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ISSN 1496-4309 (électronique)
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198/ Editorial

EDITORIAL
My New Year’s resolution was to read more books cover-to-cover. The pandemic
interfered with it first for the worse (when we were thrown into emergency remote
teaching mode), then for the better (working from home is conducive to read-
ing from home with no workplace distractions). In this editorial, I chose two to
highlight.

As mathematicians, we do not need to be persuaded that math is beautiful or
that it is more than just algebra. On the other hand, because we find the subject
intrinsically elegant and interesting, we struggle to come up with examples of
how math is, in fact, everywhere. I don’t mean chicken coops, sliding ladders
or even the golden ratio; rather, the opposite. What are some of the genuine
mathematical appearances in our everyday lives that we
can have a conversation about without getting too tech-
nical? What examples can we point out to people to
describe that math is not just algebra or calculus? This
is essentially what “It’s a Numberful World” by Eddie
Woo aims to do. In 26 short chapters, the author gives
plenty of examples of mathematical patterns and how one
can begin to explore them, finding intricate connections
and curiosities. Woo ties in other science topics, such
as chemical properties of the elements and the periodic
table or development of models for the atom structure.
While none of the mathematics was new to me (and yes, there’s still a chapter on
golden ratio), the exposition and choice of examples made for an enjoyable and
educational read. As one of the reviewers at the beginning of the book points out
“Eddie Woo is one helluva storyteller,” which leads me to my second book...

“Indigenous Storywork” by Jo-ann Archibald. This book is a journey that will take
you on a journey. You will explore the importance of oral traditions in the Coast
Salish culture and the power of stories, in teaching and in life.

The author will guide you in her discovery of main prin-
ciples of storytelling, a framework to study storytelling
and to practice it. I didn’t tell you the whole quote from
a reviewer of “It’s a Numberful World” above, here it is:
“For a mathematician, Eddie Woo is one helluva story-
teller.” For a mathematician... I, for one, think math-
ematicians are wonderful storytellers: each proof, each
solution is a story. These are particular types of stories
told to a specific group of people, but I think we can
extend our ability to tell them well in much broader con-
texts. We just need practice. “Indigenous Storywork” is
an excellent start.

Kseniya Garaschuk
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MATHEMATTIC
No. 15

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by July 15, 2020.

MA71. You are given a rectangle OABC from which you remove three
right-angled triangles, leaving a fourth triangle OPQ as shaded in the diagram
below.

How must you position the points P and Q so that the area of each of the three
removed triangles is the same? In other words, what are the ratios PB : PA and
QB : QC?

MA72. Consider four numbers x, y, z and w. The first three are in arithmetic
progression and the last three are in geometric progression. If x + w = 16 and
y + z = 8, find all possible solutions (x, y, z, w).

MA73. A checkerboard is “almost tileable” if there exists some way of placing
non-overlapping dominoes on the board that leaves exactly one square in each row
and column uncovered. (Note that dominoes are 2× 1 tiles which may be placed
in either orientation.) Prove that, for n ≥ 3, an n × n checkerboard is almost
tileable if and only if n is congruent to 0 or 1 modulo 4.

MA74. A set of n distinct positive integers has sum 2015. If every integer in
the set has the same sum of digits (in base 10), find the largest possible value of
n.

Copyright © Canadian Mathematical Society, 2020
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MA75. At the Mathville Tapas restaurant, the dishes come in three types:
small, medium, and large. Each dish costs an integer number of dollars, with
the small dishes being the cheapest and the large dishes being the most expen-
sive. (Tax is already included, different sizes have different prices, and the prices
have stayed constant for years.) This week, Jean, Evan, and Katie order 9 small
dishes, 6 medium dishes, and 8 large dishes. When the bill arrives, the following
conversation occurs:

Jean: “The bill is exactly twice as much as last week.”

Evan: “The bill is exactly three times as much as last month.”

Katie: “If we gave the waiter a 10% tip, the total would still be less than $100.”

Find the price of the group’s meal next week: 2 small dishes, 9 medium dishes,
and 11 large dishes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 juillet 2020.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

MA71. Trois triangles rectangles sont enlevés d’un rectangle OABC, laissant
un quatrième triangle OPQ, comme indiqué ci-bas.

Déterminer comment positionner les points P et Q de façon à ce que les surfaces
des trois triangles rectangles soient les mêmes. Plus précisément, déterminer les
ratios PB : PA et QB : QC.

Crux Mathematicorum, Vol. 46(5), May 2020
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MA72. Soient quatre nombres x, y, z et w. Les trois premiers sont en pro-
gression arithmétique tandis que les trois derniers sont en progression géométrique.
Si, de plus, x + w = 16 et y + z = 8, déterminer toutes les valeurs possibles de
(x, y, z, w).

MA73. Un échiquier est dit “presque pavable” s’il existe une façon de presque
le recouvrir de dominos non chevauchants, laissant exactement un carré vide dans
chaque rangée et dans chaque colonne. (Les dominos sont des tuiles 2× 1, placées
horizontalement ou verticalement.) Démontrer que pour n ≥ 3 un échiquier n× n
est presque pavable si et seulement si n est congru à 0 ou 1 modulo 4.

MA74. Un ensemble de n entiers positifs distincts a la somme 2015. Si tout
entier dans l’ensemble a la même somme de chiffres en base 10, déterminer la plus
grande valeur possible de n.

MA75. Un restaurant sert des plats de trois tailles: petite, médium et grande.
Chaque plat coûte un nombre entier de dollars, les petits étant les moins coûteux
et les grands les plus coûteux. (Les taxes sont incluses, les différentes tailles ont
des prix différents, et les prix n’ont pas changé de mémoire récente.) Cette semaine
Pierrette, Jeanne et Jacqueline ont commandé 9 petits plats, 6 médium et 8 de
grande taille. La facture étant arrivée, voici les commentaires:

Pierrette: “La facture cette semaine est le double de celle la semaine dernière.”

Jeanne: “La facture est trois fois celle d’il y a un mois.”

Jacqueline: “Si on laissait un pourboire de 10%, le total serait toujours moins de
100 $.”

Déterminer le coût du prochain repas: 2 petites assiettes, 9 médium et 11 de
grande taille.

Copyright © Canadian Mathematical Society, 2020
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2019: 45(10), p. 540–541.

MA46. If both x and y are integers, determine all solutions (x, y) for the
equation

(x− 8) · (x− 10) = 2y.

Adapted from question 36 on 1962 examination, MAA Problem Book II (1961–
1965).

We received 14 submissions of which 9 were correct and complete. We present the
solution by Aaratrick Basu.

Since the right hand side of the equation is a power of 2 and, since a and y are
integers, the absolute values of the multiplicands on the left hand side must be
powers of 2 as well.

The only pair of integers that are powers of two and have a difference of two are
2 and 4.

Hence, we have,

x− 10 = −4 or 2 =⇒ x = 6 or 12 =⇒ y = 3.

Therefore, the integer solutions (x, y) to the given equation are (6, 3) and (12, 3).

MA47. Let E be any point in rectangle ABCD.

Express x in terms of a, b and d.

Submitted by John McLoughlin from a collection of questions with an unknown
source.

We received 12 solutions, all of which were correct and similar in methodology.
We present the solution by Ronald Martins, modified by the editor.

Let s, t, u and v be the lengths of the perpendicular line segments from E to each
side of the rectangle as shown below:

Crux Mathematicorum, Vol. 46(5), May 2020
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By the Pythagorean theorem, we have

a2 = s2 + v2, b2 = t2 + s2, x2 = u2 + t2, d2 = v2 + u2.

Adding these four equations yields

a2 + b2 + d2 + x2 = 2(u2 + t2) + 2(s2 + v2) = 2x2 + 2a2 ⇒ x2 = b2 + d2 − a2

Thus x =
√
b2 + d2 − a2 as desired.

MA48. Given any triangle ABC where AD is a median of length m, prove
that 4m2 = b2 + c2 + 2bc cosA.

Originally Question 1 of 1983 J.I.R. McKnight Mathematics Scholarship Paper,
Scarborough Board of Education.

We received 11 solutions, all of which were correct. We present the solution by
Tianqi Jiang, modified by the editor.

By the Law of Cosines on 4ABC, we have a2 = b2 + c2 − 2bc cosA. Adding this
to 4m2 = b2 + c2 + 2bc cosA gives us a2 + 4m2 = 2(b2 + c2). Thus it suffices to
prove this statement instead.

By the Law of Cosines on 4ACD and 4ABD, we have

b2 =
(a

2

)2
+m2 − am cos∠ADC

c2 =
(a

2

)2
+m2 − am cos∠ADB

(1)

Observe that ∠ADB = 180◦ − ∠ADC. Thus

c2 =
(a

2

)2
+m2 + am cos∠ADC (2)

Adding our expressions for b2 and c2 in (1) and (2), respectively, yields

b2 + c2 = 2
(a

2

)2
+ 2m2 ⇒ 2(b2 + c2) = a2 + 4m2.

Copyright © Canadian Mathematical Society, 2020
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This completes our proof.

MA49. Given that the perimeters of an equilateral triangle T and a square S
are equal, determine the ratio of the area of the equilateral triangle T to the area
of the square S.

Proposed by John McLoughlin.

We received 10 solutions, all of which were correct. We present the solution by
Vitthal Ingle, modified by the editor.

Let the side length of the equilateral triangle and square be denoted by a and b,
respectively. Given the condition

3a = 4b⇒ b =
3a

4
,

the area of the triangle A4 and the square A� are given by

A4 =
a2
√

3

4
and A� = b2 =

9a2

16
.

Thus our desired ratio is

A4
A�

=
a2
√

3

4
· 16

9a2
=

4
√

3

9
.

MA50. A family of straight lines is determined by the condition that the sum
of the reciprocals of the x and y intercepts is a constant k. Show that all members
of the family are concurrent and find the coordinates of their point of intersection.

Submitted by John McLoughlin from a collection of questions with an unknown
source.

We received 8 submissions, all correct. We present the solution by the Missouri
State University Problem Solving Group.

Let a and b represent the x and y intercepts respectively of a line and assume

1

a
+

1

b
= k. (1)

It follows immediately that every such line has equation

y = − b
a
x+ b.

The problem as stated is not actually correct. If k = 0 we have that

− b
a

= −1.

Crux Mathematicorum, Vol. 46(5), May 2020
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Since − b
a is the slope of every such line, we see that this family of lines consists

of parallel lines with slope −1.

It is true when k 6= 0 and all lines satisfying (1) intercept at the point

(1/k, 1/k).

Indeed, since a line through (0, b) and (1/k, 1/k) has slope

m =
1/k − b

1/k
= 1− bk = 1− b(1/a+ 1/b) = −b/a,

the same slope as the line satisfying (1), we conclude (1/k, 1/k) is on the line.

Copyright © Canadian Mathematical Society, 2020
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TEACHING PROBLEMS
No. 10

Nat Banting

The 100 Pets Problem

You need to purchase exactly 100 pets, and you must spend exactly
$100.00 to do so. The pets for sale (and their prices) are of three
varieties: dogs ($15.00 each), cats ($1.00 each), and mice ($0.25 each).
How many of each pet can you purchase, if you must purchase at least
one of each type?

The 100 Pets problem contains many of the characteristics that make problems
of linear combinations good teaching problems. Perhaps most importantly, it is
accessible, inviting mathematical activity from a variety of solvers and facilitating
a variety of systematic guessing approaches as well as more formal, algebraic treat-
ments. It is also easily extended, if needed, by changing the cost of the pets and
inspecting the fallout of said adjustments – some of which involve multiple solu-
tions or no solution at all. These benefits, which will be briefly addressed in what
follows, can also be seen through the strategies outlined in the first instalment of
Teaching Problems in Volume 45(4).

Of course, I have so far neglected to mention another key feature of the problem:
its ambiguity. On first glance, it feels inaccessible to the introductory systems of
equations taught at the secondary level, because there are only two equations (one
for total cost and another for total pets) but three variables: dogs (D), cats (C),
and mice (M). However, I argue that this ambiguity is precisely what makes it
a good teaching problem. Moreover, despite the fact that the 100 Pets problem
initially appears inaccessible to familiar methods, the problem tends to sponsor a
series of, as I call them, lurking constraints. Lurking constraints are truisms that
are not directly stated in the problem, but become apparent through problem
solving activity. My discussion of the 100 Pets problem will focus on these latent
epiphanies, how they might sponsor solution strategies, and, in turn, how they
might uncover further lurking constraints. My aim, then, is to move beyond an
explanation of common student strategies by highlighting triggers that teachers
might find useful when enacting the problem with learners. What follows can
therefore be considered a move towards how we might teach a teaching problem.

The 100 Pets problem invites initial tinkering bounded only by loose rules. For
instance, if students begin by purchasing one of each pet, this leaves them with
$83.75 left to spend on 97 pets. From here, students typically use tables to or-
ganize which pets they have purchased and their associated costs. Purchasing is
rarely done in a random fashion, although the teacher may need to work to elicit
a strategy from a learner. Some students buy in order to maximize a specific
number of pets, while others increment all three pets together – purchasing one

Crux Mathematicorum, Vol. 46(5), May 2020
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dog, one cat, and one mouse as if they are sold as a package deal. In general,
the incrementation tends to become more systematic as the activity continues. A
popular emergent strategy, in my experience, is purchasing a combination that
consists of exactly 100 pets and then making a series of trades – one pet traded
for one other – in an attempt to equalize the dollar amount. For example, a single
dog can be traded for a single cat. There is no impact on the total number of
pets, but the total cost decreases by $14.00. This strategy can also be executed
in the converse: spending exactly $100.00, then trading equal dollar amounts for
different combinations of pets. For example, $15.00 could be spent on 1 dog, or it
could be swapped for 13 cats and 8 mice. That same $15.00 could also be spent
on 12 cats and 12 mice, or 11 cats and 16 mice, etc. As this trading activity picks
up, a lurking constraint emerges.

We need multiples of mice

At some point into their work on the problem, students realize that mice must be
purchased in multiples. This is a lurking constraint because nothing in the problem
statement says that we must buy more than a single mouse, but no combination
of non-mice can make up the $0.25 deficit created by trading a single mouse. The
dollar total ($100.00) is a whole number and the next cheapest pet is a cat ($1.00);
therefore, mice must always be purchased and traded in multiples of four. This
realization increases the efficiency of existing trading strategies, and as trading
continues, the possible trades establish themselves. For the sake of brevity, let’s
consider the case where we first purchase 100 pets and then use trades to keep
the total number of pets constant, but equalize the dollar amount to $100.00. (Of
course, a similar analysis could be performed for the converse strategy, where the
cost is fixed at $100.00 and pets are traded to achieve 100 total pets). A possible
set of 100 purchased pets is given below:

Pets purchased Cost
5 Dogs $75.00
55 Cats $55.00
40 Mice $10.00

Total: 100 pets $140.00

Once the initial 100 pets are purchased, only six possible moves can be made, each
of which has a specific effect on the dollar total. The goal is then to make strategic
trades to keep one total constant (quantity of pets) while the other (total cost)
approaches one hundred dollars. The set of possible trades is given below.

Trade Net Cost Trade Net Cost
1 Dog → 1 Cat -$14.00 1 Cat → 1 Dog $14.00
4 Cats → 4 Mice -$3.00 4 Mice → 4 Cats $3.00
4 Dogs → 4 Mice -$59.00 4 Mice → 4 Dogs $59.00

In order to set the stage for this trading strategy, an initial combination of 100
pets must be purchased. Although the price of the initial group of pets is not

Copyright © Canadian Mathematical Society, 2020
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important, it is difficult to ignore the impression that dogs are expensive and mice
are cheap. This leads to the informal belief that any group of 100 should contain a
nice balance of both cheap and expensive pets. This, naturally, leaves the cats as
a nice middle-ground option. They don’t tip the scale in favour of too expensive,
and they don’t tip the scale in favour of too many pets. In fact, they don’t tip the
scales at all – a realization that leads to a second lurking constraint.

The cats don’t count

Of course, cats do count toward the absolute totals of both number of pets and
purchase cost; however, they don’t count in terms of the number-to-cost balance
of any set of purchased pets. More precisely, they count equally – as one pet and
one dollar. This lurking constraint holds the potential to impact the (now, quite
efficient) trading strategies. Instead of trading in three denominations of pets
in hopes of arriving at exactly $100.00, the trader can now ignore cats and deal
exclusively in dogs and mice. Once the total number of dogs and mice is equal
to their total combined cost in dollars, the remaining amounts can be filled with
cats because they increment both totals one unit at a time. In other words, if you
can balance the dogs and the mice, the cats can make up the difference, as long
as that balance is achieved at any number between two and ninety-nine so that at
least one cat can be purchased.

This constraint also tends to sponsor a more formal, algebraic approach now that
a perceived barrier has been removed. If the cats are strategically ignored, it
resembles a problem that can be approached with a system of equations. We
now have two variables – dogs (D) and mice (M) – and two equations (total cost
and total pets). Of course, subtracting two equations involving cats would have
resulted in the same strategy from the onset (and may have actually revealed this
lurking constraint), but, in my experience, the lurking constraint makes this option
all the more inviting as the problem suddenly becomes more familiar:

D +M = T, 2 ≤ T ≤ 99 (number of pets), (1)

15D + 0.25M = T, 2 ≤ T ≤ 99 (cost of pets). (2)

Equating (1) and (2), we get

D +M = 15D + 0.25M.

Multiplying by 4 and isolating for M , we get

4D + 4M = 60D +M

3M = 56D

M =
56

3
D (3)

As long as the number of dogs and mice satisfy this condition, their total quantity
will balance with their total cost, leaving cats to fill in the difference to one hun-
dred. It’s not the prettiest relationship, requiring a fractional number of dogs for
every mouse purchased. However, it forces us to narrow the number of dogs we

Crux Mathematicorum, Vol. 46(5), May 2020
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decide to purchase due to a lurking constraint that has been implied throughout
our activity, but never explicitly stated.

No partial pieces of pets

To this point, all activity has adhered to the unspoken assumption that pets
must always be purchased in whole numbers; however, this requirement was only
ever implied by the context of the problem. Trading fractional pieces of pets
feels absurd, yet it is technically acceptable under the explicit conditions of the
problem. It was always assumed that we could only deal with whole pets, but this
assumption is now further refined by the denominator in (3). In order to avoid
fractional pets, D must be a multiple of three. This leaves only one possibility:
purchasing three dogs, because six dogs (and every multiple above six) results
in too many mice. We can now see that this final lurking constraint, although
implicitly upheld in the trading methods, becomes an important domain restriction
in the algebraic method, moving us efficiently toward a unique solution of 3 dogs,
41 cats, and 56 mice.

Readers will deepen their understanding of the problem through solving this ex-
tension problem:

In the original problem, dogs must be bought in multiples of three –
which led to a quick, unique solution. If the prices of cats and mice
remain fixed, can you find a new price for dogs that allows you to buy
a non-multiple of three (e.g., 2, 4, or 11, etc.) and still results in 100
pets for exactly $100? Can you describe all such possible prices?

The 100 Pets problem is not exceedingly complex; rather, its elegance is in what
it does not prescribe. The three lurking constraints detailed above are certainly
not the only possible milestones of student activity; the constraints discussed here
simply represent the dominant themes from my work with multiple groups of
students. Ultimately, the analysis above is meant to emphasize that a problem
may encourage certain solution pathways, and anticipating these common markers
of student thinking better equips the teacher to act with learners. Focusing on the
constraints around which action may organize will assist someone aiming to teach
a teaching problem, and the 100 Pets problem provides evidence that it just might
be the things that go unsaid that end up influencing the mathematical strategies
of solvers.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nat Banting (nat. banting@ usask. ca ) is a high school mathematics teacher cur-
rently on faculty in the Department of Curriculum Studies at the University of
Saskatchewan . He shares his teaching practice across the country through various
writing projects, speaking opportunities, and social media platforms – blogging at
natbanting. com/ blog and tweeting as @NatBanting.
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OLYMPIAD CORNER
No. 383

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by July 15, 2020.

OC481. In the plane, there are circles k and l intersecting at points E and
F . The tangent to the circle l drawn from E intersects the circle k at point H
(H 6= E). On the arc EH of the circle k, which does not contain the point F ,
choose a point C (E 6= C 6= H) and let D be the intersection of the line CE with
the circle l (D 6= E). Prove that triangles DEF and CHF are similar.

OC482. Let a1, a2, . . . , a2017 be real numbers such that

a1 + a2 + · · ·+ a2017 = 2017.

Find the largest number of pairs (i, j) for which 1 ≤ i < j ≤ 2017 and ai +aj < 2.

OC483. Prove that for each prime number p > 2, there is exactly one positive
integer n such that the number n2 + np is a perfect square.

OC484. Let x be a real number with 0 < x < 1 and let 0.c1c2c3 . . .
be the decimal expansion of x. Denote by B(x) the set of all subsequences
of c1, c2, c3 . . . that consist of six consecutive digits. For instance, B(1/22) =
{045454, 454545, 545454}.
Find the minimum number of elements of B(x) as x varies among all irrational
numbers with 0 < x < 1.

OC485. Prove that a continuous function f : R→ R is increasing if and only
if

(c− b)
∫ b

a

f(x) dx ≤ (b− a)

∫ c

b

f(x) dx,

for all real numbers a < b < c.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 juillet 2020.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

OC481. Dans le plan, les cercles k et l intersectent en E et F . La tangente
au cercle l émanant du point E intersecte le cercle k en H (H 6= E). Sur l’arc
EH du cercle k, ne contenant pas F , choisir un point C (E 6= C 6= H); soit D le
point d’intersection de la ligne CE avec le cercle l (D 6= E). Démontrer que les
triangles DEF et CHF sont similaires.

OC482. Soient a1, a2, . . . , a2017 des nombres réels tels que

a1 + a2 + · · ·+ a2017 = 2017.

Déterminer le plus grand nombre possible de paires (i, j) telles que ai + aj < 2
pour 1 ≤ i < j ≤ 2017.

OC483. Démontrer que pour tout nombre premier p > 2, il existe exactement
un entier positif n tel que n2 + np est un carré d’entier.

OC484. Soit x un nombre réel tel que 0 < x < 1 et soit 0.c1c2c3 . . . la
représentation décimale de x. Dénoter par B(x) l’ensemble de toutes les sous
suites de c1, c2, c3 . . . consistant de six chiffres consécutifs. Par exemple, B(1/22) =
{045454, 454545, 545454}.
Déterminer le nombre minimum d’éléments de B(x) pour x irrationnel, 0 < x < 1.

OC485. Démontrer qu’une fonction continue f : R → R est croissante si et
seulement si

(c− b)
∫ b

a

f(x) dx ≤ (b− a)

∫ c

b

f(x) dx,

pour tous nombres réels a < b < c.
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Statements of the problems in this section originally appear in 2019: 45(10), p. 554–555.

OC456. Solve the system of equations

(x2 + 1)(x− 1)2 = 2017yz

(y2 + 1)(y − 1)2 = 2017zx

(z2 + 1)(z − 1)2 = 2017xy,

where x ≥ 1, y ≥ 1, z ≥ 1.

Originally Problem 1, Grade 9 of the 2017 Bulgaria Math Olympiad.

We received 11 correct submissions. We present the solution by Christofides Deme-
tres.

Multiplying the first equation by x, the second by y, and the third by z, we get

x(x2 + 1)(x− 1)2 = y(y2 + 1)(y − 1)2 = z(z2 + 1)(z − 1)2 = 2017xyz .

The function
f(x) = x(x2 + 1)(x− 1)2

is strictly increasing on [1,+∞), as it is a product of strictly increasing and non-
negative functions.

Therefore we get x = y = z which gives

x(x2 + 1)(x− 1)2 = 2017x3,

or equivalently, as x 6= 0,

(x+ 1
x )(x− 2 + 1

x ) = 2017.

Letting t = x+ 1
x we get t2 − 2t− 2017 = 0. Since t > 2, then t = 1 +

√
2018. We

now obtain

x = y = z =
1

2

Å
1 +
√

2018 +

»
2015 + 2

√
2028

ã
.

Editor’s Comment. The Problem Solving Group of Missouri State University
showed that if 2017 is replaced by an arbitrary number A ≥ 0, then the system
has the solution

x = y = z =
1

2

(
1 +
√

1 +A+
»

(1 +
√

1 +A)2 − 4
)
.
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OC457. On a blackboard are written the numbers 1!, 2!, 3!, . . . , 2017!. What
is the smallest among these numbers that should be deleted so that the product
of all the remaining numbers is a perfect square?

Originally Problem 3, Grade 9 of the 2017 Bulgaria Math Olympiad.

We received 7 submissions. We present a solution based on the submissions by
Oliver Geupel and Ioannis D. Sfikas.

First, we show that 1! × 2! × · · · × 2017! and the product of any 2016 factorials
selected out of the 2017 numbers cannot be perfect squares.

Let νp(n) denote the exponent of prime p in the prime factorization of the natural
number n. Note that the numbers 997 and 2017 are prime.

From

ν2017(1!) = ν2017(2!) = · · · = ν2017(2016!) = 0 and ν2017(2017!) = 1,

it follows that

ν2017(1!× 2!× · · · × 2017!) = 1 and ν2017(n) = 1

for every product n of any 2016 factorials out of 2017 given numbers that includes
the factor 2017!. Therefore, 1! × 2! × · · · × 2017! contains only one copy of the
prime number 2017, and is not a perfect square. Similarly, the product of any 2016
factorials selected out of the 2017 numbers that includes the factor 2017! cannot
be a perfect square.

Next, let n = 1!× 2!× 3!× · · · × 2016!. Since

ν997(1!) = ν997(2!) = . . . = ν997(996!) = 0,

ν997(997!) = ν997(998!) = . . . = ν997(1993!) = 1,

ν997(1994!) = ν997(1995!) = . . . = ν997(2016!) = 2,

it follows that
ν997(n) = 997 + 2× 23 = 1043

is odd, and n is not a perfect square. In conclusion, at least two factorials have to
be deleted and one of the removed factorials must be 2017!.

Second, we show that exactly two factorials can be deleted.

1!× 2!× 3!× · · · × 2017! = (1!× 2!)× (3!× 4!)× · · · × (2015!× 2016!)× 2017!

= (1!2 × 2)× (3!2 × 4)× · · · × (2015!2 × 2016)× 2017!

= (1!× 3!× · · · × 2015!)2 × (2× 4× · · · × 2016)× 2017!

= (1!× 3!× · · · × 2015!)2 × 21008 × 1008!× 2017!

If we delete 1008! and 2017!, then the product of remaining numbers is a perfect
square.

Copyright © Canadian Mathematical Society, 2020
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OC458. Let A be the product of eight consecutive positive integers and let k
be the largest positive integer for which k4 ≤ A. Find the number k knowing that
it is represented in the form 2pm, where p is a prime number and m is a positive
integer.

Originally Problem 4, Grade 9 of the 2017 Bulgaria Math Olympiad.

We received 6 submissions of which 4 were complete. We present the solution
based on the submissions of Christofides Demetres and the Problem Solving Group
of Missouri State University (done independently).

First, we claim that if A = (n+1)(n+2) · · · (n+8) for some integer number n ≥ 0,
then k = (n+ 2)(n+ 7). To establish this we use the following inequalities

(x+
√
yz)2 6 (x+ y)(x+ z) 6

(
x+

y + z

2

)2
that are valid for x, y, z positive real numbers. Both inequalities are equalities if
and only if y = z. The inequalities follow easily from AM-GM inequality.

We write

A = (n2 + 9n+ 8)(n2 + 9n+ 14)(n2 + 9n+ 18)(n2 + 9n+ 20).

Then

(n2 + 9n+
√

8× 20)2(n2 + 9n+
√

14× 18)2 < A

and

A <

Å
n2 + 9n+

8 + 20

2

ã2 Å
n2 + 9n+

14 + 18

2

ã2

,

so

(n2 + 9n+ 4
√

8× 14× 18× 20)2 < A <

Å
n2 + 9n+

8 + 14 + 18 + 20

2

ã2

.

In conclusion,

(n2 + 9n+ 14)2 < A < (n2 + 9n+ 15)2,

so we must have

k = n2 + 9n+ 14 = (n+ 2)(n+ 7).

If (n+ 2)(n+ 7) = 2pm with p prime and m > 0, then the factors n+ 2 and n+ 7
can be 2pa or pb. If a and b are both positive, then p divides the factor difference:
(n + 7) − (n + 2) = 5. So we must have p = 5, n + 7 = 2 × 5, and n + 2 = 5,
leading to k = 50. If a = 0, then n + 2 = 2, and n + 7 = 7. So we must have
k = 2 × 7 = 14, a number of the required form. If b = 0, then n + 2 = 1 giving
n = −1, leading to no valid solution as n > 0.

Thus the only possible values for k are k = 14 = 2× 7 and k = 50 = 2× 52.
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OC459. Points P and Q lie respectively on sides AB and AC of a triangle
ABC such that BP = CQ. Segments BQ and CP intersect at R. The circumcir-
cles of triangles BPR and CQR intersect again at point S different from R. Prove
that point S lies on the angle bisector ∠BAC.

Originally Problem 1, Final Round of the 2017 Poland Math Olympiad.

We received 13 submissions. We present two solutions.

Solution 1, by Chritofides Demetres.

First, note that 4BSP and 4QSC are congruent (angle-side-angle). Indeed,
∠BPS = ∠BRS = ∠QCS, PB = CQ, and ∠PBS = ∠SRC = ∠CQS. The
angle congruency follows from concyclity of two sets of points {B,P,R, S} and
{Q,C, S,R}.
In particular, 4BSQ is isosceles with SB = SQ and ∠QBS = ∠BQS.

Furthermore, since ∠BPS = ∠QCS = ∠ACS, then A,C, S, P are concyclic.
Hence, ∠BAS = ∠PAS = ∠PCS = ∠RCS = ∠RQS = ∠BQS. Similarly,
A,Q, S,B are concyclic, and ∠CAS = ∠QBS. Thus ∠BAS = ∠CAS and AS is
the angle bisector of ∠BAC.

Solution 2, by Andrea Fanchini.

We use barycentric coordinates with reference to 4ABC. Let t = BP = CQ.
Then P and Q have barycentric coordinates P (t : c − t : 0) and Q(t : 0 : b − t).

Copyright © Canadian Mathematical Society, 2020
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The lines BQ and CP are

BQ : (b− t)x− tz = 0, CP : (c− t)x− ty = 0

and intersect at
R = BQ ∩ CP = (t : c− t : b− t).

The circumcircle of 4BPR is specified by the equation

a2yz + b2zx+ c2xy − (x+ y + z)

ï
c(c− t)x+

ct2 − 2SBt+ a2c

b+ c− t z

ò
= 0.

The circumcircle of 4CQR is specified by the equation

a2yz + b2zx+ c2xy − (x+ y + z)

ï
b(b− t)x+

bt2 − 2SCt+ a2b

b+ c− t y

ò
= 0.

Circumcircles of 4BPR and 4CQR intersect at point

S
(
−(b+ c)t2 + ((b+ c)2 + a2)t− a2(b+ c) : b(b+ c− t)2 : c(b+ c− t)2

)
.

S lies on the angle bisector ∠BAC having equation cy − bz = 0.

Editor’s Comments. All but two solutions adopted a geometric approach. The
solvers identified several properties of the geometric configuration. For example:
the circumcircles of {B,P,R, S} and {Q,C, S,R} are equal (Corneliu Manescu-
Avram and Anderson Torres), 4APS and 4RQS are similar, 4AQS and 4PRS
are similar (Ivko Dimitrić). From the congruency of 4BSP and 4QSC, it follows
that their altitudes to sides PB and CQ are equal; hence S is equidistant from
AB and AC and lies on the angle bisector of ∠BAC (Oliver Geupel and Prithwijit
De).

Ioannis Sfikas mentioned the source of OC 459 and several solutions are listed at
https://artofproblemsolving.com/community/c6h1422437p7998793

OC460. Prove that the set of positive integers Z+ can be represented as a
union of five pairwise disjoint subsets with the following property: each 5-tuple
of numbers of the form (n, 2n, 3n, 4n, 5n), where n ∈ Z+, contains exactly one
number from each of these five subsets.

Originally Problem 4, Final Round of the 2017 Poland Math Olympiad.

We received 4 correct submissions. We present the solution by C.R. Pranesachar.

We can express every positive integer n as

n = 2x 3y 5z pr11 pr22 · · · prkk ,

where x, y, z, r1, r2, · · · , rk are non-negative integers and p1, p2, · · · , pk are
distinct primes strictly greater than 5. We define f(n)

f(n) = x+ 3y + 4z.

Crux Mathematicorum, Vol. 46(5), May 2020
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Note that

f(2n) =x+ 3y + 4z + 1, f(3n) = x+ 3y + 4z + 3,

f(4n) =x+ 3y + 4z + 2, f(5n) = x+ 3y + 4z + 4.

We partition the set Z+ of positive integers into 5 pairwise disjoint sets A0, A1,
A2, A3, A4 according to the rule:

n ∈ Aj if and only if f(n) ≡ j (mod 5).

Since f(n), f(2n), f(3n), f(4n), and f(5n) are mutually incongruent modulo 5,
we have that each of n, 2n, 3n, 4n, and 5n belong to one of these 5 subsets, and
no two of them belong to the same subset.

Copyright © Canadian Mathematical Society, 2020
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Inequalities via auxiliary functions (II)

Introduction

In this second part, we present a selection of properties of convex functions linked
to inequalities and examine some applications to problems. We recall that a func-
tion f : I → R is convex on the interval I if f(αx+βy) ≤ αf(x)+βf(y) whenever
x, y are in I and α, β ≥ 0 with α + β = 1. The function f is concave if −f is
convex. In most of the applications, the function f is twice differentiable on I and
in that case, f is convex if and only if f ′′(x) ≥ 0 for all x ∈ I.

Jensen’s inequality

Jensen’s inequality generalizes the inequality of the definition above and is easily
proved by induction: Let f : I → R be convex and let n be an integer with n ≥ 2.
If α1, . . . , αn ≥ 0 with α1 + · · ·+αn = 1 and x1, . . . , xn are in the interval I, then

f(α1x1 + · · ·+ αnxn) ≤ α1f(x1) + · · ·+ αnf(xn).

This inequality turns out to be very useful. Here are some examples. We start
with problem 3887 [2013 : 414,416 ; 2014 : 401].

Let a, b and c be positive real numbers. Prove that

a2

bc(a2 + ab+ b2)
+

b2

ac(b2 + bc+ c2)
+

c2

ab(a2 + ac+ c2)
≥ 9

(a+ b+ c)2
.

Three solutions were featured, all based on algebraic manipulations and AM-GM.
Here is a very simple solution involving a convex function.

Let f(x) =
1

1 + x+ x2
. It is readily checked that the proposed inequality rewrites

as

a

a+ b+ c
f

Å
b

a

ã
+

b

a+ b+ c
f
(c
b

)
+

c

a+ b+ c
f
(a
c

)
≥ 9abc

(a+ b+ c)3
. (1)

Since f ′′(x) = 6x(x+ 1)(1 + x+ x2)−3 ≥ 0 for x > 0, the function f is convex on
(0,∞) and Jensen’s inequality shows that the left-hand side of (1) is greater than
or equal to

f

Å
a

a+ b+ c
· b
a

+
b

a+ b+ c
· c
b

+
c

a+ b+ c
· a
c

ã
= f(1) =

1

3
.
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As a result, it is sufficient to prove that

1

3
≥ 9abc

(a+ b+ c)3
.

We are done since this inequality follows at once from AM-GM.

Our second example is problem 3641 [2011 : 234,237 ; 2012 : 200], of which we
offer a variant of solution.

Let 0 ≤ x1, x2, . . . , xn < π/2 be real numbers. Prove that

(
1

n

n∑
k=1

sec(xk)

)Ñ
1−

(
1

n

n∑
k=1

sin(xk)

)2
é1/2

≥ 1.

For k = 1, 2, . . . , n, let ak = sin(xk). Then, ak ∈ [0, 1) and the inequality rewrites
as

1

n

n∑
k=1

1»
1− a2k

≥ 1»
1−

(
1
n

∑n
k=1 ak

)2 ,
that is,

1

n

n∑
k=1

f(ak) ≥ f
(

1

n

n∑
k=1

ak

)

where f : [0, 1) → R is defined by f(x) =
1√

1− x2
. Clearly, the inequality holds

if f is convex and this is indeed the case since

f ′′(x) = (1− x2)−5/2(1 + 2x2) ≥ 0

when x ∈ [0, 1).

To conclude the section, we choose an example, extracted from problem 2730
[2002 : 177 ; 2003 : 186], where the function to be used is not obvious.

Let GM(x1, x2, . . . , xn) denote the geometric mean of the real numbers
x1, x2, . . . , xn. Given positive real numbers a1, a2, . . . , an, b1, b2, . . . , bn,
prove that

GM(a1+b1, a2+b2, . . . , an+bn) ≥ GM(a1, a2, . . . , an)+ GM(b1, b2, . . . , bn).

We introduce the function f(x) = ln (1 + ex). Then f ′′(x) =
ex

(ex + 1)2
≥ 0 so

that f is a convex function on R. It follows that, if x1, x2, . . . , xn are any positive
real numbers,

f

Å
1

n
(lnx1 + . . .+ lnxn)

ã
≤ 1

n
(f(lnx1) + . . .+ f(lnxn)) .
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This easily writes as ln (1 + n
√
x1 . . . xn) ≤ ln

Ä
n
√

(1 + x1) . . . (1 + xn)
ä

that is,

GM(1 + x1, . . . , 1 + xn) ≥ 1 + GM(x1, . . . , xn).

Now, we have

GM(a1 + b1, a2 + b2, . . . , an+ bn) = GM(a1, a2, . . . , an) ·GM

Å
1 +

b1
a1
, . . . , 1 +

bn
an

ã
and so

GM(a1 + b1, a2 + b2, . . . , an + bn) ≥ GM(a1, a2, . . . , an)

Å
1 + GM

Å
b1
a1
, . . . ,

bn
an

ãã
.

The result immediately follows.

Popoviciu’s inequality

More advanced than Jensen’s is Popoviciu’s inequality (see references [1] and [2]):

If m,n are integers with 2 ≤ m ≤ n − 1 and f is continuous and convex on the
interval I, then

m
∑
(m)

f
(ak1 + ak2 + · · ·+ akm

m

)

≤
Ç
n− 2

m− 2

å[
n−m
m− 1

n∑
k=1

f(ak) + nf
(a1 + a2 + · · ·+ an

n

)]

whenever a1, a2, . . . , an are in I. [
∑
(m)

indicates that the summation is over all

m-combinations k1, k2, . . . , km of 1, 2, . . . , n ].

As one can guess, Popoviciu’s inequality is not used very often. To give a simple
example, I repeat my solution to problem 1724 posed in the June 2005 issue of
Mathematics Magazine.

Let x1, x2, . . . , xn be positive real numbers. Prove that

1

n

n∑
k=1

xk −
(

n∏
k=1

xk

)1/n

≤ 1

n

∑
1≤j<k≤n

(
√
xj −

√
xk)2.

Since ∑
1≤j<k≤n

(
√
xj −

√
xk)2 = (n− 1)

n∑
k=1

xk − 2
∑

1≤j<k≤n

√
xj
√
xk,

the inequality rewrites as

2
∑

1≤j<k≤n

√
xj
√
xk ≤ (n− 2)

n∑
k=1

xk + n

(
n∏
k=1

xk

)1/n

.

Crux Mathematicorum, Vol. 46(5), May 2020



Michel Bataille /221

This inequality holds because, setting ak = lnxk for k = 1, 2, . . . , n and f(x) = ex,
it becomes

2
∑

1≤j<k≤n

f
(aj + ak

2

)
≤ (n− 2)

n∑
k=1

f(ak) + nf
(a1 + a2 + · · ·+ an

n

)
,

which is nothing else than Popoviciu’s inequality with the convex function f and
m = 2.

Hadamard’s inequality

If a < b and f : [a, b]→ R is convex, then

f

Å
a+ b

2

ã
≤ 1

b− a

∫ b

a

f(t)dt.

As a geometric consequence of its convexity, the graph of the function f is above
the tangent at any of its points. With the point (a+b2 , f

(
a+b
2

)
) of the graph, this

means that

f(t) ≥ f
Å
a+ b

2

ã
+ f ′

Å
a+ b

2

ãÅ
t− a+ b

2

ã
for all t ∈ [a, b] . The inequality follows by integrating from a to b.

Of course, Hadamard’s inequality is expected to intervene when integrals are in-
volved. It is the case in our first example, slightly adapted from problem 898
proposed in March 2009 in The College Mathematics Journal :

Let f : I → R be a convex function defined on an open interval I and
let a, b ∈ I with a < b. Prove that∫ 1

0

f(a+ (b− a)y) dy ≥
∫ 1

0

f

Å
3a+ b

4
+
b− a

2
y

ã
dy.

Transforming the integrals by means of the substitution y = x−a
b−a , we see that the

inequality is equivalent to∫ b

a

f(x) dx ≥
∫ b

a

f

Å
x

2
+
a+ b

4

ã
dx.

Now, from Jensen’s inequality, we have

f

Å
1

2
· x+

1

2
· a+ b

2

ã
≤ 1

2
f(x) +

1

2
f

Å
a+ b

2

ã
from which we deduce that∫ b

a

f

Å
x

2
+
a+ b

4

ã
dx ≤ 1

2

∫ b

a

f(x) dx+
b− a

2
f

Å
a+ b

2

ã
.
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The desired inequality follows since

b− a
2

f

Å
a+ b

2

ã
≤ 1

2

∫ b

a

f(x) dx

by Hadamard’s inequality.

No integral is a priori expected in our second example, problem 11127 posed in
the January 2005 issue of The American Mathematical Monthly :

Prove that when 0 < x ≤ y < π/2Å
cosx sin y

sinx cos y

ãsin x sin y

≤ exp

Å»
cos(x− y)

Å…
cosx

cos y
−
…

cos y

cosx

ãã
.

Taking logarithms and using elementary trigonometry, the proposed inequality
transforms into

tanx tan y(ln(tan y)−ln(tanx)) ≤
(»

1 + tan2 y −
√

1 + tan2 x
)√

1 + tanx tan y.

This obviously holds if x = y and for x < y, letting a = ln(tanx), b = ln(tan y),
rewrites as

ea+b√
1 + ea+b

≤
√

1 + e2b −
√

1 + e2a

b− a . (2)

Now, let f(t) =
e2t√

1 + e2t
. Since

f ′′(t) = (1 + e2t)−5/2(e6t + 2e4t + 4e2t) > 0,

f is convex on R and it is readily checked that (2) is just Hadamard’s inequality
applied to f .

Petrovic’s inequality

Let f : [0,∞) → R be a convex function such that f(0) = 0. Then, for any
x1, x2, . . . , xn ≥ 0, we have

f(x1) + f(x2) + · · ·+ f(xn) ≤ f(x1 + x2 + · · ·+ xn).

The proof is easy once it is remarked that if x ≥ 0 and α ∈ [0, 1], then

f(αx) = f(αx+ (1− α)0) ≤ αf(x) + (1− α)f(0) = αf(x).

It follows that if x1, x2 ≥ 0 and x1 + x2 > 0, then

f(x1) + f(x2) = f

Å
x1

x1 + x2
· (x1 + x2)

ã
+ f

Å
x2

x1 + x2
· (x1 + x2)

ã
≤ x1

x1 + x2
· f(x1 + x2) +

x2
x1 + x2

· f(x1 + x2)
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hence f(x1) + f(x2) ≤ f(x1 + x2) (and this also holds if x1 + x2 = 0 since then
x1 = x2 = 0). The proof is completed by induction.

This general result easily leads to Weierstrass’s inequalities:

With f(x) = − ln(1 + x), Petrovic’s inequality gives

ln(1 + x1) + ln(1 + x2) · · ·+ ln(1 + x2) ≥ ln(1 + (x1 + x2 + · · ·+ xn))

and so
n∏
i=1

(1 + xi) ≥ 1 +
n∑
i=1

xi

for x1, x2, . . . , xn ≥ 0.

The second inequality of Weierstrass’s, namely

n∏
i=1

(1− ai) ≥ 1−
n∑
i=1

ai

for a1, a2, . . . , an ∈ [0, 1) is similarly obtained with the function f(x) = e−x − 1
and taking xi = − ln(1− ai).
For another application, we again consider

∆(x1, x2, . . . , xn) =
n∑
i=1

xi −
n∏
i=1

xi

already met in part I. If a1, a2, . . . , an ≥ 1, then Petrovic’s inequality applied to
the function x 7→ ex − 1 and xi = ln ai leads to(

n∏
i=1

ai

)
− 1 ≥

(
n∑
i=1

ai

)
− n

and therefore ∆(a1, a2, . . . , an) ≤ n− 1.

In contrast, if

1 ≤ a1 ≤
1

a2
≤ a3 ≤

1

a4
≤ · · · ≤ a(−1)n+1

n ,

then ∆(a1, a2, . . . , an) ≥ n−1. This was problem 1048 in the March 2015 issue of
The College Mathematics Journal and we propose a solution based on the following
property close to Petrovic’s inequality:

Let f : R→ R be a differentiable convex function such that f(0) = 0.
If x1, x2, . . . , xn are such that xk ≥ 0 for odd k, xk ≤ 0 for even k with
|x1| ≤ |x2| ≤ |x3| ≤ |x4| ≤ · · · ≤ |xn|, then

f(x1 + x2 + · · ·+ xn) ≤ f(x1) + f(x2) + · · · f(xn).
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Proof. We prove that f(x1 + x2) ≤ f(x1) + f(x2) whenever x1x2 ≤ 0. An easy
induction will then complete the proof.

Fix x2 and consider φ defined by

φ(x) = f(x+ x2)− f(x)− f(x2).

Then, we have φ(0) = 0 and φ′(x) = f ′(x + x2) − f ′(x). Recalling that f ′ is
nondecreasing and distinguishing the cases x2 ≥ 0 and x2 ≤ 0, we see that φ(x1) ≤
0 in both cases.

Applying this inequality again with the function f : x 7→ f(x) = ex − 1 and
xi = ln ai (i = 1, 2, . . . , n) yields ∆(a1, a2, . . . , an) ≥ n− 1.

Karamata’s inequality

If f : I → R is convex and if x, y, z, x′, y′, z′ are in the interval I and satisfy

x ≥ y ≥ z, x′ ≥ y′ ≥ z′, x ≥ x′, x+ y ≥ x′ + y′ and x+ y + z = x′ + y′ + z′,

then
f(x) + f(y) + f(z) ≥ f(x′) + f(y′) + f(z′)

(for a proof and a generalization see [3]).

In [1999 : 17] Murray Klamkin gave a series of examples. Here is another one, a
variant of solution to problem 878 proposed in the May 2008 issue of The College
Mathematics Journal :

Let a, b, and c be the lengths of the sides and s the semi-perimeter of
triangle ABC. Prove that

(a+ b− c)a+b+s(b+ c− a)b+c+s(c+ a− b)c+a+s ≤ a a
2+2s b

b
2+2s c

c
2+2s.

Observing that a + b + s = a+b−c
2 + 2s (for example) and taking logarithms, the

required inequality can be written as

f(a+ b− c) + f(b+ c− a) + f(c+ a− b) ≥ f(a) + f(b) + f(c) (3)

where f(x) = −
(
x
2 + 2s

)
ln(x).

Now, the function f is convex on the interval (0, 2s) (which contains the real
numbers a, b, c, a + b − c, b + c − a, c + a − b) and moreover, assuming a ≥ b ≥ c,
we have

a+ b− c ≥ c+ a− b ≥ b+ c− a,
a+ b− c ≥ a,
(a+ b− c) + (c+ a− b) ≥ a+ b,

(a+ b− c) + (c+ a− b) + (c+ a− b) = a+ b+ c.

Thus, the inequality (3) is a direct consequence of Karamata’s inequality.
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Exercises

1. (problem 3062) Let a, b, c be positive real numbers such that a + b + c = 1.
Prove that

(ab+ bc+ ca)

Å
a

b2 + b
+

b

c2 + c
+

c

a2 + a

ã
≥ 3

4
.

2. (Problem 11770 of The American Mathematical Monthly Prove, for real num-
bers a, b, x, y with a > b > 1 and x > y > 1, that

ax − by
x− y >

Å
a+ b

2

ã x+y
2

log

Å
a+ b

2

ã
.

(Hint: first apply Hadamard’s inequality to the function t 7→ mt on [y, x], where
m = a+b

2 ).
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by July 15, 2020.

4541. Proposed by Michel Bataille.

Let a, b, c be positive real numbers such that abc = 1 and let Sk = ak + bk + ck.
Prove that

S2 + S4

2
≥ 1 +

√
1 + S3.

4542. Proposed by Leonard Giugiuc and Alexander Bogomolny.

Let ABC be a triangle with centroid G. Denote by D,E and F the midpoints of
the sides BC,CA and AB respectively. Find the points M on the plane of ABC
such that

MA+MB +MC + 3MG = 2(MD +ME +MF ).

4543. Proposed by Cherng-tiao Perng.

Let n = 4k + 2 (k ≥ 1) be an integer and A1A2 · · ·An be a polygon with parallel
opposite sides, i.e.

AiAi+1 ‖ An/2+iAn/2+i+1, i = 1, 2, · · · , n/2,

where one sets An+1 = A1. Starting with a point B1 and a circle C through
B1, define B2, B3, · · · , Bn+1 inductively by requiring that the circle (AiAi+1Bi)
intersects C again at Bi+1, for i = 1, 2, · · · , n. Prove that Bn+1 = B1.

4544. Proposed by Burghelea Zaharia.

Calculate ∫ 2

1

ln

Å
x4 + 4

x2 + 4

ã
dx

x
.

4545. Proposed by Mihaela Berindeanu.

Solve the following equation over N:

6n − 19 =
î
5
√
n2 + 4n

ó
.
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4546. Proposed by Thanos Kalogerakis, Leonard Giugiuc and Kadir Altintas.

Let D be a point on the side BC of triangle ABC and consider the following
tri-tangent circles:

(K1, k1) is the incircle and (L1, l1) is the A-excircle of ABC

(L2, l2) is the incircle and (K2, k2) is the A-excircle of ABD

(L3, l3) is the incircle and (K3, k3) is the A-excircle of ACD

Prove that k1 · k2 · k3 = l1 · l2 · l3.

4547. Proposed by George Stoica, modified by the Editorial Board.

Consider the complex numbers a, b, c such that |a| = |b| = |c| = 1. Prove that if

|a+ b− c|2 + |b+ c− a|2 + |c+ a− b|2 = 12,

then a, b, c represent the vertices of an equilateral triangle inscribed in the unit
circle.

4548. Proposed by Lazea Darius.

Find the maximum k for which

ab+ bc+ ca+ k(a− b)2(b− c)2(c− a)2 ≤ 3

for all non-negative real numbers a,b,c such that a+ b+ c = 3.

4549. Proposed by Lorian Saceanu, Leonard Giugiuc and Kadir Altintas.

Let ak and bk be real numbers for k = 1, 2, . . . , n. Prove thatÃ
n∑
k=1

(2ak − bk)2 +

Ã
n∑
k=1

(2bk − ak)2 ≥

Ã
n∑
k=1

a2k +

Ã
n∑
k=1

b2k.
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4550. Proposed by Leonard Giugiuc and Kunihiko Chikaya.

Let α be a real number greater than 2 and let x, y and z be positive real numbers
such that x ≥ y ≥ z. Prove that

(xα − yα)(yα − zα)(zα − xα)

(xα−1 + yα−1)(yα−1 + zα−1)(zα−1 + xα−1)
≥ α3

24
((x− y)3 + (y − z)3 + (z − x)3).

When does equality hold?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposś dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 juillet 2020.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

4541. Proposé par Michel Bataille.

Soient a, b, c des nombres réels positifs tels que abc = 1 et Sk = ak + bk + ck.
Démontrer que

S2 + S4

2
≥ 1 +

√
1 + S3.

4542. Proposé par Leonard Giugiuc et Alexander Bogomolny.

Soit ABC un triangle de centröıde G. Dénoter D, E et F les mi points des côtés
BC, CA et AB respectivement. Déterminer les points M dans le plan tels que

MA+MB +MC + 3MG = 2(MD +ME +MF ).

4543. Proposé par Cherng-tiao Perng.

Soit n = 4k + 2 (k ≥ 1) un entier et soit A1A2 · · ·An un polygone avec côtés
opposés parallles, i.e.

AiAi+1 ‖ An/2+iAn/2+i+1, i = 1, 2, · · · , n/2,
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où on pose An+1 = A1. À partir d’un point B1 et un cercle C, définissons
B2, B3, · · · , Bn+1 inductivement en exigeant que le cercle (AiAi+1Bi) intersecte C
une seconde fois en Bi+1, pour i = 1, 2, · · · , n. Démontrer que Bn+1 = B1.

4544. Proposé par Burghelea Zaharia.

Calculer ∫ 2

1

ln

Å
x4 + 4

x2 + 4

ã
dx

x
.

4545. Proposé par Mihaela Berindeanu.

Résoudre dans N:
6n − 19 =

î
5
√
n2 + 4n

ó
.

4546. Proposé par Thanos Kalogerakis, Leonard Giugiuc et Kadir Altintas.

Soit D un point sur le côté BC du triangle ABC et considérer les cercles suivants:

(K1, k1) est le cercle inscrit de ABC et (L1, l1) est le cercle exinscrit de ABC,
opposé à A

(L2, l2) est le cercle inscrit de ABD et (K2, k2) est le cercle exinscrit de
ABD, opposé à A

(L3, l3)est le cercle inscrit de ACD et (K3, k3)est le cercle exinscrit de ACD,
opposé à A

Démontrer que k1 · k2 · k3 = l1 · l2 · l3.

4547. Proposé par George Stoica, modifié par le conseul.

Soient a, b, c des nombres complexes tels que |a| = |b| = |c| = 1. Démontrer que si

|a+ b− c|2 + |b+ c− a|2 + |c+ a− b|2 = 12,

alors a, b, c sont les sommets d’un triangle équilatéral inscrit dans le cercle unité.
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4548. Proposé par Lazea Darius.

Soient a, b, c des nombres réels non-negatifs tels que a+ b+ c = 3. Déterminer le
k maximal pour lequel

ab+ bc+ ca+ k(a− b)2(b− c)2(c− a)2 ≤ 3.

4549. Proposé par Lorian Saceanu, Leonard Giugiuc et Kadir Altintas.

Soient ak et bk des nombres réels, k = 1, 2, . . . , n. Démontrer queÃ
n∑
k=1

(2ak − bk)2 +

Ã
n∑
k=1

(2bk − ak)2 ≥

Ã
n∑
k=1

a2k +

Ã
n∑
k=1

b2k.

4550. Proposé par Leonard Giugiuc et Kunihiko Chikaya.

Soit α un nombre réel supérieur à 2 et soient x, y et z des nombres réels positifs
tels que x ≥ y ≥ z. Démontrer que

(xα − yα)(yα − zα)(zα − xα)

(xα−1 + yα−1)(yα−1 + zα−1)(zα−1 + xα−1)
≥ α3

24
((x− y)3 + (y − z)3 + (z − x)3).

Quand l’égalité tient-elle ?
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2019: 45(10), p. 564–567.

4491. Proposed by Lorian Saceanu.

Let a, b, c be the side lengths of acute-angled triangle ABC lying opposite of an-
gles ∠A,∠B,∠C, respectively. Let r be the inradius of ABC and let R be its
circumradius. Prove that

a∠A+ b∠B + c∠C
a+ b+ c

≤ arccos
r

R
.

We received 13 solutions, one of which was incorrect. We present the solution by
Leonard Giugiuc.

The function arccos is strictly concave on the interval (0, 1); hence,

aA+ bB + cC

a+ b+ c
=
∑
cyc

a

a+ b+ c
· arccos

Å
b2 + c2 − a2

2bc

ã
.

By Jensen’s inequality,

∑
cyc

a

a+ b+ c
· arccos

Å
b2 + c2 − a2

2bc

ã
≤ arccos

(∑
cyc

a

a+ b+ c
· b

2 + c2 − a2
2bc

)

= arccos

Å
16[ABC]2

2abc(a+ b+ c)

ã
= arccos

Å
4[ABC]

abc
· 2[ABC]

a+ b+ c

ã
= arccos

r

R
.

4492. Proposed by George Stoica.

Find the number of classes û in Zn (n ≥ 2) with the property that both û and
û− 1̂ have multiplicative inverses in Zn.

We received 13 correct solutions. We present the solution from Marie-Nicole Gras
that handles a generalization of the problem.

Let k be a positive integer. We will determine the number f(n) of elements û in
Zn for which

û, û− 1̂, û− 2̂, . . . , û−◊�(k − 1)
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all have inverses in Zn.

Observe that f is multiplicative, i.e., f(mn) = f(m)f(n) whenever gcd (m,n) = 1.
This follows from the Chinese Remainder Theorem whereby there is a one-one onto
correspondence between elements û ∈ Zmn and (v̂, ŵ) ∈ Zm × Zn implemented
by u ≡ v (mod m) and u ≡ w (mod n). Any number u is coprime with mn
iff it is coprime with both m and n separately iff v is coprime with m and w is
coprime with n. Thus, if n =

∏
pa is the prime factor decomposition of n, then

f(n) =
∏
f(pa).

Now f(pa) is the number of nonnegative integers r less than pa for which none of
r, r − 1, . . . , r − (k − 1) is a multiple of p. If k ≥ p, there are no such integers. If
k < p, such integers have the form bp+c where 0 ≤ b ≤ pa−1−1 and k ≤ c ≤ p−1.
Therefore f(pa) = pa−1(p− k).

Hence

f(n) =

®
0, if k exceeds some prime divisor of n;∏
pa−1(p− k) = n

∏ Ä
1− k

p

ä
, otherwise.

In the particular case of the problem, k = 2 and the answer is

n
∏Å

1− 2

p

ã
.

Editor’s Comment. As Walther Janous pointed out, the original result dates back
150 years and can be found in V. Schemmel, Über relative Primzahlen, Journal für
die reine and angewandte Mathematik 70 (1869), p. 191-192. The problem turns
up in an interesting context some 60 years later, as D. N. Lehmer comes across the
same situation in the construction of magic squares with special properties. See
in particular pages 538 and 539 of D.N. Lehmer, On the congruences connected
with certain magic squares, Transactions of the A.M.S. 31 (1929), p. 529-551.

Oliver Geupel tracked down this paper which ventures into the same territory:
Henry L. Alder, A generalization of the Euler φ−function, American Mathematical
Monthly 65 (1958), 690-692.

4493. Proposed by Nguyen Viet Hung.

Find all real numbers x, y such thatß
x+ 2y + 1

x2 + y2 + 7

™
=

1

2

where {a} denotes the fractional part of a.

We received 33 solutions. We present the solution by Vincent Blevins.

The only pair of real numbers satisfying this condition is (1, 2).
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Let x and y be two real numbers such that the ratio
x+ 2y + 1

x2 + y2 + 7
has fractional

part 1
2 , i.e.,

x+ 2y + 1

x2 + y2 + 7
= n+

1

2

for some integer n. Multiplying both sides of this equation by the denominator
and subtracting the numerator yields the equation

(2n+ 1)x2 + (2n+ 1)y2 − 2x− 4y + 14n+ 5 = 0.

After completing the square and simplifying, we haveÅ
x− 1

2n+ 1

ã2

+

Å
y − 2

2n+ 1

ã2

= −28n2 + 24n

(2n+ 1)2
.

If n is a nonzero integer, then the fraction on the right side of the previous equality
is negative. As the sum of two squares can never be negative, there can be no pair
of real solutions in this case. On the other hand, if n = 0, then

(x− 1)2 + (y − 2)2 = 0.

A sum of two squares can only be zero if both terms in the sum are zero, i.e., the
pair (1, 2) is the only solution.

4494. Proposed by Michel Bataille.

Let O be the circumcentre of a triangle ABC such that ∠BAC 6= 90◦ and let γ
be the circumcircle of ∆BOC and Ω its centre. If P is a point of the side BC, let
Q denote the point of intersection other than O of the line OP and γ. For which
P do the lines OA and ΩQ intersect at M such that MA = MQ?

We received 8 submissions, all of which were correct, and feature a composite of
similar solutions submitted by the UCLan Cyprus Problem Solving Group and by
Xunhan Zheng.

We will show that OA and ΩQ intersect at a point M such that MA = MQ
if and only if AP is the bisector of ∠BAC. This will force us to assume that
AB 6= AC (because if AB were to equal AC then A,O, P,Q,Ω would lie on a
line and, consequently, M would not be defined). All angles are assumed to be
directed angles between lines.

Let S be the other point of intersection of AP with the circumcircle ω of ABC.
Note that because we assume that P is between B and C, it follows that A and S
are on opposite sides of the line BC.
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The power of P with respect to ω and to γ gives us AP ·PS = BP ·PC = OP ·PQ,
whence A,S,O,Q lie on a circle. It follows that

∠ASO = ∠AQO and ∠SAQ = ∠SOQ.

We have

∠OAQ = ∠OAS + ∠SAQ

= ∠ASO + ∠SAQ (OS = OA)

= ∠AQO + ∠SOQ (A,O, S,Q concyclic),

and

∠AQΩ = ∠AQO + ∠OQΩ

= ∠AQO + ∠ΩOQ (ΩO = ΩQ).

Note that OA and ΩQ intersect at a point M such that MA = MQ if and only if
∠OAQ = ∠MAQ = ∠AQM = ∠AQΩ. Thus,

∠OAQ = ∠AQΩ ⇐⇒ ∠SOQ = ∠ΩOQ

⇐⇒ O,S,Q collinear

⇐⇒ S lies on the perpendicular bisector of BC

with A and S separated by BC

⇐⇒ AP is the bisector of ∠BAC.
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4495. Proposed by Leonard Giugiuc and Dan Stefan Marinescu.

Prove Mihaileanu’s theorem: Given a point P inside triangle ABC set x = [PBC],
y = [PCA], and z = [PAB], where square brackets denote area. If M is a point
on side AB and N is a point on side AC, then line MN contains P if and only if

y · BM
MA

+ z · CN
NA

= x.

[Editor: See Solution 2 of 4445.]

We received 15 submissions, all of which were correct, and feature one example of
each of the two most popular approaches.

Solution 1, by Marie-Nicole Gras.

We put ∠A = ∠BAC, θ = ∠PAC and ω = ∠BAP ; since P is inside 4ABC, we
have θ + ω = ∠A.

The line MN contains P if and only if

[APN ] + [AMP ] = [AMN ]

⇐⇒ 1

2
AP ·AN sin(θ) +

1

2
AM ·AP sin(ω) =

1

2
AM ·AN sin(∠A)

⇐⇒ 1

2

AP

AM
sin(θ) +

1

2

AP

AN
sin(ω) =

1

2
sin(∠A)

⇐⇒ 1

2
AB ·AC AP

AM
sin(θ) +

1

2
AB ·AC AP

AN
sin(ω) =

1

2
AB ·AC sin(∠A)

⇐⇒ [APC]
AB

AM
+ [ABP ]

AC

AN
= [ABC]

⇐⇒ y
AB

AM
+ z

AC

AN
= x+ y + z

⇐⇒ y
AM +MB

AM
+ z

AN +NC

AN
= x+ y + z

⇐⇒ y

Å
1 +

MB

AM

ã
+ z

Å
1 +

NC

AN

ã
= x+ y + z

⇐⇒ y
MB

AM
+ z

NC

AN
= x,

and the theorem is proved.

Solution 2, by the UCLan Problem Solving Group.

Using barycentric coordinates (relative to ∆ABC) we have

P = (x : y : z), M = (BM : MA : 0), and N = (CN : 0 : NA).
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These three points are collinear if and only if∣∣∣∣∣∣
x y z

BM MA 0
CN 0 NA

∣∣∣∣∣∣ = 0.

Expanding, we get

x(MA)(NA)− y(BM)(NA)− z(MA)(CN) = 0,

which is equivalent to

x = y
BM

MA
+ z

CN

NA
.

Editor’s comments. Michel Bataille observed that Mihaileanu’s theorem is a result
known (without any attribution) to those familiar with barycentric coordinates.
It can be found in “Focus On ... No. 4: The Barycentric Equation of a Line”
[Vol. 38:9, 2012: 367-368]. There you can also find further details concerning the
method behind our second featured solution. Janous adds that if one uses signed
areas and directed distances, our result holds for an arbitrary point P in the plane
of ∆ABC while M and N are points different from a vertex on the lines AB and
AC, respectively.

4496. Proposed by Leonard Giugiuc.

Let a and b be two fixed numbers such that 0 < a < b. We consider the function

f : [a, b]× [a, b]× [a, b]→ R, f(x, y, z) = (x+ y + z)

Å
1

x
+

1

y
+

1

z

ã
.

Find the maximum value of the function.

We received 15 correct solutions, one incorrect solution and one that appealed to
a complicated obscure general inequality. Most of the solutions relied in some way
on the convexity of f(x, y, z) with respect to each variable. Several solvers appealed
to Gireaux’ Theorem, which asserts that a function defined on a box convex in each
variable assumes its maximum on the edges of the box; the first solution based on
this approach is self-contained. The second solution is due to Oliver Geupel; Roy
Barbara had the same approach differing only in detail.

Solution 1.

Fix (x, y) ∈ [a, b]× [a, b] and let u = x+ y, so that 1
x + 1

y = u
xy . Then

f(x, y, z) = (u+ z)

Å
u

xy
+

1

z

ã
=
u2

xy
+ 1 + u

Å
z

xy
+

1

z

ã
.

The function (z/xy)+(1/z) is convex for z ∈ [a, b] with its minimum at z =
√
xy ∈

[a, b] and its maximum at either z = a or z = b. A similar statement holds for x
for fixed (y, z) and y for fixed (x, z).
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Hence, the maximum must occur when the values of x, y, z belong to {a, b}. By
symmetry, we need examine only f(a, a, a) = 9 and

f(a, a.b) =
(2a+ b)(a+ 2b)

ab
= 5 + 2

Å
a

b
+
b

a

ã
≥ 9.

Thus the maximum value is

5 + 2

Å
a

b
+
b

a

ã
= 9− 2

Ç…
b

a
−
…
a

b

å2

.

Solution 2, by Oliver Geupel and Roy Barbara (done independently).

Without loss of generality, suppose that 0 < a ≤ x ≤ y ≤ z ≤ b. Then

f(a, b, b)− f(x, b, b) =
2

abx
(x− a)(b2 − ax);

f(x, b, b)− f(x, z, z) =
2

bxz
(b− z)(bz − x2);

f(x, z, z)− f(x, y, z) =
1

xyz
(x+ z)(y − x)(z − y).

Adding these equations yields that

(a+ 2b)(2a+ b)

ab
= f(a, b, b) ≥ f(x, y, z) ∀(x, y, z) ∈ [a, b]3.

Editor’s Comments. Various solvers pointed out that the result is far from new.
G. Stoica proved in a 1986 paper in Gazeta Matematica Seria B 91, 151-154 that
the maximum of (

∑n
i=1 xi)(

∑n
i 1/xi) on the box [a, b]n is n2(a + b)2/(4ab) when

n is even and [n2(a+ b)2− (a− b)2]/(4ab) when n is odd. Walther Janous pointed
out that this in turn is a special case of the 1948 Kantorovich Inequality, which
has a Wikipedia entry. In 1914, P. Schweitzer provided an upper bound. Daniel
Vacaru draws attention to a 1972 paper by Alexandru Lupaş that follows up on
this work and provides a complicated form of the maximum. With five variables,
this was the fifth problem on the 1977 USAMO, where the maximum was given
as 25 + 6(

√
b/a−

√
a/b)2.

4497. Proposed by Hoang Le Nhat Tung.

Let a, b, c be positive real numbers. Prove that

b+ c

a
+
c+ a

b
+
a+ b

c
≥ 4(a2 + b2 + c2)

ab+ bc+ ca
+

2(ab+ bc+ ca)

a2 + b2 + c2
.

We received 20 submissions, 19 of which were correct, and the other one used
Maple-based outputs. We present the proof by Madhav Modak, modified slightly by
the editor.
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Let E denote the left side of the given inequality. Then

E + 6 =
a

b
+
b

a
+
b

c
+
c

b
+
c

a
+
a

c
+ 6 =

a2 + b2

ab
+ 2 +

b2 + c2

bc
+ 2 +

c2 + a2

ca
+ 2

=
(a+ b)2

ab
+

(b+ c)2

bc
+

(c+ a)2

ca

≥ (a+ b+ b+ c+ c+ a)2

ab+ bc+ ca
=

4(a+ b+ c)2

ab+ bc+ ca
,

by the Cauchy-Schwarz inequality. (Ed: What the solver used here is actually a
special case of the C-S Inequality, commonly known as Titu’s Lemma.) Hence

E − 2 ≥ 4(a+ b+ c)2

ab+ bc+ ca
− 8

or E − 2 =
4(a2 + b2 + c2)

ab+ bc+ ca
. (1)

Next we have a2 + b2 + c2 ≥ ab+ bc+ ca, so

2 ≥ 2(ab+ bc+ ca)

a2 + b2 + c2
. (2)

The result follows from (1) + (2).

The equality holds in (1) if and only if (a + b)/ab = (b + c)/bc = (c + a)/ca or
a = b = c and equality holds in (2) if and only if a/b = b/c = c/a or a = b = c.
Hence, equality holds in the given inequality if and only if a = b = c.

4498. Proposed by Sergey Sadov.

Consider the function f(x) = 1/(x2 + 1) for x > 0. Prove that there exists n such
that the nth derivative f (n)(x) does not have constant sign for x > 2019.

We received 14 submissions, of which 13 were correct and one was incomplete. We
present the solution provided by Brian Bradie.

Let

f(x) =
1

x2 + 1
=

1

2i

Å
1

x− i −
1

x+ i

ã
.

Then

f (n)(x) =
(−1)nn!

2i

Å
1

(x− i)n+1
− 1

(x+ i)n+1

ã
=

(−1)nn!

2i
· (x+ i)n+1 − (x− i)n+1

(x2 + 1)n+1
.

It follows that f (n)(x) = 0 when (x+ i)n+1 = (x− i)n+1; that is, when

x = −i+ (x− i)e2πki/(n+1)

for k = 1, 2, . . . , n. Solving for x yields

x = cot
πk

n+ 1
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for k = 1, 2, . . . , n. The numerator of f (n) is a polynomial of degree n with n zeros,
so each zero must be simple and therefore f (n)(x) must change sign at each zero.
For 0 < x < π, cotx is a decreasing function so the largest zero of f (n) is

x = cot
π

n+ 1
.

Now,

cot
π

n+ 1
> 2019 whenever n >

π

cot−1 2019
− 1.

Thus, for any integer

n ≥ 6342 >
π

cot−1 2019
− 1,

f (n)(x) changes sign at least once for x > 2019.

4499. Proposed by H. A. ShahAli.

Prove that the following system of Diophantine equations has infinitely many
unproportional solutions in positive integers:®

a+ b+ c+ d = e+ f + g,

a2 + b2 + c2 + d2 = e2 + f2 + g2.

We received 13 correct solutions, and one incomplete solution. We present 7 dif-
ferent variants below.

Solution 1, by Corneliu Manescu-Avram.

Let a, b, c be integers with greatest common divisor 1. Then

(a, b, c, d; e, f, g) = (a, b, c, a+ b+ c; a+ b, b+ c, c+ a)

satisfies the system. There is an infinite set of these solutions that are pairwise
nonproportional.

Solution 2, by the proposer.

The system is satisfied by

(a, b, c, d; e, f, g) = (u+ v + w,−u+ v + w, u− v + w, u+ v − w; 2u, 2v; 2w).

Solution 3, by Marie Nicole Gras.

The system is satisfied by

(a, b, c, d; e, f, g) = (1, 2, c, c+ 3; 3, c+ 1, c+ 2)

for arbitrary integer c, giving nonproportional sets.
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Solution 4, by David Manes.

The system is satisfied by

(a, b, c, d; e, f, g) = (1, 1, c, c− 2; 2, c− 1, c− 1)

for arbitrary integer c, giving nonproportional sets.

Solution 5, by Roy Barbara, Brian Beasley, Demetres Christifides, Oliver Geupel,
and Walther Janous (independently).

Begin with a solution of the system a + b + c = e + f , a2 + b2 + c2 = e2 + f2

and then make d = g. This method produces solutions such as the following:
(1, 2, 6, d; 4, 5, d), (1, 1, 4, d; 3, 3, d) and (2f − 2, f − 2, 1, d; 2f − 3, f, d).

Solution 6, by C.R. Pranesachar.

Let n be an integer. Then the system is satisfied by

(a, b, c, d; e, f, g) = (2n2 + 10n+ 2, 2n− 1, n+ 2, n+ 3; 2n2 + 10n+ 1, 3n+ 4, n+ 1).

The strategy for finding this is to first eliminate g from the two equations, and
then get a rational expression for a in terms of the remaining variables. With
(b, c, d; e, f) = (n+ k, n+ 2, n+ 3; 3n+ 4, n+ 1), we find that

a = 2(2n2 − kn+ 4n+ 1)/(n− k).

Solution 7, by the Missouri State University Problem Solving Group.

More generally, when m ≥ n ≥ 2 we can solve the simultaneous system

m∑
i=1

ari =
n∑
i=1

bri

with r = 1, 2. With k = m− n+ 2 this is satisfied by

a1 = 2t2 + 2(k − 1)t+ (k − 1)(k − 2), ai = 2t (2 ≤ i ≤ m),

b1 = 2[t2 + (k − 1)t], b2 = (k − 1)(2t+ k − 2), bi = 2t (3 ≤ i ≤ n).

Since
b2
a2

=
(k − 1)(2t+ k − 2)

2t
= k − 1 +

(k − 1)(k − 2)

2t
,

it is clear than we can get an infinite nonproportional set of solutions.

Editor’s Comments. The system is satisfied by (a, b, c, d; e, f, g) = (1, 2, 4, 7; 3, 5, 6).
As Ioannis Sfikas points out, this solution has an interesting generalization. The
two quadruples (1, 2, 4, 7), (0, 3, 5, 6) comprising all the numbers from 0 to 7 have
the same cardinality and the same sums and square sums. If we add 8 to one
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set and append the result to the other, we get the pair (1, 2, 4, 7, 8, 11, 13, 14),
(0, 3, 5, 6, 9, 10, 12, 15) comprising all the numbers from 0 to 15 with the same
cardinality that have the same sums, square sums and cube sums. We can continue
this process to obtain, for each positive integer n a partition of the numbers from
0 to 2n − 1 inclusive into two sets with 2n−1 elements whose kth power sums are
equal for 0 ≤ k ≤ n − 1. Note that if we add any constant c to each element of
the sets, they retain the same property.

This reminds us of the Tarry-Escott problem which is to determine the values
of the positive integer m for which two sets of integers of size m can be found
for which the sums of the kth powers are equal for 0 ≤ k ≤ m − 1. Some so-
lutions for small values of m are {(1, 5, 6), (2, 3, 7)}, {(1, 5, 8, 12), (2, 3, 10, 11)},
{(1, 5, 9, 17, 18), (2, 3, 11, 15, 19)}. This problem, with a rich history revealed by
an online search, has hooked people for over a century and a half.

4500. Proposed by Chudamani R. Pranesachar.

Let AB be an arc of a circle with radius r and centre O, its angle subtended at the
center, denoted θ, being less than π. Let M be the mid-point of the shorter arc
AB. Points P on radius OA, S on radius OB, Q and R on arc AB are taken such
that PQRS is a rectangle. Prove that when the area of PQRS is maximum, the
line segments OQ, OM , OR divide angle AOB into four equal parts of common
value θ

4 ). Determine this maximum area in terms of r and θ.

We received 13 submissions, all of which were correct, and we feature the solution
by Oliver Geupel.

If T is the midpoint of the chord QR, the line OT is perpendicular to the chord
QR and to the opposite side of the rectangle, namely PS. Hence, OP = OS. Let
x = ∠MOR = ∠MOQ where 0 < x < θ/2, and let U be the midpoint of the side
PS. We have

OT = QT cotx, OU = PU cot
θ

2
, TU = OT −OU,
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and
PU = QT = r sinx, PS = 2r sinx.

Therefore,

TU = r sinx

Å
cotx− cot

θ

2

ã
= r sinx · sin(θ/2− x)

sin(θ/2) sinx
= r

sin(θ/2− x)

sin(θ/2)
.

Consequently,

[PQRS] = PS · TU =
2r2

sin(θ/2)
sinx sin

Å
θ

2
− x
ã

=
r2

sin(θ/2)

Å
cos

Å
2x− θ

2

ã
− cos

θ

2

ã
≤ r2

sin(θ/2)

Å
1− cos

θ

2

ã
= r2

Å
csc

θ

2
− cot

θ

2

ã
= r2 tan

θ

4
.

Consequently, the maximum area is r2 tan(θ/4) which is attained if and only if
cos(2x− θ

2 ) = 1, which implies that 2x− θ
2 = 0 and, thus, x = θ

4 , as desired.
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