew anything about that I
want to incorporate into my teaching. If you are looking for a book, here are two
of my top suggestions from my recent reading list: “Code Talker” by Chester Nez
and Judith Schiess Avila and “Braiding Sweetgrass: Indigenous Wisdom, Scientific
Knowledge and the Teachings of Plants” by Robin Wall Kimmerer. These books,
powerful in different ways, have taught me a lot about history, cultural context
and different ways of knowing.

And now I’m off to bake a heart-shaped cake.

Kseniya Garaschuk

Copyright © Canadian Mathematical Society, 2021
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The MathemAttic Article Contest
Calling all writers! The editorial staff at MathemAttic wish to announce an article
writing contest.

MathemAttic is the section of Crux Mathematicorum aimed, generally, at high
school students. What that means is that the level of material in that section
doesn’t go beyond the high school curriculum plus a few outside topics that would
be familiar to students who participate in mathematics competitions. As such,
there is more room for material of a more general nature: examples include the
columns Problem Solving Vignettes, aimed at pre-university students interested in
mathematics competitions; Teaching Problems, aimed at problems to aid teach-
ers in their classrooms; and Explorations in Indigenous Mathematics aimed at
uncovering mathematical topics from an indigenous point of view.

For the competition we are looking for expository articles in mathematics that
would be of interest to the readers of MathemAttic. Check out Robert Dawson’s
“Writing an Expository Article for Crux” in this issue, as well as “How to Write
a Crux Article Revisited” [2019: 45(10), p. 562-563]. We will publish a number
of the strongest papers in MathemAttic next year. There will also be a few prizes
from the CMS available for exceptional articles.

We are particularly interested in hearing from students (high school or university),
but we will accept articles from anybody (prizes will be limited to students). If
you are a student, please provide us with your grade, age, and school. A word on
credit: make sure you (briefly) acknowledge anybody who helped you significantly
with research or with the overall presentation.

The contest deadline will be November 1, 2021. We hope to publish a number
of the strongest papers, and will offer some feedback to help the writers prepare
these for publication. Any entries received after November 1st will be eligible to
be considered for publication, but will not be part of the contest.

Please email your submissions to MathemAttic@cms.math.ca with “MA Article
Contest” in the subject line.

And now, put on your writing hat and give us your best shot!

Crux Mathematicorum, Vol. 47(5), May 2021
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Writing An Expository Article for
Crux

Crux is about problems! We are not the place to send your latest research dis-
covery, even if it’s about inequalities or triangles. Our articles are mostly about
problem-solving techniques, with examples of how they are used and some ques-
tions left for the reader to try. However, now that we no longer have printing costs
and page limits, we can spread our net a little wider.

Do you know a bit of mathematics that you think is really neat and that not enough
people know about? Consider writing an expository article for us. If you want
to know what I mean, read some collections of articles by (for instance) Martin
Gardner or Ian Stewart. The math they write about in these articles is largely
done by other people; what they have done is to make it accessible to readers.

To write such an article, you need to know the subject very well, though there is
absolutely no need to have done original research on it. (Gardner was a philoso-
pher by training and a writer by trade until he started his famous “Mathematical
Games” column in Scientific American, which he wrote for more than 24 years,
providing inspiration for innumerable budding mathematicians in the 1960’s and
1970’s, including myself.) Don’t just read one source, read everything you can
find. The Internet will help you here and you are allowed to use it. (Wikipedia
and Wolfram MathWorld are generally reliable, as are most published books.)

The article needs a coherent structure. What is this topic? Why should we be
interested? Here are some neat things about it – and here’s where to go look
for more. Try very hard to include a short bibliography pointing the reader to
the best accessible books on the subject; these do not have to be books you have
quoted in the article. In a research article, the bibliography is a posse of your
fellow mathematicians (living or dead) who back up your claims. In an expository
article, it’s mostly a reading list.

Giving credit in an expository article is mostly done in the body of the piece.
Tell the story: give it the human touch. Ramanujan discovered this identity in
India when he had had little formal education in mathematics. Galois wrote that
theorem down at the age of twenty, the night before he was killed in a duel. This was
conjectured by Paul Erdős, the brilliant and eccentric Hungarian mathematician
who spent much of his life travelling from university to university, and coauthored
so many papers that mathematicians joke about their “Erdős number” the way
movie actors are said to trace their distance from Kevin Bacon. Use a bibliographic
reference only for something unusual.

In research writing, rigour is essential: this sometimes requires a lot of mathemat-
ical notation. Even there, it can be overdone: a good writer will usually prefer
words like “therefore,” “and,” and “not” to the corresponding symbols. In expos-
itory writing, we must still always tell the truth, but we can let our hair down a
little more. As much as possible, we use natural language (in Crux, English or
French!) and you should usually be able to read your whole article aloud (or have

Copyright © Canadian Mathematical Society, 2021
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a very good reason for each exception.) We don’t need proofs for everything – in
fact, they should usually be omitted.

There is some room for flexibility in style, much more than there is in research
papers. Martin Gardner wrote some of his columns as stories about a numerologist
named “Dr. Matrix,” and the chemist Frederick Soddy once wrote a geometry
theorem as a poem (“The Kiss Precise.”) Don’t try to be clever with the style
unless you know why you’re doing it, but if you think it will work, try it on us.

These are some hints, but if you want to write expository articles for Crux, go
and read the experts. Libraries usually have a number of popular math books
made up of short essays on a number of topics. See how it’s done.

We’re going to have to maintain quite high standards, and undoubtedly won’t pub-
lish everything we’re sent. However, we will give special consideration to good arti-
cles by school-age and student authors (let us know in your cover email). Younger
authors especially: please have somebody (not necessarily a mathematician) with
a good writing style read your paper before you submit it. If the language in which
you’re writing is not one you are fluent in, please choose a first reader who can
help you with your style.

A word on credit. While Crux papers aren’t very formal, they should be pro-
fessional. You should (briefly) acknowledge anybody who helped you significantly
with research or with the overall presentation. This isn’t the Oscars: please don’t
thank your parents, your Grade Six math teacher, or anybody else just for being
important in your life. Typical phrasing: “I would like to thank Chen Xing for
helpful discussions, and Dr. Anastasia Smirnova for assistance with the English
version.” If all somebody did was read through for comma faults, just thank them
in person and make sure they see it when its published. If they did nearly as much
of the work as you did, they ought to be a coauthor.

Thank you!

PS: We are still not publishing research articles. If you have proved a new re-
sult that you think is of general interest, get a second opinion from somebody
who knows the field. Then consider periodicals such as the American Mathemat-
ical Monthly (or its sister publications Mathematics Magazine and the College
Math Journal for more elementary material); Fibonacci Quarterly ; Recreational
Mathematics Magazine; Journal of Classical Geometry ; and Journal of Integer
Sequences. (Read some articles first to get a feel for what they want!)

If the result is self-contained, has a bit of pizazz, and will work as a problem,
then you could submit it here as a problem. Send it to the problems editors, of
course! Send your proof, too, please: it may well not be the one published, but
it will help the editors evaluate your problem, and will serve as a backup in case
the readers are stumped. (I don’t need to tell you to read some Crux problems;
but the less your problem looks like three that were published in the last year, the
more interested the editors will be.)

Robert Dawson

Crux Mathematicorum, Vol. 47(5), May 2021
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MATHEMATTIC
No. 25

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by July 15, 2021.

MA121. If a+ b+ c = 0 and abc = 4, find a3 + b3 + c3.

MA122. Four people Mr Baker, Ms Carpenter, Mr Driver, and Ms Plumber
are employed for four jobs as a baker, carpenter, driver, and plumber. None of
them has a name identifying their occupation. They make four statements:
1. Mr Baker says he is the plumber.
2. Mr Driver says he is the baker.
3. Ms Carpenter says she is not the plumber.
4. Ms Plumber says she is not the carpenter.

Exactly of the four statements are true. Who is the driver? (One of the
editors apologizes for spilling coffee on the page, but we are sure the question used
to have a unique answer!)

MA123. A 12-sided polygon is inscribed in a circle of radius length l. What
is the largest possible length of the shortest side of this polygon?

MA124. How many different 5-digit numbers can be formed using only the
digits 1, 2, and 3, if digits placed consecutively must differ by at most 1?

MA125. Determine all positive integers a and b, a < b, so that exactly 1
100

of the consecutive integers a2, a2 + 1, a2 + 2, . . . , b2 are the squares of integers.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Copyright © Canadian Mathematical Society, 2021
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Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 juillet 2021.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

MA121. Si a+ b+ c = 0 et abc = 4, déterminer a3 + b3 + c3.

MA122. Les quatre métiers de boulanger, charpentier, décorateur et plom-
bier sont occupés par Mme. Boulanger, M. Charpentier, M. Décorateur et Mme.
Plombier. Cependant, aucun nom correspond au métier. De plus, on nous affirme
que:
1. Mme. Boulanger est plombier.
2. M. Décorateur est boulanger.
3. M. Charpentier n’est pas plombier.
4. Mme. Plombier n’est pas charpentier.

De fait, exactement des quatre énoncés ci-haut sont vrais. Qui a le métier
de décorateur? (La nombre exact dénoncés vrais a été accidentellement oblitérée,
mais la question posée a une unique réponse.)

MA123. Un polygone à 12 côtés est inscrit dans un cercle de rayon l. Quelle
est la plus grande longueur possible pour le plus petit côté de ce polygone ?

MA124. Combien de nombres à 5 chiffres peuvent être formés se ser-
vant seulement des chiffres 1, 2 et 3, sous la stipulation que des chiffres placés
consécutivement doivent différer par au plus 1 ?

MA125. Déterminer tous les entiers positifs a et b, a < b, tels que parmi
les entiers consécutifs a2, a2 + 1, a2 + 2, . . . , b2, exactement 1

100 sont des carrés
d’entiers.

Crux Mathematicorum, Vol. 47(5), May 2021
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2020: 46(10), p. 483–485.

MA96.

a) A circle passes through points with coordinates (0, 1) and (0, 9) and is tangent
to the positive part of the x-axis. Find the radius and coordinates of the centre of
the circle.

b) Let a and b be any real numbers of the same sign (either both positive or both
negative). A circle passes through points with coordinates (0, a) and (0, b) and is
tangent to the positive part of the x-axis. Find the radius and coordinates of the
centre of the circle in terms of a and b.

Originally Problem 5 from The 36th W. J. Blundon Mathematics Contest.

We received 11 submissions, all of which were correct and complete. We present
the solution by William Alexander Digout.

Let’s start with part b) of the problem as it is a generalized version of part a). We
will then use the general equations of part b) to easily arrive at the solution for
part a).

b) Let a and b be any real numbers of the same sign (either both positive or both
negative). Without loss of generality while also simplifying the problem, let us
also add the condition that |a| < |b|, where the point with coordinates (0, a) will
be closer to the origin than the point with coordinates (0, b).

Let A, B, C and E be points of interest, where A is the point with coordinates
(0, a), B is the point with coordinates (0, b), C is the point at the centre of the
circle and has coordinates (xc, yc) and E is the point with coordinates (xc, 0). E
is the point of intersection between the circle and the positive part of the x-axis.

Let the point D be the midpoint of AB. The chord AB of the circle centred at C
has the midpoint D =

(
0, a+b2

)
with AD = a+b

2 −a = b−a
2 . Since D is the midpoint

of the chord AB, and D lies on the y-axis, C must lie on the line y = yD = a+b
2 .

Since E has coordinates (xC , 0) and E lies on the circle centred at C, then the line
EC must be the same length as the radius of the circle centred at C. Therefore
the radius of the circle is a+b

2 .

We now simply need to find xC .

ADC is a right triangle where AD2 +DC2 = AC2 by the Pythagorean Theorem.

Copyright © Canadian Mathematical Society, 2021
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ThusÅ
b− a

2

ã2
+ x2C =

Å
b+ a

2

ã2
⇐⇒ x2C =

(b+ a− (b− a))(b+ a+ (b− a))

4

⇐⇒ x2C = ab

⇐⇒ xC =
√
ab.

We conclude that the circle we are looking for has a radius of a+b
2 and is centred

at the point with coordinates
Ä√

ab, a+b2

ä
.

a) Let a = 1 and b = 9. Therefore by our work in part (b), we find that the
circle has a radius of (9 + 1)/2 = 5 and is centred at the point with coordinates
(
√

1 · 9, 5) = (3, 5).

Remark. By symmetry, had the problem said the circle was tangent to the negative
part of the x-axis, then the circle would have the same radius, but centred at the

point with coordinates
Ä
−
√
ab, a+b2

ä
. A circle that passes through points with

coordinates (a, 0) and (b, 0) and is tangent to the positive part of the y-axis would
have the same radius as our problem, but would be centred at the point with

coordinates
Ä
a+b
2 ,
√
ab
ä
. A circle that passes through the points (a, 0) and (b, 0)

and is tangent to the negative part of the y-axis would also have the same radius,

but would be centred at the point with coordinates
Ä
a+b
2 ,−

√
ab
ä
. This problem

could also be solved through the use of the equation of a circle.

MA97. In London there are two notorious burglars, A and B, who steal
famous paintings. They hide their stolen paintings in secret warehouses at different
ends of the city. Eventually all the art galleries are shut down, so they start stealing
from each other’s collection. Initially A has 16 more paintings than B. Every week,
A steals a quarter of B’s paintings, and B steals a quarter of A’s paintings. After
3 weeks, Sherlock Holmes catches both thieves. Which thief has more paintings
by this point, and by how much?

Originally Problem 6 from The 36th W. J. Blundon Mathematics Contest.

We received 7 solutions. We present the solution by Nathan Kyubin Yoo.

Let x be the number of paintings B has at the start. We assume that the thefts
occur simultaneously, and we fill in the following table.

A B
start x+ 16 x

week 1 3
4 (x+ 16) + x

4 = x+ 12 3
4x+ 1

4 (x+ 16) = x+ 4

week 2 3
4 (x+ 12) + 1

4 (x+ 4) = x+ 10 3
4 (x+ 4) + 1

4 (x+ 12) = x+ 6

week 3 3
4 (x+ 10) + 1

4 (x+ 6) = x+ 9 3
4 (x+ 6) + 1

4 (x+ 10) = x+ 7

Crux Mathematicorum, Vol. 47(5), May 2021
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Therefore 3 weeks later A has 2 more paintings than B.

Editor’s Comment. Note that even with the assumption that x is a multiple of 4,
after the 3rd week the thieves would have been reduced to stealing half-paintings
(maybe some paintings come in multiple panels?). Taes Padhihary got around this
issue by taking the integer value.

MA98. A pair of telephone poles d metres apart is supported by two cables
which run from the top of each pole to the bottom of the other. The poles are 4
m and 6 m tall. Determine the height above the ground of the point T , where the
two cables intersect. What happens to this height as d increases?

Originally Problem 7 from The 18th W. J. Blundon Mathematics Contest.

We received 5 solutions, of which 3 were correct and 2 were incomplete. The in-
complete ones had correct results, but the derivations were not sufficiently detailed.
We present the solution by Doddy Kastanya.

Let the foot of the perpendicular from T to PR be F . We know that QP = 4,
SR = 6, and PR = d. Let

FR = a, FP = d− a, FT = h.

Using the fact that 4PQR ∼ 4FTR, we find that

a

d
=
h

4
.

Similarly, using 4PSR ∼ 4PTF , we find that

1− a

d
=
d− a
d

=
h

6
.

The two equations together yield

1− h

6
=
h

4
,

where we can isolate h to get

h =
1

1
4 + 1

6

=
4 · 6
4 + 6

=
12

5
.

Copyright © Canadian Mathematical Society, 2021
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Note that this height h is independent of the distance d between the poles. More-
over, the same derivation shows that if the poles have height a and b, then the
height of the point of intersection is

h =
1

1

a
+

1

b

=
ab

a+ b
.

MA99. A flag consists of a white cross on a red field. The white stripes, both
vertical and horizontal, are of the same width. The flag measures 48cm by 24cm.
If the area of the white cross equals the area of the red field, what is the width of
the cross?

Originally Problem 7 from The 18th W. J. Blundon Mathematics Contest.

We received 5 solutions, of which 2 were correct. There were 2 solutions that
were incomplete because they did not say why a certain quadratic equation’s roots
contained an extraneous solution. We present the solution by Doddy Kastanya.

The area of the whole rectangle is 48 cm · 24 cm = 1152 cm2. So the area of the
red field and the area of the white cross are both half of this, which is 576 cm2.

Let the width of the white stripes be w. The area of the white cross is the area of
the 48× w horizontal stripe plus the area of the 24× w vertical stripe minus the
area of the overlap, which is a w × w square. So the area of the white cross is, in
centimetres squared,

576 = 48w + 24w − w2 = 72w − w2.

Solving for w in
w2 − 72w + 576 = 0

using the quadratic formula yields

12(3±
√

5).

The solution 12(3 +
√

5) is extraneous because it exceeds both dimensions of the
overarching rectangle. Therefore, the only possible width of the white cross is

12(3−
√

5) cm.

Crux Mathematicorum, Vol. 47(5), May 2021
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MA100. Suppose the equation x3 + 3x2 − x − 1 = 0 has real roots a, b, c.
Find the value of a2 + b2 + c2.

Originally Problem 1 from The 36th W. J. Blundon Mathematics Contest.

We received 10 solutions, of which 7 were correct. Most solutions simply cited
Vieta’s formulas. We present the solution by Muhammad Robith.

Let

x3+3x2−x−1 = (x− a) (x− b) (x− c) = x3−(a+b+c)x2+(ab+bc+ca)x−abc.

By expansion, collecting like terms, and comparing coefficients, we find that

a+ b+ c = −3,

ab+ bc+ ac = −1,

abc = 1.

These are called Vieta’s formulas. Recall that

a2 + b2 + c2 = (a+ b+ c)2 − 2(ab+ bc+ ac).

By Vieta’s formulas,

a2 + b2 + c2 = (−3)2 − 2(−1) = 9 + 2 = 11.

Copyright © Canadian Mathematical Society, 2021
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PROBLEM SOLVING
VIGNETTES

No. 16

Shawn Godin

Geometric Constructions

Geometry has fallen on hard times. There is significantly less geometry in the
mathematics curriculum than there was eons ago when I was in high school and
I was taught less geometry than those from earlier generations. This is a shame,
as so much of the nature of mathematical thought can be experienced at a young
age through the lens of geometry. It is also a pity since there are now so many
dynamic geometry software packages, like GeoGebra, to help students grasp the
geometric concepts.

One of the geometric topics that doesn’t get the time it deserves is geometric
constructions with compass and straightedge. It is amazing the number of geo-
metric constructions that can be performed using just a compass and an unmarked
ruler (just used for drawing lines, line segments and rays). In this column we will
examine a few classical constructions.

A big, underlying idea is the fact that since we are using an unmarked ruler, we
will use the compass as our “length-determiner”. For example, if you had a line
segment AB and a point C where you wanted to create another line segment CD
that is the same length as AB, how could you do it? If we draw a circle with centre
C whose radius is equal to the length of AB, then any point on the circumference
of the circle will create, with C a segment whose length is equal to AB.

C

A

B

D

For our first construction, we will examine how to construct an equilateral triangle.
If we take any line segment AB, and draw circles centred on A and B with radius
AB, they will intersect at two points P and Q as in the diagram below.

Crux Mathematicorum, Vol. 47(5), May 2021
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A

B

P

Q

Since P and Q are on both circles then, by construction,

PA = PB = AB = QA = QB

and hence ∆PAB and ∆QAB are both equilateral triangles.

In the construction process, one wouldn’t necessarily draw the whole circles to get
at what we are after. Knowing the general region where the vertex should be, it
is only necessary to draw an arc of the circle. So, for example, to construct the
equilateral triangle ∆PAB, we could do as in the diagram below. The dotted
circles wouldn’t be drawn, they are just there for reference.

A

B

P

We can use this idea to construct a regular hexagon. Note that by joining the
center O of a regular hexagon to each of the six vertices, you form six equilateral
triangles (each with an angle of 60◦ at O bordered by two equal sides). If we
start with a line segment, AB, that is to be one of our sides, we can use the
method above to determine the point O such that ∆OAB is equilateral. Now, if
we construct a circle with centre O that passes through A and B, this will be the
circumcircle of our desired regular hexagon. If we were to draw a circle centred at
B that passes through O it will also pass through A and another point, C on the
circumference of the first circle such that ∆OBC is equilateral and congruent to
∆OAB.

Copyright © Canadian Mathematical Society, 2021
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C

O

A

B

Hence, using arcs instead of full circles you could use A and B to locate O, then
from B get C and continuing around the circumcircle constructing the other ver-
tices of the regular hexagon.

C

D

E

F

O

A

B

Next we will move on to some constructions related to geometric objects. The
first is the construction of the midpoint of a given line segment. We saw in [2019 :
45(1), p. 13-16], while looking at congruent triangles, that the angle bisector of the
apex, the median from the apex and the perpendicular bisector of the base of an
isosceles triangle all coincide. We will use this idea to bisect a line segment. If we
draw two circles, of equal radii, centred on A and B, large enough so they intersect,
we claim that the two points of intersection, P and Q are on the perpendicular
bisector of AB, where X is the point of intersection of AB and PQ.

X
A B

P

Q

Crux Mathematicorum, Vol. 47(5), May 2021



Shawn Godin /235

To prove the claim we observe that ∆PAB and ∆QBC are congruent isosceles
triangles by SSS, hence

∠PAB = ∠PBA = ∠QAB = ∠QBA.

Similarly, we can deduce

∠APQ = ∠AQP = ∠BPQ = ∠BQP

and hence the four small triangles ∆AXP , ∆BXP , ∆AXQ, and ∆BXQ are
congruent by SAS. Thus, AX = XB so X is the midpoint of AB. Also, any two
adjacent angles at X are equal and supplementary, so all angles at X are 90◦ and
PQ is perpendicular to AB.

This technique can be modified so that we can construct perpendiculars wherever
we want. Thus, if C is a point on segment AB and we want to construct a line
perpendicular to AB at C, we just have to find a segment that overlaps the segment
AB with C as its midpoint. Then if we construct the perpendicular bisector of
the segment, it will be the one and only line that is perpendicular to AB at the
point C.

There are two possibilities. Without loss of generality, we can assume C is closer
to A. Then, if we construct the circle centred C that passes through A, it will
intersect AB at a point X. Thus our desired line is the perpendicular bisector
of AX. Similarly, if we extend AB beyond A and construct the circle centred C
that passes through B, it will intersect the extension of AB at a point Y and our
desired line is the perpendicular bisector of AY .

A B
C XY

Next, suppose we have a line `, and a point P not on ` and we want to construct
the line through P that is perpendicular to `. To utilize the previous technique, we
need P to be on the perpendicular bisector of a segment whose endpoints are on `.
Once again, we know that the apex of an isosceles triangle is on the perpendicular
bisector of the base, so if we can create an isosceles triangle with apex P , whose
base in on `, we are half way there. How do we do this? Since our compass is our
“length-determiner”, we start by setting it to a large enough size so that the circle
centred at P intersects ` at two points, A and B. Then, since PA = PB, ∆PAB
is isosceles with base AB and apex P , so the perpendicular bisector of AB is our
desired line.
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P

A B

The last construction that we will look at is that for an angle bisector. That is,
given three points A, B and C, construct the line that bisects ∠ABC. Again,
we are going to use the idea of congruent triangles to help us out. If we can find
points P , Q and X such that:

• P is on ray BA,

• Q is on ray BC,

• ∆BPX ∼= ∆BQX

then ∠PBX = ∠QBX and hence ray PX is our desired angle bisector.

By construction BX will be a common side for the two triangles, so if we can set
it up so that BP = BQ and PX = QX, our triangles will be congruent by SSS
and we will have our angle bisector. We can easily force the sides to be equal by
our construction. Thus, if we draw in rays BA and BC, set our compass to any
size and draw an arc that cuts the two rays, these can be our points P and Q and
we will have BP = BQ. Then, if we set our compass to any size large enough
so that circles drawn with centres P and Q intersect, then either of our points of
intersection is a candidate for X and, by construction, we will have PX = QX.
To make our lives easier, we know that in any triangle, each side is shorter in
length than the sum of the other two (triangle inequality). Thus, in ∆BPQ, we
must have PQ < BP + BQ. Hence, if we keep our compass at the same setting,
equal in length to both BP and BQ, then the circles will surely intersect and we
will have our angle bisector.

P

Q

X

B

A

C
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I hope that gives you enough to play around with some constructions. In the
next column, we will attack a couple of construction problems I faced in professor
Honsberger’s class. To keep you amused, here are a few construction challenges
for you.

1. Given a line segment AB, construct the square ABCD.

2. Given a regular polygon with n sides, you can construct a regular polygon
with 2n sides. Determine the technique and use it to construct a regular
dodecagon (12-sided figure).

3. Given an angle, construct another angle of equal measure with vertex at a
given point.

4. Given a line ` and a point P not on it, construct a line through P parallel
to `.

5. Draw any pentagon ABCDE. Construct a second pentagon VWXY Z that
is congruent to ABCDE.

My thanks goes to longtime Crux editor Chris Fisher for his feedback on this
column and its sequel. His comments helped make both articles better.
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OLYMPIAD CORNER
No. 393

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by July 15, 2021.

OC531. Given a non-zero integer k, prove that equation

k =
x2 − xy + 2y2

x+ y

is satisfied by an odd number of ordered pairs of integers (x, y) if and only if k is
divisible by 7.

OC532. Let f : [a, b]→ R a Riemann integrable function and let (an)n≥1 be
a sequence of positive real numbers such that limn→∞ an = 0.

(a) If A = {m · an | m,n ∈ N∗}, prove that every open interval of positive real
numbers contains elements of A.

(b) If for all n ∈ N∗ and all x, y ∈ [a, b] such that |x − y| = an the following
inequality holds ∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ ≤ |x− y|,
prove that ∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ ≤ |x− y| ∀x, y ∈ [a, b].

OC533. For k ∈ Z, define the polynomial Fk(x) = x4 + 2(1−k)x2 + (1 +k)2.
Find all values of k so that Fk is irreducible over Z[x] and reducible over Zp[x] for
all primes p.

OC534. The triangle A1A2A3 is given on the plane. Assuming that A4 = A1

and A5 = A2, we define points Xt and Yt for t = 1, 2, 3 as follows. Let Γt be the
excircle of triangle A1A2A3 tangent to the side At+1At+2, and let It be its center.
Let Pt and Qt be the points of tangency of Γt with the lines AtAt+1 and AtAt+2,
respectively. Then Xt and Yt are the intersection points of the line PtQt with the
lines ItAt+1 and ItAt+2, respectively. Prove that the points X1, Y1, X2, Y2, X3, Y3
lie on a circle.
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OC535. The set A consists of n real numbers. For the subset X ⊆ A, we
denote by S(X) the sum of the elements of the set X, and we assume S(∅) = 0.
Let k be the number of different real numbers x such that x = S(X) for some
X ⊆ A. Let ` be the number of ordered pairs (X,Y ) of subsets of the set A
satisfying the equality S(X) = S(Y ). Prove that k` ≤ 6n.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 juillet 2021.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

OC531. Soit k un entier non nul. Démontrer que l’équation

k =
x2 − xy + 2y2

x+ y

est satisfaite par un nombre impair de couples ordonnés d’entiers (x, y) si et seule-
ment si k est divisible par 7.

OC532. Soit f : [a, b] → R une fonction Riemann intégrable et soit (an)n≥1
une suite de nombres réels positifs tels que limn→∞ an = 0.

(a) Si A = {m ·an | m,n ∈ N∗}, démontrer que tout intervalle ouvert de nombres
réels positifs contient des éléments de A.

(b) Si pour tout n ∈ N∗ et tout x, y ∈ [a, b] tel que |x−y| = an l’inégalité suivante
tient ∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ ≤ |x− y|,
démontrer que ∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ ≤ |x− y| ∀x, y ∈ [a, b].
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OC533. Pour k ∈ Z, définir le polynôme Fk(x) = x4 + 2(1− k)x2 + (1 + k)2.
Déterminer toutes les valeurs de k telles que Fk est irréductible dans Z[x], mais
réductible dans Zp[x] pour tout nombre premier p.

OC534. Soit A1A2A3 un triangle dans le plan. Posant A4 = A1 et A5 =
A2, on définit alors des points Xt et Yt pour t = 1, 2, 3, comme suit. Soit Γt
le cercle exinscrit du triangle A1A2A3 tangent au côté At+1At+2 et soit It son
centre. Soient alors Pt et Qt les points de tangence de Γt avec les lignes AtAt+1

et AtAt+2 respectivement. Xt et Yt sont alors les points d’intersection de la ligne
PtQt avec les lignes ItAt+1 et ItAt+2 respectivement. Démontrer que les points
X1, Y1, X2, Y2, X3, Y3 se trouvent sur un même cercle.

OC535. L’ensemble A consiste de n nombres réels. Pour le sous ensemble
X ⊆ A, on va dénoter S(X) la somme des éléments de X, prenant pour acquis que
S(∅) = 0. Soit k le nombre de réels différents x tel que x = S(X) pour au moins
un X ⊆ A. Enfin, soit ` le nombre de paires ordonnées (X,Y ) de sous ensembles
de A satisfaisant l’égalité S(X) = S(Y ). Démontrer que k` ≤ 6n.
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2020: 46(10), p. 495–497.

OC506. A quadrilateral is called convex if the lines given by its diagonals
intersect inside the quadrilateral. A convex quadrilateral has side lengths 3, 3, 4,
4 not necessarily in this order, and its area is a positive integer. Find the number
of non-congruent convex quadrilaterals having these properties.

Originally from The Alberta High School Mathematics Competition, Part I, Ques-
tion 16.

We received 8 submissions, of which 4 were correct and complete. We present the
solution by Jason Smith.

Two kinds of quadrilaterals are possible: parallelograms or kites.

First consider the parallelograms, all of which are convex. The area of a parallel-
ogram with consecutive sides, a and b, and one interior angle, θ, is A = ab sin θ.
In our case, this becomes A = 12 sin θ. The area is a positive integer if sin θ takes
one of the following 12 values

1/12, 2/12, 3/12, 4/12, 5/12, 6/12, 7/12, 8/12, 9/12, 10/12, 11/12, 12/12.

These yield 23 solutions for θ: 11 acute angles, 11 obtuse angles, and 1 right
angle. However, each obtuse angle builds a parallelogram congruent to one built
by an acute angle. Therefore, 12 non-congruent parallelograms exist having a
positive-integer area.

Second consider the kites. The area of a kite with unequal consecutive sides a and
b bordering an angle of size θ is also A = ab sin θ, or A = 12 sin θ in our case. As
before sin θ takes one of the following 12 values 1/12, 2/12, . . . , 12/12, and θ can
be an acute, obtuse or right angle. However, the question asks for kites that are
convex. If the two sides of length 3 form a straight line, the resulting shape is
not a quadrilateral but rather a triangle, and cos θ = 3/4, sin θ =

√
7/4. In order

for the kite to be convex, the acute-angle solutions for θ must therefore satisfy
sin θ >

√
7/4. This corresponds to sin θ being 8/12, 9/12, 10/12, 11/12, leading to

four acute-angle solutions. The right-angle solution and all obtuse-angle solutions
for θ guarantees the convexity of the kite. Therefore there are 4 + 12 = 16 non-
congruent such kites with positive-integer area.

In summary, there are 28 non-congruent such quadrilaterals having a positive-
integer area.
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OC507. There are 2n consecutive integers written on a blackboard. In each
move, they are divided into pairs and each pair is replaced with their sum and
their difference, which may be taken to be positive or negative. Prove that no 2n
consecutive integers can appear on the board again.

Originally from Spring 2020 Tournament of Towns, A-level Senior, Question 6.

We received 7 submissions of which 6 were correct and complete. We present a
typical solution.

Let Q0 denote the sum of squares of the original numbers, and let Qm be the
respective sum of squares after m moves, where m > 0. Since (x+y)2 +(x−y)2 =
2(x2 + y2), we have Qm = 2Qm−1 = 2mQ0.

If a is the smallest of the original numbers, then we have

Q0 =
2n−1∑
k=0

(a+ k)2 = 2na2 + 2a
2n−1∑
k=0

k +
2n−1∑
k=0

k2

= 2n
(
a2 + (2n− 1)a

)
+
n(2n− 1)(4n− 1)

3
.

Denote by ν2(x) the exponent of 2 in the prime factor decomposition of a positive
integer x. The algebraic expression of Q0 shown above, implies ν2(Q0) = ν2(n).

If, after m steps, 2n consecutive integers b, b + 1, . . . , b + 2n − 1 appear on the
board, then

Qm = 2n
(
b2 + (2n− 1)b

)
+ (2n− 1)n(4n− 1)/3

and as before ν2(Qm) = ν2(n). We obtain two contradictory facts:

ν2(Q0) = ν2(Qm) = ν2(n) and ν2(Qm) = ν2(Q0) +m.

So we cannot get 2n consecutive numbers after m moves.

OC508. Let ABC be an isosceles triangle with AC = BC, whose incenter
is I. Let P be a point on the circumcircle of the triangle AIB lying inside the
triangle ABC. The lines through P parallel to CA and CB meet AB at D and
E, respectively. The line through P parallel to AB meets CA and CB at F and
G, respectively. Prove that the lines DF and EG intersect on the circumcircle of
the triangle ABC.

Originally from the 2004 Swiss IMO Team First Selection Test, Question 3.

We received 6 submissions, all of which were correct and complete. We present
two solutions.

Solution 1 by Taes Padhihary.

We present first the intuitive fact that leads to the result. By the problem con-
ditions, note that 4PDE and 4CFG are homothetic. Therefore, the lines DF ,
EG and CP should concur at the center of their homothety.
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Suppose the line CP meets the circumcircle of 4ABC at point T . Then, we have
that F,D, T and G,E, T are also collinear. Next we prove this crucial claim that
establishes the problem.

Note that ∠ATP = ∠ABC = ∠CFG = ∠PFC, and so the quadrilateral AFPT
is cyclic. Again, ∠TBD = ∠TCA = ∠TPD and so quadrilateral DTBP is also
cyclic. Now, note that ∠IAB = ∠IBA = ∠IAF , and therefore, CA is tangent to
the circumcircle of 4AIB. Using the above findings, finally observe that

∠PTF = ∠PAF = ∠PBA = ∠PBD = ∠PTD,

which implies that F,D, T are collinear. Similarly, we obtain G,E, T are collinear.
Hence, we conclude that the lines DF and EG meet on the circumcircle of4ABC.

Solution 2 by Corneliu Manescu-Avram.

Choose a Cartesian system of coordinates with C as origin and the altitude from
C as the x-axis. Taking the length of this altitude as the unity, we have C(0, 0),
A(1, a), and B(1,−a), for some a > 0. It is easy to find the circumcentre of4ABC
as O((a2 + 1)/2, 0), the incentre of 4ABC as I(a2 + 1 − a

√
a2 + 1, 0), and the

circumcentre of 4AIB as O1(a2 + 1, 0). The equations of the circumcircles are

C(ABC) : x2 + y2 − (a2 + 1)x = 0,

C(AIB) : x2 + y2 − 2(a2 + 1)x+ a2 + 1 = 0.

If P (u, v) is a point on the circumcircle of 4ABC then

u2 + v2 − 2(a2 + 1)u+ a2 + 1 = 0.
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We find: D(1, a(1− u) + v), E(1,−a(1− u) + v), F (u, au), and G(u,−au). Hence
we deduce that M(xM , yM ), the intersection point of DF and EG has coordinates

M

Å
u2

2u− 1
,

uv

2u− 1

ã
.

We find that M belongs to the circumcircle of 4ABC because

x2M + y2M − (a2 + 1)xM = 0.

OC509. Prove that for any odd prime p the number of positive integers n
satisfying p|n!+1 is smaller than or equal to cp2/3 where c is a constant independent
of p.

Originally from the 2009 Chinese IMO Team Selection Test, Day 1, Question 3.

We received 4 submissions, of which 3 were correct and complete. We present two
solutions.

Solution 1 by Sergey Sadov.

Let S = {n ∈ N | (n! + 1) ≡ 0 (mod p)}. Note that n ≥ p implies n! ≡ 0 (mod p),
while (p − 1)! ≡ −1 (mod p) by Wilson’s theorem. Hence max S ≤ p − 2. Let
s1 ≤ · · · ≤ sm = p − 1 be the members of S. Assume that there are at least two
numbers in S and let dj = sj+1 − sj , for j = 1, . . . ,m− 1.

Denote by rk the number of those dj that are equal to a given k. Next we show
that rk ≤ k. For any s, s′ ∈ S with s′ = s+ k we have

p |
(
s′!− s!

)
= s!

(
(s+ 1)(s+ 2) . . . (s+ k)− 1

)
and hence p|(s+ 1)(s+ 2) . . . (s+ k)− 1. The k-th degree polynomial

pk(x) = (x+ 1)(x+ 2) . . . (x+ k)− 1

has at most k roots in the field Z/pZ of integers modulo p. Therefore, there exist
at most k numbers s ∈ S such that s+ k ∈ S. In particular, rk ≤ k.

It follows that among the numbers d1, d2, . . . , dm−1 there is at most one which is
equal to 1, at most two which are equal to 2, etc. Hence

12 + 22 + . . . `2 ≤ d1 + d2 + · · ·+ dm−1,

where ` is the greatest integer such that 1 + 2 + · · ·+ ` ≤ m.

Thus,
m < 1 + 2 + · · ·+ (`+ 1) = (`+ 1)(`+ 2)/2 (1)

and
`(`+ 1)(2`+ 1)/6 ≤ d1 + · · ·+ dm−1. (2)
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On the other hand,
d1 + · · ·+ dm−1 = sm − s1 < p. (3)

Combining the last three inequalities we can get the required estimate.

First, (2) and (3) imply that `3/3 < p, and ` < (3p)1/3. Second (1) implies

m ≤ 2`2 < 2× 32/3 × p2/3

Hence there exists a constant c = 2× 32/3, independent of p such that m < cp2/3.

Solution 2 by Corneliu Manescu-Avram.

As in the previous solution, let S = {n ∈ N | (n! + 1) ≡ 0 (mod p)} and note that
max S ≤ p− 2.

Define A a subset of S as follows

A = {n ∈ S | |n−m| > (p− 1)1/3 for any m ∈ S,m 6= n}

Then the number of elements of A, Card (A) < C1(p−1)/(p−1)1/3 = C1(p−1)2/3

for some constant C1 independent of p. If n ∈ S \ A then there exists a positive
integer 1 ≤ k ≤ (p− 1)1/3 for which (n! + 1) ≡ 0 (mod p) and ((n + k)! + 1) ≡ 0
(mod p), whence

(n+ 1)(n+ 2) . . . (n+ k)− 1 ≡ 0 (mod p) .

This is a polynomial congruence of degree k in n modulo p and has at most k
solutions. Summing for all values of k we deduce that the cardinality Card(S\A) <
C2(p− 1)2/3, where C2 is a constant. In summary,

Card(S) = Card(A) + Card(S \A) < Cp2/3

for some constant C independent of p.

OC510. 2019 points are chosen independently and uniformly in the unit disc
{(x, y) ∈ R2 | x2 + y2 ≤ 1}. Let C be the convex hull of the chosen points. Which
probability is larger: that C is a polygon with three vertices, or a polygon with
four vertices?

Originally from the International Mathematics Competition 2019 Blagoevgrad Bul-
garia, Day 2 Problem 10 (proposed by Fedor Petrov, St.Petersburg State Univer-
sity).

We received 6 submissions, of which 5 were correct and complete. We present the
solution by Oliver Geupel.

We show that the probability p4 that C is a quadrilateral is larger than the prob-
ability p3 that C is a triangle. In fact, we prove that p4 > 10300p3.

The convex hull C is a triangle only if three of the chosen 2019 points form a
triangle where all other points are within. Also, among all triangles with vertices
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in the unit disk, an equilateral triangle with vertices on the boundary has the
largest area which is 33/2/4. Hence,

p3 ≤
Ç

2019

3

åÇ
33/2

4π

å2016

. (1)

Next, consider the points A(1, 0), B(0, 1), C(−1, 0), D(0,−1), and A0(1 − d, 0),
where d is some very small positive real number. The parallel to AB through A0

meets AD, BD, and BC at points A1, B0, and B2, respectively. The parallel
to BC through B0 meets AB, AC, and CD at B1, C0, and C2, respectively.
The parallel to CD through C0 meets BC, BD, and AD at C1, D0, and D2,
respectively. The parallel to AD through D0 meets CD and AB at D1 and A2,
respectively.

With our random experiment, consider the event E that exactly one point is in
each of the four squares A0A1AA2, B0B1BB2, C0C1CC2, and D0D1DD2, and the
other 2015 points are in the square A0B0C0D0. We have

p4 ≥ P [E] = 2019 · 2018 · 2017 · 2016 ·
Å
d2

2π

ã4 Å
2(1− d)2

π

ã2015
. (2)

We plan to prove that p3 < 10−300p4. By (1) and (2), it is enough to show that,
for some clever choice of d, it holdsÇ

2019

3

åÇ
33/2

4π

å2016

<
2019 · 2018 · 2017 · 2016

10300
·
Å
d2

2π

ã4 Å
2(1− d)2

π

ã2015
,

equivalently,

10300 · 33021

26049
· π

3

7
< d8(1− d)4030.
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Since 35 < 28, π < 4, and 102 < 27, we have

33021

26049
· π

3

7
=

Å
35

28

ã604
· 3π3

25 · 7 ·
1

27·173+1
< 1 · 3 · 43

25 · 7 ·
1

102·173
<

1

10346
.

Let us put d = 1/1000. Applying the well-known inequality 1 + x > e
x

1+x which
holds for every x > −1, we obtain

d8(1− d)4030 =
1

1024
·
Å

1− 1

1000

ã4030
>

1

1024
· 1

e4030/999

>
1

1024
· 1

e5
>

1

1024
· 1

105
>

1

1046
.

This proves that p4 > 10300p3.

Editor’s Comments. Several generalizations of this questions were proposed. Cor-
neliu Manescu-Avram indicated that if n ≥ 50 points are randomly selected in the
unit circle, then the probability that the convex hull of the points is a quadrilateral
is greater than the probability that the hull is a triangle. Sergey Sadov claimed
that for m2 > m1 there exists a large n depending on m1 and m2 such that if n
points are randomly selected in the unit circle, then the probability that the con-
vex hull of the points is a polygon with m2 vertices is greater than the probability
that the hull is a polygon with m1 vertices.
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Michel Bataille

Some Asymptotic Expansions

Introduction

Many problems asking for the limit of a sequence or the sum of a series can be
solved via an appropriate asymptotic expansion. In this number, we illustrate the
method with the Taylor expansions, of course, but also with the expansions of the
nth harmonic number Hn and of ln(n!) as n→∞, which are of frequent use. We
first present some basic tools with examples of the results they can produce. As
usual, a selection of past problems will then be offered.

In what follows, the notations un ∼ vn and un = o(vn) mean lim
n→∞

un

vn
= 1 and

lim
n→∞

un

vn
= 0, respectively. Note that un ∼ vn is equivalent to un = vn + o(vn).

Main tools and first examples

Taylor’s expansions often intervene in the kind of problems we are concerned with.
Sometimes, a resort to these expansions suffices to obtain the required result, as
in problem 720 of the College Mathematics Journal, proposed in January 2002:

Find the limit of the following expression as n→∞:

(n+ 3)n+3 − (n+ 2)n+2

(n+ 2)n+2 − (n+ 1)n+1
− (n+ 2)n+2 − (n+ 1)n+1

(n+ 1)n+1 − nn .

We set un = (n+1)n+1−nn so that the given expression isAn =
un+2un − (un+1)2

un+1un
.

Let p ∈ {1, 2, 3}. Taylor’s expansions of ln(1 + x) and ex then lead to

(n+ p) ln
(

1 +
p

n

)
= (n+ p)

Å
p

n
− p2

2n2
+ o(1/n2)

ã
= p+

p2

2n
+ o(1/n)

(
1 +

p

n

)n+p
= exp

Å
p+

p2

2n
+ o(1/n)

ã
= ep

Å
1 +

p2

2n
+ o(1/n)

ã
.

It follows that

un = nn+1

ÇÅ
1 +

1

n

ãn+1

− 1

n

å
= nn+1

Å
e+

e− 2

2n
+ o(1/n)

ã
un+1 = nn+2

Å
1 +

2

n

ãn+2

− nn+1

Å
1 +

1

n

ãn+1

= nn+2

Å
e2 +

2e2 − e
n

+ o(1/n)

ã
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and

un+2 = nn+3

Å
1 +

3

n

ãn+3

−nn+2

Å
1 +

2

n

ãn+2

= nn+3

Å
e3 +

9e3 − 2e2

2n
+ o(1/n)

ã
.

Thus, un+1un ∼ enn+1 · e2nn+2 = e3n2n+3 and a simple calculation gives

un+2un − (un+1)2 = n2n+4

Å
e4

n
+ o(1/n)

ã
∼ e4n2n+3.

As a result, An ∼
e4n2n+3

e3n2n+3
and the required limit is e.

Not very elegant, but quite efficient!

Another frequently used tool is comparison to an integral: if f : [0,∞)→ [0,∞) is
a continuous, non-increasing function, then for integers m,n such that 0 ≤ m ≤ n,
we have ∫ n+1

m

f(x) dx ≤
n∑

k=m

f(k) ≤ f(m) +

∫ n

m

f(x) dx.

[if f is nondecreasing, the inequalities are reversed.] These inequalities allow one
to discover some classical results, to be known by all problem solvers:

n∑
k=1

1

kα
∼ n1−α

1− α (0 < α < 1 or α ≤ 0),

∞∑
k=n+1

1

kα
∼ 1

(α− 1)nα−1
(α > 1),

Hn =
n∑
k=1

1

k
∼ ln(n),

ln(n!) =
n∑
k=1

ln(k) ∼ n ln(n).

(The details are left to the reader.)

It turns out that the following easily proved results are very useful: if an ∼ bn
and bn > 0, then

(i)
n∑
k=1

ak ∼
n∑
k=1

bk if
∞∑
k=1

bk is divergent [a form of the Stolz-Cesàro theorem]

and

(ii)
∞∑

k=n+1
ak ∼

∞∑
k=n+1

bk if
∞∑
k=1

bk is convergent.

Here is a simple example: let wn = Hn − ln(n). Then,

wn − wn−1 =
1

n
+ ln

Å
1− 1

n

ã
∼ − 1

2n2
,
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hence the series
∞∑
k=2

(wk − wk−1) is convergent. Let s denote its sum. Then,

applying (ii),

wn − w1 − s = −
∞∑

k=n+1

(wk − wk−1) ∼
∞∑

k=n+1

1

2k2
∼ 1

2n

and we conclude that

Hn = ln(n) + γ +
1

2n
+ o(1/n)

where γ = s+ w1 = s+ 1 (Euler’s constant).

Similarly, to study the difference ln(n!)− n ln(n), consider the series
∑
k≥2(wk −

wk−1) where wk = ln(k!)− k ln(k). This time, since

wn−wn−1 = ln(n)−n ln(n)+(n−1) ln(n−1) = (n−1) ln

Å
1− 1

n

ã
∼ −n− 1

n
∼ −1,

applying (i) gives

ln(n!)− n ln(n) =
n∑
k=2

(wk − wk−1) ∼
n∑
k=2

(−1) ∼ −n, .

Thus, ln(n!) = n ln(n)− n+ o(n).

Continuing this way leads to

ln(n!) = n ln(n)− n+
ln(n)

2
+ a+ o(1) (1)

where a is a real number [it can be shown that a = ln(
√

2π); Stirling’s well-known
formula is then readily obtained].

The key idea deserves to be memorized: to obtain a simple sequence (w′n) such
that wn ∼ w′n, consider the telescopic series

∑
(wk −wk−1) and apply (i) or (ii).

More examples

Our first example is problem 4442 [2019 : 265 ; 2019 : 569]:

Find the following limit

lim
n→∞

1√
n

Å
1√

1 +
√

2
+

1√
3 +
√

4
+ · · ·+ 1√

2n− 1 +
√

2n

ã
.

Here is a solution which rests upon the results of the previous section.

Let Sn = 1√
1+
√
2

+ 1√
3+
√
4

+ · · · + 1√
2n−1+

√
2n

. We show that Sn ∼
√
2
2 ·
√
n so

that the required limit is
√
2
2 .
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First, we calculate

Sn = (
√

2−
√

1) + (
√

4−
√

3) + · · ·+ (
√

2n−
√

2n− 1)

=
√

2(
√

1 +
√

2 + · · ·+√n)−
î
(
√

1 +
√

2 + · · ·+
√

2n)−
√

2(
√

1 +
√

2 + · · ·+√n)
ó

= 2
√

2(
√

1 +
√

2 + · · ·+√n)− (
√

1 +
√

2 + · · ·+
√

2n).

Because
√

1 +
√

2 + · · · + √n ∼ n1+ 1
2

1+ 1
2

= 2n
√
n

3 , both terms are asymptotic to

4n
√
2n

3 , so we need a better estimate of the sum
√

1 +
√

2 + · · ·+√n.

To this aim, prompted by the key idea, we set wn = (
√

1 +
√

2 + · · ·+√n)− 2n
√
n

3
and consider wn+1 − wn:

wn+1 − wn =
√
n+ 1− 2(n+ 1)

√
n+ 1

3
+

2n
√
n

3

=

√
n+ 1

3
− 2n(

√
n+ 1−√n)

3

=

√
n

3

Å
1 +

1

n

ã1/2
− 2n

√
n

3

ÇÅ
1 +

1

n

ã1/2
− 1

å
=

√
n

3

Å
1 +

1

2n
+ o(1/n)− 2n

Å
1

2n
− 1

8n2
+ o(1/n2)

ãã
=

√
n

3

Å
3

4n
+ o(1/n)

ã
=

1

4
√
n

+ o(1/
√
n).

We deduce that wn − w1 ∼ 1
4

n−1∑
k=1

k−1/2 and so wn ∼ 1
4

√
n−1
1/2 ∼

√
n
2 . This

means that
√

1 +
√

2 + · · ·+√n =
2n
√
n

3
+

√
n

2
+ o(
√
n)

and therefore

Sn = 2
√

2

Å
2n
√
n

3
+

√
n

2
+ o(
√
n)

ã
− 4
√

2n
√
n

3
−
√

2n

2
+o(
√
n) =

√
2

2
·√n+o(

√
n).

Thus, Sn ∼
√
2
2 ·
√
n, as desired.

To show expansion (1) at work, we consider the first part of problem 96.L proposed
in The Mathematical Gazette in November 2012.

Let un =
n
√
n!

n
and α ∈ R. Find lim

n→∞
nα(un+1 − un).

From (1) we deduce ln(un) = 1
n ln(n!)− ln(n) = −1 + o(1), hence un ∼ e−1. Let

δn = un+1 − un and ∆n = ln
Ä
un+1

un

ä
so that δn = un (exp(∆n)− 1). We estimate
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∆n as follows:

∆n =
1

n+ 1
ln((n+ 1)!)− ln(n+ 1)−

Å
1

n
ln(n!)− ln(n)

ã
=

ln(n+ 1)

n+ 1
+

Å
1

n+ 1
− 1

n

ã
ln(n!)− ln

Å
1 +

1

n

ã
=

Å
1 +

1

n

ã−1 ln(n)

n
−
Å

1 +
1

n

ã−1
ln

Å
1 +

1

n

ã
− 1

n2

Å
1 +

1

n

ã−1
ln(n!)

=

Å
1 +

1

n

ã−1 Å ln(n)

n
− ln

Å
1 +

1

n

ã
− ln(n)

n
+

1

n
− ln(n)

2n2
+ o

Å
ln(n)

n2

ãã
(using (1)).

Now, 1
n − ln

(
1 + 1

n

)
∼ 1

2n2 , hence 1
n − ln

(
1 + 1

n

)
= o((ln(n))/n2) and we finally

obtain ∆n ∼ − ln(n)
2n2 and δn ∼ un ·∆n ∼ − ln(n)

2en2 . We deduce that

lim
n→∞

nα(un+1 − un) = 0 if α < 2

and
lim
n→∞

nα(un+1 − un) = −∞ if α ≥ 2.

We conclude this number with problem 4257 [2017 : 235 ; 2018 : 268], an in-
teresting problem, the solution of which illustrates many of the tools introduced
above.

Calculate the following limit

lim
n→∞

Ç
n(n+1)
√

1! · 2! · · · ·n!√
n

å
.

We show that the required limit is e−3/4 by proving that lim
n→∞

un = − 3
4 , where

un = ln

Ç
n(n+1)
√

1! · 2! · · · ·n!√
n

å
=

1

n2 + n

n∑
k=1

ln(k!)− lnn

2
.

It is natural to first look for an asymptotic expansion of
∑n
k=1 ln(k!). We know

that ln(n!) ∼ n ln(n) and since the series
∑
n≥1 n ln(n) is divergent, it follows that

n∑
k=1

ln(k!) ∼
n∑
k=1

k ln(k). The function x 7→ x ln(x) being increasing on [1,∞), we

have ∫ n

1

x ln(x) dx ≤
n∑
k=1

k ln(k) ≤
∫ n+1

1

x ln(x) dx

with ∫ n

1

x ln(x) dx =

ï
x2

2
ln(x)− x2

4

òn
1

=
n2 ln(n)

2
− n2

4
+

1

4
∼ n2 ln(n)

2
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Since
(n+ 1)2 ln(n+ 1)

2
∼ n2 ln(n)

2
, we obtain that

n∑
k=1

ln(k!) ∼
n∑
k=1

k ln(k) ∼ n2 ln(n)

2
.

Now, we consider wn =
n2 ln(n)

2
−

n∑
k=1

ln(k!) and estimate

zn = wn − wn−1 =
n2 ln(n)

2
− (n− 1)2 ln(n− 1)

2
− ln(n!)

as follows

zn =
n2 ln(n)

2
− n2

2

Å
1− 1

n

ã2 Å
ln(n) + ln

Å
1− 1

n

ãã
− ln(n!)

=
n2 ln(n)

2

Ç
1−
Å

1− 1

n

ã2å
− n2

2

Å
1− 2

n
+

1

n2

ãÅ
− 1

n
+ o(1/n)

ã
− ln(n!)

= n ln(n)− ln(n)

2
− n2

2

Å
− 1

n
+ o(1/n)

ã
− ln(n!)

= n ln(n)− ln(n)

2
+
n

2
− n ln(n) + n+ o(n) =

3n

2
+ o(n) (since ln(n) = o(n)).

Thus zn ∼ 3n
2 , from which we deduce first

n∑
k=1

zk ∼ 3n2

4 and then wn ∼ 3n2

4 .

As a result, the desired expansion is

n∑
k=1

ln(k!) =
n2 ln(n)

2
− 3n2

4
+ o(n2).

We can now complete the solution and obtain the limit of un:

un =
n

n+ 1

(
1

n2

n∑
k=2

ln(k!)

)
− ln(n)

2

=

Å
1 +

1

n

ã−1 Å ln(n)

2
− 3

4
+ o(1)

ã
− ln(n)

2

=

Å
1− 1

n
+ o(1/n)

ãÅ
ln(n)

2
− 3

4
+ o(1)

ã
− ln(n)

2

=
ln(n)

2
− 3

4
+ o(1)− ln(n)

2
(since

ln(n)

n
= o(1) and

1

n
= o(1))

= −3

4
+ o(1),

that is, lim
n→∞

un = − 3
4 .
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The reader may find it enjoyable to use the results and methods of this number
to solve the following exercises.

Exercises

1. Use the Stolz-Cesàro theorem to prove that
n∑
k=1

1

nα
∼ n1−α

1− α when 0 < α < 1.

2. Prove that n
√
n! =

n

e
+

1

2e
ln(n) + o(lnn).

3. (proposed in Mathproblems in 2015) Let n ∈ N and letOn = 1+
1

3
+· · ·+ 1

2n− 1
.

Calculate

lim
n→∞

1

n

Å
1 +

2On
n

ãn
.

4. (Problem 1122 proposed in March 2018 in The College Mathematics Journal).
For each positive integer n, let

sn = −2
√
n+

n∑
i=1

1√
k

and lim
n→∞

sn = s, the Ioachimescu constant. Find lim
n→∞

(sn − s) 2n
√
n!.
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by July 15, 2021.

4641. Proposed by Al Şeymanur.

Let K,L, and M be the midpoints of the sides BC,CA, and AB, respectively, of
an acute triangle ABC. Denote by

A′, L′,M ′′ the reflections of A,L,M in the line BC,

B′,M ′,K ′′ the reflections of B,M,K in the line CA,

C ′,K ′, L′′ the reflections of C,K,L in the line AB.

Using square brackets to denote areas, we set T = [ABC], T ′ = [A′B′C ′], and
H = [K ′M ′′L′K ′′M ′L′′]. Prove that

4H − T ′ = 9T, T ′ ≤ 4T and H ≤ 13

4
T.

4642. Proposed by Adam L. Bruce.

Let A ∈ Rn×n be a positive definite matrix and let x ∈ Rn. Show that

(xTA2x)3 ≤ (xTAx)(xTA2x)(xTA3x).

4643. Proposed by Nguyen Viet Hung.

Find all pairs (m,n) of positive integers such that gcd(m,n) = 1 and integer
(2m − 1)(2n − 1) is a perfect square.

4644. Proposed by Mihaela Berindeanu, modified by the Editorial Board.

Let z1, z2, z3 ∈ C be different numbers, with |z1| = |z2| = |z3| = 1. Show that

|2z1 − z2 − z3|+ |z3 − z2| ≥
1√
2

(|z2 − z3||z1 − z3|+ |z2 − z1||z2 − z3|) .

4645. Proposed by Leonard Giugiuc and Bogdan Suceava.

Let a, b, c be positive real numbers such that a+ b+ c+ d = 1
a + 1

b + 1
c + 1

d . Prove
that

(a+ b+ c+ d)2 + 48abcd ≥ 64.
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4646. Proposed by George Apostolopoulos.

Let ABC be an acute triangle with inradius r and circumradius R. Prove that

cotA+ cotB + cotC ≤
√

3

Å
R

2r

ã2
.

4647. Proposed by Michel Bataille.

In the plane, two circles Γ and γ intersect at A and B. Let M (resp. N) be a
point of the arc of γ exterior (resp. interior) to Γ. If O is the centre of Γ, prove
that

OM2 −ON2 = k(MA ·MB +NA ·NB)

for some real number k independent of the chosen points M and N .

4648. Proposed by Corneliu Manescu-Avram.

Let a be a positive integer and let p > 3 be a prime number such that a2+a+1 ≡ 0
(mod p). Prove that (a+ 1)p ≡ ap + 1

(
mod p3

)
.

4649. Proposed by Mihaela Berindeanu.

For x, y, z ∈ R, show that

210x

2y + 2z
+

210y

2x + 2z
+

210z

2x + 2y
≥ 26x+2y+z−1 + 26y+2z+x−1 + 26z+2x+y−1.

4650. Proposed by Roberto F. Stöckli.

Let In = ((n − 1)2, n2]. Define f(n) = 1 if In contains exactly one triangular
number (recall that the nth triangular number is tn = n(n + 1)/2) and f(n) = 0
otherwise. Find the value of

lim
n→∞

f(1) + f(2) + · · ·+ f(n)

n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 juillet 2021.

La rédaction souhaite remercier Frédéric Morneau-Guérin, professeur à l’Université
TÉLUQ, d’avoir traduit les problèmes.

4641. Soumis par Al Şeymanur.

Désignons respectivement par K,L et M les points milieux des côtés BC,CA et
AB du triangle acutangle ABC. Notons

A′, L′,M ′′ la réflexion de A,L,M sur la droite BC,

B′,M ′,K ′′ la réflexion de B,M,K sur la droite CA,

C ′,K ′, L′′ la réflexion de C,K,L sur la droite AB.

Posons T = [ABC], T ′ = [A′B′C ′] et H = [K ′M ′′L′K ′′M ′L′′], où les crochets
sont employés pour indiquer que l’on considère l’aire. Montrez que

4H − T ′ = 9T, T ′ ≤ 4T et H ≤ 13

4
T.

4642. Soumis par Adam L. Bruce.

Soit A ∈ Rn×n une matrice définie positive et soit x ∈ Rn. Montrez que

(xTA2x)3 ≤ (xTAx)(xTA2x)(xTA3x).

4643. Soumis par Nguyen Viet Hung.

Trouvez toutes les paires d’entiers positifs (m,n) pour lesquelles (2m − 1)(2n − 1)
est un carré parfait et PGCD(m,n) = 1.

4644. Soumis par Mihaela Berindeanu puis modifié par le comité de rédaction.

Soient z1, z2, z3 ∈ C des nombres complexes distincts vérifiant |z1| = |z2| = |z3| =
1. Montrez que

|2z1 − z2 − z3|+ |z3 − z2| ≥
1√
2

(|z2 − z3||z1 − z3|+ |z2 − z1||z2 − z3|) .

4645. Soumis par Leonard Giugiuc et Bogdan Suceava.

Soient a, b, c des nombres réels positifs vérifiant a + b + c + d = 1
a + 1

b + 1
c + 1

d .
Montrez que

(a+ b+ c+ d)2 + 48abcd ≥ 64.
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4646. Soumis par George Apostolopoulos.

Soit ABC un triangle acutangle dont le rayon du cercle inscrit est r et celui du
cercle circonscrit est R. Montrez que

cotA+ cotB + cotC ≤
√

3

Å
R

2r

ã2
.

4647. Soumis par Michel Bataille.

Dans le plan cartésien, deux cercles Γ et γ se rencontrent en A et B. Soit M (re-
spectivement N) un point de l’arc de γ qui est extérieur (respectivement intérieur)
à Γ. Si O désigne le centre de Γ, montrez que

OM2 −ON2 = k(MA ·MB +NA ·NB)

pour un certain nombre réel k qui ne dépend pas des points M et N choisis.

4648. Soumis par Corneliu Manescu-Avram.

Soit a un entier positif et soit p > 3 un nombre premier vérifiant a2 + a + 1 ≡ 0
(mod p). Montrez que (a+ 1)p ≡ ap + 1

(
mod p3

)
.

4649. Soumis par Mihaela Berindeanu.

Étant donné x, y, z ∈ R, montrez que

210x

2y + 2z
+

210y

2x + 2z
+

210z

2x + 2y
≥ 26x+2y+z−1 + 26y+2z+x−1 + 26z+2x+y−1.

4650. Soumis par Roberto F. Stöckli.

Soit In = ((n − 1)2, n2]. Posons f(n) = 1 si In contient exactement un nombre
triangulaire (rappelons que le n-ième nombre triangulaire est tn = n(n+ 1)/2) et
f(n) = 0 sinon. Trouvez la valeur de

lim
n→∞

f(1) + f(2) + · · ·+ f(n)

n
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2020: 46(10), p. 504–508.

4591. Proposed by Pericles Papadopoulos.

Let point P be inside triangle ABC and let A′, B′ and C ′ be the points where the
internal bisectors of ∠BPC, ∠CPA and ∠APB intersect sides BC, CA and AB,
respectively.

Show that lines AA′, BB′ and CC ′ concur at a point K satisfying

AK

KA′
= PA

Å
1

PB
+

1

PC

ã
.

We received 15 submissions, all of which were correct. Most solutions used varia-
tions of the same argument, while the three exceptions used coordinates. We will
sample both approaches.

Solution 1 is a composite of the similar solutions using the majority approach.

Since PA′ bisects angle ∠BPC, then
BA′

A′C
=
PB

PC
. Similarly we have

CB′

B′A
=
PC

PA
and

AC ′

C ′B
=
PA

PB
. (1)

Multiplying the left-hand sides gives us

BA′

A′C
· CB

′

B′A
· AC

′

C ′B
= 1 .

Since the three cevians lie inside the triangle, they cannot be parallel; consequently,
Ceva’s theorem implies that AA′, BB′ and CC ′ concur at some point K.
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Van Aubel’s triangle theorem together with (1) now gives

AK

KA′
=
AC ′

C ′B
+
AB′

B′C
=
PA

PB
+
PA

PC
,

as required.

Editor’s comment. Professor H. Van Aubel of the Royal Antwerp Athenaeum was
a 19th century proposer and solver of mathematics problems. Two of his results
are called “Van Aubel’s theorem”, both of which can be found on the internet or
in geometry texts.

Solution 2, by Michel Bataille.

Let PA = u, PB = v, and PC = w. Since PA′ is the internal bisector of ∠BPC,
we have

A′B

CA′
=
PB

PC
=
v

w
.

It follows that
w
−−→
A′B + v

−−→
A′C =

−→
0 ,

and so the barycentric coordinates of A′ relatively to (A,B,C) are (0 : w : v).

Similarly, we have B′ = (w : 0 : u) and C ′ = (v : u : 0). The equations of the lines
AA′, BB′ and CC ′ are quickly obtained:

AA′ : vy − wz = 0; BB′ : ux− wz = 0; CC ′ : ux− vy = 0,

and it is readily checked that the point K = (vw : wu : uv) is on these three lines.
Since vw+wu+ uv 6= 0, K is not at infinity and we conclude that AA′, BB′, CC ′

concur at K.

In addition, we have

(vw+wu+uv)K = vwA+wuB+uvC = vwA+u(wB+vC) = vwA+u(w+v)A′,

and so
AK

KA′
=
u(v + w)

vw
= u

Å
1

v
+

1

w

ã
= PA

Å
1

PB
+

1

PC

ã
.

4592. Proposed by Michel Bataille.

Let ABC be a triangle with ∠BAC 6= 90◦ and let O be its circumcentre. Let γ
be the circumcircle of ∆BOC. The perpendicular to OA at O intersects γ again
at M and the line AM intersects γ again at N . Prove that

NO

NA
=

2OA2

AB ·AC .

All 10 of the submissions were correct; we present two of the solutions.
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Solution 1 is a composite of the similar submissions by Sergey Sadov and by the
proposer.

Consider inversion in the circumcircle of the given triangle ABC. The inverse of
γ (the circle that contains the points O,B,C) is the line BC, so that the inverses
M ′ of M and N ′ of N must be the points where BC intersects the lines OM and
ON , respectively. Because A,M,N are collinear, it follows that O,A,M ′, N ′ are
concyclic and therefore

∠M ′N ′A = ∠M ′OA = 90◦.

Thus, in the right triangle BN ′A we have

N ′A = AB sinB.

But the sine law (applied to ∆ABC) gives us sinB = AC
2OA , whence

N ′A =
AB ·AC

2OA
. (1)

Finally, because the point A is fixed by our inversion while N and N ′ are inter-
changed, the triangles OAN and ON ′A are oppositely similar, which gives us

NO

NA
=

OA

N ′A
.

From equation (1) we conclude that

NO

NA
=

2OA2

AB ·AC ,

as desired.
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Solution 2, by Titu Zvonaru.

We will consider only the case in which ∆ABC is acute angled with AB < AC, all
other cases being similar. As usual we let R be its circumradius and a, b, c be its
sides. Let O′ be the circumcentre of ∆BOC and let D be the opposite end of the
diameter from M of its circumcircle. Note that D ∈ AO because ∠MOD = 90◦.
Finally, let x = ∠NAO. Applying the Law of Sines to ∆BOC then to ∆ABC, we
have (because ∠BOC = 2A)

OO′ =
a

2 sin 2A
=

a

2(2 sinA) cosA
=

R

2 cosA
.

Moreover,

∠O′DO = ∠O′OD = 180◦ − ∠AOB − ∠BOO′ = 180◦ − 2C −A = B − C.

Because OO′ = O′D = O′M , it follows that

MO = 2 ·OO′ ·sin(B−C) =
R sin(B − C)

cosA
, and tanx =

OM

AO
=

sin(B − C)

cosA
.

Since ∠MNO = ∠MDO = B − C,

NO

NA
=

sinx

sin(x+B − C)
=

sinx

sinx cos(B − C) + cosx sin(B − C)

=
tanx

tanx cos(B − C) + sin(B − C)

=
sin(B−C)

cosA
sin(B−C)

cosA cos(B − C) + sin(B − C)

=
1

cos(B − C)− cos(B + C)
=

1

2 sinB sinC

=
2R2

AB ·AC ,

as desired.

4593. Proposed by Diaconu Radu.

Solve the system of equations in real numbers:
a2 + bc = 7,
ab+ bd = 3,
ac+ dc = 2,
bc+ d2 = 6.

We received 35 submissions, of which 34 were correct. We present 2 solutions,
one of which uses elementary algebra, and the other uses matrix theory in linear
algebra.
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Solution 1, by Prithwijit De.

It is evident that b 6= 0, c 6= 0 and a+ d 6= 0. Note that

a2 − d2 = (a2 + bc)− (bc+ d2) = 1,

whence a− d =
1

a+ d
. Also,

b

3
=
c

2
=

1

a+ d
.

Setting a+ d = k we have

a =
1

2

Å
k +

1

k

ã
, b =

3

k
, c =

2

k
and d =

1

2

Å
k − 1

k

ã
.

Substituting the expressions of a, b and c in a2 + bc = 7, we get

1

4

Å
k2 +

1

k2

ã
+ 1 +

6

k2
= 7 or k4 − 26k2 + 25 = 0,

so (k2 − 25)(k2 − 1) = 0 which yields k = ±5 or k = ±1. Hence we obtain the
solutions

(a, b, c, d) = ±
Å

13

5
,

3

5
,

2

5
,

12

5

ã
, or ± (1, 3, 2, 0) .

Finally it is easy to check that these 4 quadruples satisfy the given equations so
the proof is complete.

Solution 2, by Corneliu Manescu-Avram, slightly enhanced by the editor.

The given system is equivalent to the matrix equation

A2 =

ï
7 3
2 6

ò
, where A =

ï
a b
c d

ò
.

Let t = trace(A) and r = det (A). From r2 = detA2 = 36 we get r = ±6. Using
the Cayley-Hamilton Theorem we easily obtain A2 − tA+ rI2 = 02 which yields,
by applying the trace function, 13− t2 + 2r = 0 or t2 = 13 + 2r.

Since t = a+ d 6= 0 by the condition ab+ bd = 3, we have A =
1

t

(
A2 + rI2

)
.

From r = 6, we get t2 = 25 so t = ±5, yielding the two solutions:

±1

5

Åï
7 3
2 6

ò
+ 6

ï
1 0
0 1

òã
= ±1

5

ï
13 3
2 12

ò
Similarly, from r = −6 we get t2 = 1 so t = ±1, yielding the two solutions:

±
Åï

7 3
2 6

ò
− 6

ï
1 0
0 1

òã
= ±

ï
1 3
2 0

ò
In conclusion, there are 4 solutions given by (a, b, c, d) = ±(1, 3, 2, 0) or±( 13

5 ,
3
5 ,

2
5 ,

12
5 ).
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4594. Proposed by Nguyen Viet Hung.

Prove that for any point M on the incircle of triangle ABC,

MA2

ha
+
MB2

hb
+
MC2

hc
= 2R+ r,

where ha, hb and hc are the lengths of the altitudes from A, B and C respectively,
while R and r denote circumradius and inradius, respectively.

We received 14 submissions, 13 of which are correct and one of which was incom-
plete. We present two solutions.

Solution 1, by Michel Bataille.

Let F be the area and a, b, c be the sides of ABC. Because 2F = aha = bhb = chc
the left-hand side L of the desired equality can be written as

L =
aMA2 + bMB2 + cMC2

2F
.

Since the incenter I is the center of mass of A,B,C with the masses a, b, c, respec-
tively, Leibniz’s relation yields

aMA2 + bMB2 + cMC2 = (a+ b+ c)MI2 + aIA2 + bIB2 + cIC2

(see Focus On... No 16, Vol. 41(3), March 2015 p. 110). Moreover, we have

aIA2 + bIB2 + cIC2 = abc

(see Focus On... No 28, Vol. 43(9), November 2017 p. 390). Thus, if M is on the
incircle,

aMA2 + bMB2 + cMC2 = (a+ b+ c)r2 + abc = 2r2s+ 4rsR

(where s is the semiperimeter) and since 2F = 2rs, we finally obtain

L =
2r2s+ 4rsR

2rs
= r + 2R,

as required.

Solution 2, by UCLan Cyprus Problem Solving Group.

Letting I denote the incenter of the triangle ABC we have

MA2 = (
−−→
MI +

−→
IA) · (−−→MI +

−→
IA) = (MI)2 + (AI)2 + 2

−−→
MI · −→IA .

So the required result will follow from the following three facts that we will proceed
to prove

r2
Å

1

ha
+

1

hb
+

1

hc

ã
= r (1)

AI2

ha
+
BI2

hb
+
CI2

hc
= 2R (2)

1

ha

−→
IA+

1

hb

−→
IB +

1

hc

−→
IC = 0 (3)
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Writing ∆ for the area of the triangle and s for its semiperimeter we have ∆ = sr.
Since also aha = 2∆ etc, then

1

ha
+

1

hb
+

1

hc
=
a+ b+ c

2∆
=

s

∆
=

1

r

proving (1).

To prove (2), let D,E, F be the projections of I onto BC,AC,AB respectively.
The area of the triangle AIF is equal to

(AF )(IF )

2
=

(IA cos(A/2))(IA sin(A/2))

2

=
IA2 sin(A)

4
=
a(IA)2

8R

=
∆(IA)2

4Rha
.

Summing up the areas of the other 5 triangles we get

∆ =
∆

2R

Å
AI2

ha
+
BI2

hb
+
CI2

hc

ã
and therefore (2) follows.

To prove (3) we need to show that the vectors
1

ha

−→
IA,

1

hb

−→
IB,

1

hc

−→
IC form a triangle.

The angle between
1

ha

−→
IA and

1

hb

−→
IB is equal (A + B)/2. The sum of the three

angles is equal to 180◦ and therefore to verify that the three vectors form a triangle
it is enough to verify that the sine rule holds.

From the sine rule in triangle AIB, we have

AI

BI
=

sin(B/2)

sin(A/2)
.

We also have ha = (AB) sin(B) and hb = (AB) sin(A). Therefore

AI/ha
BI/hb

=
sin(B/2) sin(A)

sin(A/2) sin(B)
=

cos(A/2)

cos(B/2)
=

sin((B + C)/2)

sin((A+ C)/2)
.

So there is a triangle with side lengths

AI

ha
,

BI

hb
,

CI

hc

and angles
B + C

2
,

C +A

2
,

A+B

2
.

Therefore (3) also holds and the proof is complete.
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4595. Proposed by Nguyen Viet Hung.

Let n > 2 be an integer and let Sn =
∑n
k=2

»
1 + 2

k2 . Determine bSnc.

There were 21 solutions submitted, all correct. We present the solution by Arkady
Alt and Florentin Visescu (done independently).

We have:

n− 1 <
n∑
k=2

…
1 +

2

k2
<

n∑
k=2

Å
1 +

1

k2

ã
<

n∑
k=2

Å
1 +

1

(k − 1)k

ã
= (n− 1) +

n∑
k=2

Å
1

k − 1
− 1

k

ã
= (n− 1) + 1− 1

n
< n,

from which it follows that bSnc = n− 1.

Comment from the editor. Seven solvers used the upper bound (π2/6)−1 and two
the upper bound

∫∞
1
x−2 dx = 1 for

∑n
k=2 k

−2. Two solvers used the interesting
identity  

1 +
1

(x− 1)2
+

1

x2
= 1 +

1

x− 1
− 1

x
.

4596. Proposed by Boris C̆olaković.

Let a, b, c be the lengths of the sides of triangle ABC with inradius r and circum-
radius R. Show that

a

b+ c
+

b

a+ c
+

c

a+ b
≤ R

r
− 1

2

We received 39 solutions, all of which were correct. Of these solutions, 20 were
submitted by Vivek Mehra. We present the solution by Nguyen Viet Hung.

The desired inequality is succesively equivalent to

a(a+ b)(a+ c) + b(b+ c)(b+ a) + c(c+ a)(c+ b)

(a+ b)(b+ c)(c+ a)
+

1

2
≤ R

r
,

a3 + b3 + c3 + (a+ b+ c)(ab+ bc+ ca)

(a+ b+ c)(ab+ bc+ ca)− abc +
1

2
≤ R

r
,

3abc+ (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca) + (a+ b+ c)(ab+ bc+ ca)

(a+ b+ c)(ab+ bc+ ca)− abc +
1

2
≤ R

r
,

3abc+ (a+ b+ c)(a2 + b2 + c2)

(a+ b+ c)(ab+ bc+ ca)− abc +
1

2
≤ R

r
.
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Now we note that

a+ b+ c = 2s

ab+ bc+ ca = s2 + 4Rr + r2

abc = 4sRr

a2 + b2 + c2 = 2(s2 − 4Rr − r2).

Therefore the inequality becomes

12sRr + 4s(s2 − 4Rr − r2)

2s(s2 + 4Rr + r2)− 4sRr
+

1

2
≤ R

r
,

6Rr + 2(s2 − 4Rr − r2)

(s2 + 4Rr + r2)− 2Rr
+

1

2
≤ R

r
,

2s2 − 2Rr − 2r2

s2 + 2Rr + r2
+

1

2
≤ R

r
,

2s2(R− 2r) + r(4R2 + 4Rr + 3r2 − s2) ≥ 0,

which is true because by Euler’s inequality R ≥ 2r, and by Gerretsen’s inequality
s2 ≤ 4R2 + 4Rr + 3r2. So the proof is completed.

4597. Proposed by George Apostolopoulos.

Let a, b, c be positive real numbers with a+ b+ c = 1. Prove that

a2 + b2 + c2 +
3

1
a + 1

b + 1
c

≥ 2(ab+ bc+ ca).

We received 29 submissions, of which 27 were correct and complete. We present
two solutions.

Solution 1, by Arkady Alt.

Let p = ab+ bc+ ca and q = abc, so a2 + b2 + c2 = 1− 2p and
3

1
a + 1

b + 1
c

=
3q

p
.

The problem becomes to prove 1− 4p+
3q

p
≥ 0.

Since 3 (ab+ bc+ ca) ≤ (a+ b+ c)
2

then 0 < p ≤ 1

3
, and there are two cases.

If p ∈ (0, 1/4] since p, q > 0 then 1− 4p+
3q

p
> 0.

By Schur’s Inequality, 9q ≥ 4p− 1 , and so,

1− 4p+
3q

p
≥ 1− 4p+

3

p
· 4p− 1

9
=

(4p− 1) (1− 3p)

3p
≥ 0

in the case that p ∈ (1/4, 1/3].
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Solution 2, by Theo Koupelis, Angel Plaza and Titu Zvonaru (independently).

Homogenizing the given inequality we get the equivalent expression

a2 + b2 + c2 +
3abc(a+ b+ c)

ab+ bc+ ca
≥ 2(ab+ bc+ ca),

which, after clearing denominators becomes,

(a2 + b2 + c2)(ab+ bc+ ca) + 3abc(a+ b+ c) ≥ 2(ab+ bc+ ca)2.

After expanding and simplifying we get the equivalent inequality

(a3b+ b3a) + (b3c+ c3b) + (c3a+ a3c) ≥ 2a2b2 + 2b2c2 + 2c2a2,

which is obvious by AM-GM. Equality occurs when a = b = c = 1
3 .

4598. Proposed by George Stoica.

Let P (z) be a polynomial of degree n with complex coefficients and with no zeroes
z satisfying |z| < 1. Prove that |P (z)| ≤ 2n|P (rz)| for all |z| ≤ 1 and 0 < r < 1.

We received 8 submissions and they were all correct. We present the solution of
Theo Koupelis, and Sonebi Omar (done independently).

Let zi, i = 1, . . . , n be the zeroes of the polynomial, with |zi| ≥ 1. Then

P (z) = an

n∏
i=1

(z − zi) and P (rz) = an

n∏
i=1

(rz − zi). (1)

It is easy to use triangle inequality show that |z− zi| ≤ 2|rz− zi| for all i. Indeed,

|z − zi| = |(z − rz) + (rz − zi)| ≤ |z − rz|+ |rz − zi|, (2)

and also

(1− r)|z|+ r|z| = |z| ≤ 1 ≤ |zi| ≤ |rz − zi|+ |rz| =⇒ |z − rz| ≤ |rz − zi|. (3)

From (2) and (3) we get |z−zi| ≤ 2|rz−zi| for all i. Multiplying all such expressions
and using (1) we get the desired result |P (z)| ≤ 2n|P (rz)|.
Editor’s Comment. As pointed out by Walther Janous, a stronger inequality could
be proved using trigonometry:

|P (z)| ≤
Å

2

1 + r

ãn
|P (rz)|. (4)

The maximum and minimum modulus of polynomials have been studied by Govil,
Lehmer, Rivlin, Qazi, and many other authors. Interested readers are encouraged
to check Rivlin’s paper for the proof of equation (4): T. J. Rivlin, On the maximum
modulus of polynomials, American Mathematical Monthly 67 (1960), 251–253.
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4599. Proposed by Albert Natian.

The sum of squares of the sides of a triangle ABC is 133. By enlarging two sides
of ABC by a factor of 27, and a third side by a factor of 8, ABC is deformed into
a larger but similar triangle RST whose area is 324 times that of ABC. Find the
side lengths of ABC.

There were 19 solutions submitted, 17 of which were correct, one was incomplete
and one was based on a misinterpretation. We present a common approach.

Let the sides of 4ABC be a, b, c and the sides of 4RST be {27a, 27b, 8c}, which
in some order are to be proportional to a : b : c. We may suppose that a ≤ b.
Suppose, if possible that c ≤ b. Then 8c ≤ 27b, so that b and 27b are the longest
sides of their respective triangles. But a : b : c is not proportional to 27a : 27b : 8c
nor 8c : 27b : 27a (since 8c/a = 27 = 27a/c is inconsistent).

Therefore a ≤ b ≤ c. We cannot have a : b : c proportional to 27a : 27b : 8c nor
27a : 8c : 27b (since 27 = 8c/b = 27b/c is inconsistent). So a : b : c = 8c : 27a : 27b,
whence 27a2 = 8bc, b2 = ac and 8c2 = 27ab. Eliminating b from the first and third
of these leads to 9a = 4c and 9b2 = 4c2. Therefore

81× 133 = 81(a2 + b2 + c2) = 16c2 + 36c2 + 81c2 = 133c2,

from which (a, b, c) = (4, 6, 9).

Editor’s Comments. Madhav Modak noted that the condition [RST ] = 324[ABC]
was redundant. The other solvers used this condition to immediately obtain the
constant of proportionality and quickly eliminate the four ratios of augmented
sides not proportional to a : b : c. C.R. Pranesachar noted, in a related situation,
that if two noncongruent triangles are similar and share two sides, then the sides of
each are in geometric progression with common ratio in the open interval (1/φ, φ)
where φ is the golden ratio 1

2 (1 +
√

5).

4600. Proposed by Semen Slobodianiuk, modified by the Editorial Board.

It is known (for example, by a formula of Euler, often attributed to Nicolas Fuss,
giving the distance between the centers in terms of the two radii) that given a
bicentric quadrilateral inscribed in one circle and circumscribed about a second,
then every point A of the circumcircle is the vertex of a bicentric quadrilateral
ABCD that is inscribed in the first circle, and circumscribed about the second.
Determine the locus of the centroid of the vertex set {A,B,C,D} as the bicentric
quadrilateral ABCD travels around the first circle while its sides stay tangent to
the second.

We received 5 submissions; our featured solution is a composite of bits of the
solutions from three of them, namely from Theo Koupelis, from Sergey Sadov, and
from the proposer.

Denote the circumcircle with center O and radius R by (O,R), and the incircle
with center I and radius r by (I, r). We need to define two further points, namely
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the point of intersection P of the diagonals AC and BD, and the midpoint Q of
the segment PO. We will see that the desired locus is the circle whose diameter
is IQ. The proof is based on three theorems, two of which come from Newton.

Theorem 1. For all quadrilaterals ABCD that are inscribed in (O,R) and cir-
cumscribed about (I, r) the point P = AC ∩BD is fixed on the common diameter,
with I between P and O.

This result was part of problem 3256 in [1] where it was shown that P has a
common polar line with respect to both circles; equivalently, P is the limiting
point of the pencil determined by the circles. Numerous references accompany the
proof given there, including [3, paragraph 1275, pages 564-565] where a version
of the theorem is called “Newton’s theorem” (although no explicit reference to
Newton’s work appears there). Alternatively, the fixed position of P follows from
the equation that the distance from P to I satisfies:

R2 = (OI)2 +
2r4

r2 − (PI)2
.

This equation is established in [2].

Theorem 2. The midpoints of the three diagonals of a complete quadrilateral lie
on a line; furthermore, if the quadrangle has an incircle (tangent to all four sides),
then that line passes through the incenter.

This result is also called “Newton’s theorem”; references containing the proof are
easily found such as [4], where the proof from [3, paragraph 1614, page 750] has
been reproduced.
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Theorem 3. Given a circle with center U , the locus of the midpoint of a chord
of the circle that rotates about a point V in the circle’s interior is the circle whose
diameter is UV .

We do not require Newton’s help in proving this result: IfM 6= U, V is the midpoint
of a chord containing V , then ∠UMV = 90◦, whence M lies on the circle whose
diameter is UV . Because V is in the interior of the circle, the point M sweeps out
the entire circle as the chord turns through 180◦ about V .

We are now ready to investigate the centroid of a bicentric quadrilateral ABCD.
The centroid of the point pair A and C is the midpoint M of AC, while the
centroid of B and D is the midpoint N of BD; it follows that the centroid of the
vertex set is the midpoint of MN , call it X. Our task is to describe the locus of
X as ABCD travels about (O,R) while its sides remain tangent to (I, r). With P
(the intersection of the diagonals AC and BD) in the role of the fixed point V of
Theorem 3, as the chord AC (of the circle (O,R)) rotates about the point P (which
is fixed by Theorem 1), its midpoint M sweeps out the circle whose diameter is
PO. Note that N sweeps out the same circle. The center of that circle, call it Q,
is the midpoint of PO. By Theorem 2, for all positions of the vertex A on (O,R),
the resulting line MN contains the incenter I. We again apply Theorem 3, this
time with I in the role of the fixed point, and we conclude that the midpoint of
X of MN (which is the centroid of the vertex set) sweeps out the circle whose
diameter is IQ as the chord MN (of the circle on diameter OP ) rotates about I.
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