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le Crux n’est pas une revue scientifique. Soumission en ligne:

https://publications.cms.math.ca/cruxbox/

The Canadian Mathematical Society grants permission to individual readers of this publication to copy articles for
their own personal use.

c© CANADIAN MATHEMATICAL SOCIETY 2021. ALL RIGHTS RESERVED.

ISSN 1496-4309 (Online)
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MATHEMATTIC
No. 23

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by May 15, 2021.

MA111. Peter and Steve had a 50-metre race. When Peter crosses the finish
line, Steve was 5 metres behind. A rematch is set up, with Peter handicapped by
being 5 metres behind the starting line. Assuming that the boys run at the same
speed as before, who wins the race (or is it a tie) and by how much?

MA112. Circle C1 has radius 13 and is tangent to line ` at Y . Circle C2 has
radius 23, is tangent to ` at Z and is externally tangent to C1 at X. The line
through X and Y intersects C2 at P . Determine the length of PZ.

MA113. For any positive number t, btc denotes the integer part of t and
{t} denotes the “decimal” part of t. If x + {y} = 7.32 and y + bxc = 8.74, then
determine {x}.

MA114. Let p, q, and r be positive constants. Prove that at least one of the
following equations has real roots.

px2 + 2qx+ r = 0

rx2 + 2px+ q = 0

qx2 + 2rx+ p = 0

MA115. I met a person the other day that told me they will turn x years old
in the year x2. What year were they born?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 mai 2021.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

MA111. Lors d’une première course de 50 mètres, Pierre a devancé Stéphane
par 5 mètres. Lors de la deuxième, Pierre a donc commencé 5 mètres derrière la
ligne usuelle de départ. Supposant que les vitesses des deux coureurs demeurent
toujours les mêmes, qui terminera premier dans cette deuxième course et par
combien, ou est-ce un match nul?

MA112. Un cercle C1 de rayon 13 est tangent à la ligne ` en Y . Le cercle C2

de rayon 23 est tangent à la ligne ` en Z et est extérieurement tangent à C1 en X.
Enfin, la ligne passant par X et Y intersecte C2 en P . Déterminer la longueur de
PZ.

MA113. Pour un nombre réel positif t, btc dénote sa partie entière et {t}
dénote sa partie fractionnaire. Si x + {y} = 7.32 et y + bxc = 8.74, déterminer
{x}.

MA114. Soient p, q et r des réels positifs. Démontrer qu’au moins une des
équations suivantes a des racines réelles:

px2 + 2qx+ r = 0

rx2 + 2px+ q = 0

qx2 + 2rx+ p = 0

MA115. L’autre jour, j’ai rencontré quelqu’un m’affirmant qu’il va atteindre
l’âge de x ans dans l’an x2. En quelle année cette personne aurait-elle été née ?

Crux Mathematicorum, Vol. 47(3), March 2021
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2020: 46(8), p. 349–351.

MA86. On a 2×n board, you start from the square at the bottom left corner.
You are allowed to move from square to adjacent square, with no diagonal moves,
and each square must be visited at most once. Moreover, two squares visited on
the path may not share a common edge unless you move directly from one of them
to the other. We consider two types of paths, those ending on the square at the
top right corner and those ending on the square at the bottom right corner. The
diagram below shows that there are 4 paths of each type when n = 4. Prove that
the numbers of these two types of paths are the same for n = 2014.

Originally problem 5 of the 2014 Alberta High School Mathematics Competition.

We received 3 submissions, all of which were correct and complete. We present
the solution by the Sigma Problem Solving Group.

Let xn be the number of paths ending at the top right corner, and yn be the
number of paths ending at the bottom right corner, for n ≥ 4.

Label the squares of the grid as (a, b), where a = 1, 2, ..., n from right to left, and
b = 1, 2 from bottom to top. That is, the bottom right corner is (1, 1) and the top
left corner is (n, 2).

Firstly, we have the initial values, by direct counting, x4 = 4, x5 = 6 and y4 =
4, y5 = 7.

Consider now, a 2× (n+ 1) square grid labelled as above. Beginning at (n+ 1, 1)
there are two choices, to go right, to (n, 1), or to go up, to (n+ 1, 2). If we move
right, then we have xn paths to (1, 2) and yn paths to (1, 1).

If we move up from (n + 1, 1), then we have to move right at least twice and
reach (n − 1, 2). Reaching the top right corner from (n − 1, 2) is equivalent to
reaching the bottom right corner from (n − 1, 1), as can be seen by flipping the
board vertically. Hence we have yn−1 paths to reach the top right corner from
(n − 1, 2) and similarly, xn−1 paths to reach the bottom right corner from there.
Thus, we get the coupled recursions, for n ≥ 5,

xn+1 = xn + yn−1

yn+1 = yn + xn−1

Copyright © Canadian Mathematical Society, 2021
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We define a new sequence, zn = xn+4 + yn+4, n ≥ 0. Then subtracting the above
equations, we have,

zn−3 = zn−4 − zn−5, n ≥ 5

=⇒ zn+2 = zn+1 − zn, n ≥ 0 (1)

The first 7 values of zn, beginning from n = 0 are: 0,−1,−1, 0, 1, 1, 0. We have,
from (1),

zk+3 = zk+2 − zk+1

=⇒ zk+3 = zk+1 − zk − zk+1

=⇒ zk+3 = −zk
=⇒ zk+6 = −zk+3 = zk

Thus, for k ≥ 0, zk+6 = zk and as z0 = 0, we get that z6k = 0.

Hence, we have that x6k+4 = y6k+4, for k ≥ 0. Since 2014 = 6 · 335 + 4, there are
an equal number of both paths on a 2× 2014 board.

MA87. One or more pieces of clothing are hanging on a clothesline. Each
piece of clothing is held up by either 1, 2 or 3 clothespins. Let a1 denote the
number of clothespins holding up the first piece of clothing, a2 the number of
clothespins holding up the second piece of clothing, and so forth. You want to
remove all the clothing from the line, obeying the following rules:

(i) you must remove the clothing in the order that they are hanging on the line;

(ii) you must remove either 2, 3 or 4 clothespins at a time, no more, no less;

(iii) all the pins holding up a piece of clothing must be removed at the same time.

Find all sequences a1, a2, . . . , an of any length for which all the clothing can be
removed from the line.

Originally problem 3 of the 2017 Alberta High School Mathematics Competition.

We received 2 submissions of which 1 was correct and complete. We present the
solution by Zachary Cormack.

What combinations of clothespins can be removed? There are nine possibilities,
up to isomorphic permutation:

◦
◦
2 ,

◦
◦
◦
3 ,

◦ ◦
1,1 ,

◦ ◦
◦
2,1 ,

◦ ◦
◦ ◦
2,2 ,

◦ ◦
◦
◦
3,1 ,

◦ ◦ ◦
1,1,1 ,

◦ ◦ ◦
◦

2,1,1 ,
◦ ◦ ◦ ◦

1,1,1,1

2, 1 is the same as 1, 2 in terms of being a group of 3 being removed, or 2, 1, 1
being the same as 1, 2, 1 for a group of 4 being removed, for example.

Crux Mathematicorum, Vol. 47(3), March 2021
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All arrangements made of these groups work. So, what sequences don’t?

Divide the line of clothes into groups taken from the nine groups illustrated above,
but not using the group 3,1 with possibly some isolated 1’s left over. A single
1 cannot be removed by itself; let’s call this an island. The removable groups
(everything that’s not an island) will be called seas. Call an island “sunk” if it
can be grouped together with a sea on one side and the combined set removed
(possibly in two moves, for instance if an island were grouped with a {2, 2} sea).
The clotheslines that work are those in which all islands may be sunk.

A sea of a single 3 can only sink an island on one side. All other seas can sink 1
or 2 islands. The number of islands can be no more than the number of seas plus
one. It follows that, if any of the seas can sink two islands, then clearly, all islands
may be sunk. And so, the islands cannot be sunk if and only if all seas consist of
a 3, and even then, there must be more islands than seas. The sequences which
don’t work must clearly only be of this form:

◦ ◦ ◦ ◦ · · · ◦
◦ ◦
◦ ◦
1, 3, 1, 3, . . . , 1

Therefore, any clothesline in which the number of pins does not alternate between
one and three, and begin and end with one, may have all clothes removed from it.

Note. Proposal 4601 in Crux Volume 47, issue 1 is an extension of this problem.

MA88. Proposed by Konstantin Knop.

a) Sort the numbers from 1 to 100 in increasing order of their digit-sums; in
case of a tie, sort in increasing order of the numbers themselves. Consider
the resulting sequence

a(n) : a(1) = 1, a(2) = 10, a(3) = 100, . . .

Find at least one number n > 1 such that a(n) = n.

b) Consider the same problem but for numbers from 1 to 100 000 000.

We received 3 submissions, of which 1 was correct and complete. We present the
solution by Richard Hess, with help by Josh Jordan.

a) By ordering and counting we find that for the first 100 numbers we get
a(24) = 24 and a(97) = 97.

b) For the case of the first 100 million numbers I got lucky early to find a(11) =
11. My friend Josh Jordan wrote a program and found the following:

a(11) = 11,

a(13212) = 13212,

a(12951621) = 12951621,

a(91686881) = 91686881.

Copyright © Canadian Mathematical Society, 2021
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MA89. Proposed by Bill Sands.

Two robots R2 and D2 are at the origin O on the x, y plane. R2 can move twice
as fast as D2. There are two treasures located on the plane, and whichever robot
gets to each treasure first gets to keep it (in case of a tie, neither robot gets the
treasure). One treasure is located at the point P = (−3, 0), and the other treasure
is located at a point X = (x, y). Find all X 6= O so that D2 can prevent R2 from
getting both treasures, no matter what R2 does. Which such X has the largest
value of y?

Note: D2 does not care if R2 gets one of the treasures, only that R2 shouldn’t get
both treasures. D2 also doesn’t care if it gets either treasure itself, it only wants
to prevent R2 from getting both treasures.

We received one partial solution to the problem, by Richard Hess. The solution
below is based on his submission.

Figure 1: D2 can win if X is within the red shaded region or on its boundary.

If |OX| + |XP | < 2|OP | then R2 can move to X and then to P before D2 can
reach P . Therefore R2 wins if√

x2 + y2 +
»

(x+ 3)2 + y2 < 6. (1)

This inequality describes the inside of the ellipse with foci O and P and major
axis length 6 (marked in blue in Figure 1).

Similarly, R2 can win if |OP |+ |PX| < 2|OX| or

3 +
»

(x+ 3)2 + y2 < 2
√
x2 + y2. (2)

Crux Mathematicorum, Vol. 47(3), March 2021
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Figure 2: Strategy for D2.

The region described by this inequality is the region on the outside of the red curve
in Figure 1. We will show that D2 can win if X satisfies neither (1) nor (2), i.e.
is in the red shaded region in Figure 1 or on its boundary.

Let λ be the angle bisector of ∠POX. Until R2 picks up the first treasure, D2
will move as follows. If R2 moves to a point R, then D2 will move to a point
D such that |OR| = 2|OD| and such that the angle between OD and λ is equal
to the angle between λ and OR (D2 and R2 will be on opposite sides of λ). To
see that this is always possible suppose R2 and D2 have already moved to points
R1 and D1 respectively (see Figure 2), thus |OR1| = 2|OD1|. Suppose R2 now
moves to a point R2 and let D2 be the corresponding point for D2 to move to.
Then |OR2| = 2|OD2| and ∠R1OR2 = ∠D1OD2 which implies that OR1R2 and
OD1D2 are similar and thus |R1R2| = 2|D1D2|. So D2 can reach D2 at the same
time that R2 reaches R2.

Now suppose R2 picks up a treasure, say P . By the strategy outlined, D2 will
be at a point D that lies on OX with property |OP | = 2|OD|. By assumption
|OP |+ |PX| ≥ 2|OX| and thus

|PX| = |OP |+ |PX| − |OP | ≥ 2|OX| − 2|OD| = 2(|DX|).

Therefore R2 cannot reach X before D2.

The largest value of y among all winning points X = (x, y) clearly occurs on
the curve defined by 3 +

√
(x+ 3)2 + y2 = 2

√
x2 + y2. Solving for y2 we obtain

(...insert long and tedious algebra...)

y2 = −x2 + 2x+ 8 + 4
√

2x+ 4.

Copyright © Canadian Mathematical Society, 2021



128/ MathemAttic

With a bit of calculus, we find that this function has a maximum at x =
√

3, for
which

y2 = −3 + 2
√

3 + 8 + 4

»
2
√

3 + 4 = 5 + 2
√

3 + 4(1 +
√

3) = 9 + 6
√

3

and thus the largest value of y is obtained at X = (
√

3,
√

9 + 6
√

3).

MA90. Proposed by Michel Bataille.

Two positive integers are called co-prime if they share no common divisors other

than 1. Find all pairs of co-prime x, y such that
y(x+ y)

x− y is a positive integer.

We received 7 correct solutions, some not very elegant and one running to twelve
pages. We present the solution by Basu Aaratrick, and Richard Hess (done inde-
pendently).

Note that the requirement that
y(x+ y)

x− y is a positive integer implies that x > y.

y(x+ y)

x− y = y +
2y2

x− y .

Since y and x − y are coprime, x − y must divide 2, and so is equal to 1 or 2.
Therefore,

(x, y) = (u+ 1, u), (v + 2, v),

where u is any positive integer and v is any positive odd integer.

Editor’s comment. Note that y(x+ y)/(x− y) ∈ Z ⇔ x(x+ y)/(x− y) ∈ Z.

Crux Mathematicorum, Vol. 47(3), March 2021
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PROBLEM SOLVING
VIGNETTES

No. 15
Shawn Godin

Divisibility Rules
At the heart of number theory, as well as many problems dealing with numbers,
lies the fundamental theorem of arithmetic. This theorem states that any integer
greater than 1 is prime or can be decomposed uniquely (ignoring order) into a
product of primes. Hence, many problems rely on being able to factor an integer
into its prime factors. To help us in our exploration we will be using congruences
that were introduced by Don Rideout [2019 : 45(3), p. 118-121] and have been
used in other columns in this series.

Throughout our investigation, we will use the fact that a n-digit positive integer
N can be represented as

N = an−1 × 10n−1 + an−2 × 10n−2 + · · ·+ a2 × 102 + a1 × 10 + a0

where ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and an−1 6= 0. We will derive some divisibility
rules based on properties of powers of ten modulo a power of a prime. This
column is inspired by some explorations of grade 9 student Priya Janaky Aiyer
that were shared with me. It is my hope that Priya will continue her mathematical
explorations.

We will start our journey with one of the easiest and most well known divisibility
rules, that for 2. In grade school, children learn that a number is divisible by 2 (is
even) if its units digit is 0, 2, 4, 6 or 8. If we look, modulo 2, then a number N is
divisible by 2 if it is congruent to 0, hence

N = an−1×10n−1 +an−2×10n−2 + · · ·+a2×102 +a1×10+a0 ≡ a0 ≡ 0 (mod 2)

since 10 ≡ 0 (mod 2). As a0 ≡ 0 (mod 2) ⇒ a0 ∈ {0, 2, 4, 6, 8}, we see why the
divisibility rule works.

Since 2 | 10 we must have 2n | 10k for any positive integers n and k with k ≥ n.
As such, we can extend our rule. For example, if we consider 4 = 22, then 4 | 10k

with k ≥ 2, and so

N = an−1×10n−1+an−2×10n−2+· · ·+a2×102+a1×10+a0 ≡ a1×10+a0 (mod 4)

so we can conclude that any number N is divisible by 4 if and only if the two digit
number formed by the tens and units digits of N is divisible by 4. Thus since
4 | 76 we can conclude that 4 | 147 976, indeed any integer whose tens and units
digits are 76 will be divisible by 4.

We can extend this idea so that any number where the three digit number formed
by the last three digits is divisible by 8 = 23 is itself divisible by 8; any number

Copyright © Canadian Mathematical Society, 2021
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where the four digit number formed by the last four digits is divisible by 16 = 24

is itself divisible by 16; and, in general, any number where the n digit number
formed by the last n digits is divisible by 2n is itself divisible by 2n. This means
that when dividing by 2n, we only need to consider the last n digits in our division.
In some cases this might be a significant reduction in our work-load, but in others
the reduction might be minimal. We can actually use our knowledge of powers of
two to reduce things further.

If we reexamine the divisibility by 4, we remove all digits corresponding to powers
of 10 two and larger because 4 = 22 | 22 × 52 = 100, but 4 | 22 × k for any integer
k, hence 4 | 22 × 5 = 20. How does that help? When we remove the digits other
than the tens and units, we have removed a multiple of 102, which is a multiple of
4. We can do the same for 20. So, if we reexamine 147 976, we get

147 976 ≡ 76 ≡ 76− 20 = 56 ≡ 36 ≡ 16 (mod 4) .

Another way to look at things, since we are removing multiples of 20, the units
digit is unchanged. All we are looking at is the tens digit modulo 2! Hence, we
can think of the divisibility rule for 2n as a series of n− 1 steps, which reduce our
original number to something it is equivalent to, modulo 2n. Then the final step
is dividing a much smaller number by 2n, indeed the final number should be less
than 10 × 2n. For example, since 4 = 22, then 147 976 ≡ 76 (mod 4), and since
7 ≡ 1 (mod 2), then 76 ≡ 16 (mod 4). This process can be extended for other
powers of 2.

For example to check the divisibility of N by 8 = 23 we do the following process:

• consider N1 = a2 × 102 + a1 × 10 + a0, the number formed by the last three
digits, since 8 | 103 = 23 × 53,

• since 8 | 200 = 23 × 52, reduce a2 modulo 2 (to either 0 or 1), let this be a′2
and we are now considering the number N2 = a′2 × 102 + a1 × 10 + a0,

• since 8 | 40 = 23 × 5, reduce a′2 × 10 + a1 modulo 4 (to either 0, 1, 2 or 3),
let this be a′1 and we are now considering the number N3 = a′1 × 10 + a0.

• 8 | N if and only if 8 | N3.

So for our example we have N = 147 976, so N1 = 976 (we have just subtracted
147 × 103 from N). Since 9 ≡ 1 (mod 2), N2 = 176 (we have just subtracted
4× 200 from N1). Next, 17 ≡ 1 (mod 4) so N3 = 16. Finally, 8 | 16 and therefore
8 | 147 976.

Next we will move on to divisibility by 3 and 9. This was talked about by Don
Rideout in the aforementioned article, but we will reproduce the result here as the
ideas will be expanded on later. If we consider a number N modulo 9, then, since
10 ≡ 1 (mod 9) we get

N = an−1 × 10n−1 + an−2 × 10n−2 + · · ·+ a2 × 102 + a1 × 10 + a0

≡ an−1 × 1n−1 + an−2 × 1n−2 + · · ·+ a2 × 12 + a1 × 1 + a0 (mod 9)

≡ an−1 + an−2 + · · ·+ a2 + a1 + a0 (mod 9)

Crux Mathematicorum, Vol. 47(3), March 2021
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hence a number is congruent to the sum of its digits, modulo 9.

At this point we introduce the digital root of a number. To calculate the digital
root of a number N , first calculate the sum of its digits. If this is a single digit
number, you are done. If it is not, then continue calculating the digital sum of the
results until you are left with a single digit. The final single digit is the digital root
of N . We can conclude that a number is congruent to its digital root modulo 9,
I will leave the details to the reader. Hence we get the following divisibility rules
for a positive integer N :

If the digital root of N is 9, then N is divisible by 9.

If the digital root of N is 3, 6, or 9, then N is divisible by 3.

For example, the digital root of 853 640 928 is 9, since

8 + 5 + 3 + 6 + 4 + 0 + 9 + 2 + 8 = 45

and 4 + 5 = 9, hence 9 | 853 640 928, and so it is also a multiple of 3. Similarly,
the digital root of 147 265 404 is 6, hence 9 - 147 265 404, but since 3 | 6, we have
3 | 147 265 404.

So far we have only talked about divisibility rules for primes and prime powers.
It turns out that these types of rules are the only ones necessary. For example, to
test the divisibility by 6 = 2× 3 we just use the rules for 2 and 3. Hence 63 945 is
not divisible by 6 since it fails the divisibility test for 2, having an odd units digit.
Similarly 29 038 is not divisible by 6 since its digital root is 4.

Next we will look at divisibility by 11 as it closely resembles that of 9. Since
10 ≡ −1 (mod 11) then, considering N modulo 11 we get

N = an−1 × 10n−1 + an−2 × 10n−2 + · · ·+ a2 × 102 + a1 × 10 + a0

≡ an−1 × (−1)n−1 + an−2 × (−1)n−2 + · · ·+ a2 × (−1)2 + a1 × (−1) + a0 (mod 11)

≡ a0 − a1 + a2 − · · ·+ an−1 × (−1)n−1 (mod 11)

So a number is divisible by 11 if its alternating digital sum is divisible by 11. Hence
since

9− 2 + 1− 4 + 7− 4 + 2− 1 + 3 = 11,

we can conclude 11 | 312 474 129. If we are only interested in divisibility, we
may do the alternating sum from the leftmost digit as this will be equal to the
alternating digital sum or its opposite. Hence since

8− 4 + 2− 8 + 4− 0 + 3− 6 + 0− 3 = −4,

we can conclude that 11 - 8 428 403 603, but 8 428 403 603 ≡ 4 6≡ −4 (mod 11)
since the leftmost digit corresponds to an odd power of 10.

An interesting extension of this idea can combine several divisibility tests into one.
We start by rewriting any number in terms of powers of 1000 instead of 10. That

Copyright © Canadian Mathematical Society, 2021
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is, we can consider 312 474 129 = 312 × 10002 + 474 × 1000 + 129. Then, since
1000 ≡ −1 (mod 1001), looking at 312 474 129 modulo 1001 we get

312 474 129 = 312× 10002 + 474× 1000 + 129

≡ 312× (−1)2 + 474× (−1) + 129 (mod 1001)

≡ 312− 474 + 129 (mod 1001)

≡ −33 (mod 1001)

Therefore, since 1001 = 7× 11× 13, then we can conclude that

312 474 129 ≡ −33 ≡ 2 (mod 7)

312 474 129 ≡ −33 ≡ 0 (mod 11)

312 474 129 ≡ −33 ≡ 6 (mod 13)

and hence 7 - 312 474 129, 11 | 312 474 129, and 13 - 312 474 129. We have
performed three divisibility tests at once! The method will always take any positive
integer N and, by looking at blocks of three digits starting from the right (the last
block may have 1, 2 or 3 digits) and performing the alternating sum we can check
the divisibility by 7, 11 and 13 by checking, at largest, a 3-digit number.

We will finish by looking at another divisibility test for 7, also explored in Ride-
out’s article, and show a second version of it. Let’s consider the following known
divisibility test for 7:

A number N > 10 is divisible by 7 if and only if the number formed
by subtracting twice the units digit from the number formed by the
remaining digits is also divisible by 7.

For example, 23 × 7 = 161 is divisible by 7 as well as 16 − 2 × 1 = 14. For
larger multiples of 7 we can repeat the process as long as we want. For example,
94 654× 7 = 662 578 is a multiple of 7. Iterating the rule we get

662 578→ 66 257− 2× 8 = 66 241

→ 6 624− 2× 1 = 6 622

→ 662− 2× 2 = 658

→ 65− 2× 8 = 49

and since 49 = 7×7, it shows our original is also a multiple of 7 (or we could have
gone one step further and gotten 4− 2× 9 = −14 which is also a multiple of 7).

So why does this work? If we write N = 10a+ b then

7 | N ⇔ N ≡ 0 (mod 7)

⇔ 10a+ b ≡ 0 (mod 7)

⇔ 3a− 6b ≡ 0 (mod 7)

⇔ a− 2b ≡ 0 (mod 7) 2
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Can we get a similar result using the last two digits of N? That is if we write
N = 100a+ b then

7 | N ⇔ N ≡ 0 (mod 7)

⇔ 100a+ b ≡ 0 (mod 7)

⇔ 2a− 6b ≡ 0 (mod 7)

⇔ a− 3b ≡ 0 (mod 7)

which means that we can do the same thing using the last two digits, which speeds
things up a bit. However instead of subtracting twice the last digit we subtract 3
times the 2-digit number formed by the last two digits. Our example above then
becomes

662 578→ 6 625− 3× 78 = 6 391

→ 63− 3× 91 = −210

which is a multiple of 7. The process needs fewer steps but the steps are a little
more difficult. Notice if we went one step further and wrote N = 1000a + b it
leads to 7 | N ⇔ 7 | (a− b) (I will leave the details to you), which is related to the
method we devised for 7, 11 and 13 developed earlier.

Hopefully these divisibility tests will aid in your problem solving efforts. You
may amuse yourself by using these tests to factor integers into prime factors.
Other divisibility tests can be developed using congruences. I leave the following
explorations for your amusement.

1. Since 10 = 2 × 5, develop a method for testing divisibility by powers of 5
analogous to the one we developed for powers of 2.

2. In his TED talk (youtu.be/M4vqr3 ROIk), Arthur Benjamin performs a
“trick” where he gets volunteers take a number that had come up during
his presentation and to multiply it by any three digit number. The volun-
teers then recite the digits of the result back to him in any order, leaving
one of the digits out. At that point he tells them the digit that was left out.
Determine how he did it. (This trick occurs at 5:45 to 7:45 on the video.)

3. Given N = 10a+ b, prove that 11 | N ⇔ 11 | (a− b). Extend this to larger
blocks of numbers as we did for the divisibility rule for 7.

4. Given N = 10a+ b, prove that 13 | N ⇔ 13 | (a− 4b). Extend this to larger
blocks of numbers as we did for the divisibility rule for 7.

5. Observing that 999 = 27×37, and 1000 ≡ 1 (mod 999) develop a divisibility
rule for 27 and 37 similar to the one developed for 7, 11, and 13. (Hint, it
will involve adding blocks of three digits.)

6. Generalize the result of the last problem by observing that

10n − 1 =

n 9s︷ ︸︸ ︷
999 . . . 99 = 9×

n 1s︷ ︸︸ ︷
111 . . . 11
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so, if we can factor the rep-unit number

n 1s︷ ︸︸ ︷
111 . . . 11 (see Don Rideout’s article

as well as #6 of this column [2019: 45(6), p. 313-317]), we can develop a
simultaneous test for all its factors (and 9) by observing that

10n ≡ 1

Ñ
mod

n 1s︷ ︸︸ ︷
111 . . . 11

é
and working with blocks of n digits.

7. Similar to the previous problem if we can factor 10n + 1 we can develop
simultaneous divisibility tests for its factors.

I hope you enjoy developing some of these tests. We will see further applications
of congruences and divisibility in future issues.
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OLYMPIAD CORNER
No. 391

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by May 15, 2021.

OC521. In the plane there are two identical circles with radius 1, which are
tangent externally. Consider a rectangle containing both circles, each side of which
touches at least one of them. Determine the largest and the smallest possible area
of such a rectangle.

OC522. Find the largest natural number n such that the sum

b
√

1c+ b
√

2c+ · · ·+ b√nc

is a prime number.

OC523. Let (an)n≥1 be a sequence such that an > 1 and a2n+1 ≥ anan+2 for
all n ≥ 1. Prove that the sequence (xn)n≥1 defined by xn = logan an+1 for n ≥ 1
is convergent and find its limit.

OC524. Let p ≥ 2 be a natural number and let (M, ·) be a finite monoid
such that ap 6= a for all a ∈M \ {e}, where e is the identity element of M . Prove
that (M, ·) is a group.

OC525. Consider the sequence (a1, a2, . . . , an) with terms from the set
{0, 1, 2}. We will call a block a subsequence of the form (ai, ai+1, . . . , aj), where
1 ≤ i ≤ j ≤ n, and ai = ai+1 = · · · = aj . A block is called maximal if it is not
contained in any longer block. For example, in the sequence (1, 0, 0, 0, 2, 1, 1) the
maximal blocks are (1), (0, 0, 0), (2) and (1, 1). Let Kn be the number of such
sequences of length n with terms from the set {0, 1, 2} in which all maximal blocks
have odd lengths. Moreover, let Ln be the number of all sequences of length n
with terms from the set {0, 1, 2} in which the numbers 0 and 2 do not appear in

adjacent positions. Prove that Ln = Kn +
1

3
Kn−1 for all n > 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 mai 2021.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

OC521. Dans le plan se trouvent deux cercles de rayon 1, tangents extérieurement.
Considérer alors des rectangles entourant les deux cercles et dont chaque côté
touche au moins un d’eux. Déterminer la plus petite et la plus grande surface
possibles pour de tels rectangles.

OC522. Déterminer le plus gros nombre naturel n tel que la somme

b
√

1c+ b
√

2c+ · · ·+ b√nc

est un nombre premier.

OC523. Soit (an)n≥1 une suite telle que an > 1 et a2n+1 ≥ anan+2 pour tout
n ≥ 1. Démontrer que la suite (xn)n≥1 définie par xn = logan an+1 pour n ≥ 1 est
convergente et détermininer sa limite.

OC524. Soit p ≥ 2 un nombre naturel et soit (M, ·) une monöıde finie telle
que ap 6= a pour tout a ∈M \ {e}, où e est l’élément neutre de M . Démontre que
(M, ·) est effectivement un groupe.

OC525. Soit une suit (a1, . . . , an) dont les éléments appartiennent à l’ensemble
{0, 1, 2}. Nous dénoterons bloc toute sous suite de la forme (ai, ai+1, . . . , aj) où
1 ≤ i ≤ j ≤ n et ai = ai+1 = · · · = aj . Un bloc est dit maximal s’il n’est pas partie
d’un bloc de plus grande longueur. Par exemple, dans la suite (1, 0, 0, 0, 2, 1, 1),
les blocs maximaux sont (1), (0, 0, 0), (2) et (1, 1). Posons alors Kn le nombre de
suites de longueur n tirées de l’ensemble {0, 1, 2} dont tous les blocs maximaux
sont de longueur impaire. Enfin, posons Ln le nombre de suites de longueur n
tirées de l’ensemble {0, 1, 2}, dans lesquelles les nombres 0 et 2 ne se trouvent

jamais en positions adjacentes. Démontrer que Ln = Kn +
1

3
Kn−1 pour tout

n > 1.
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SOLUTIONS

Statements of the problems in this section originally appear in 2020: 46(8), p. 364–365.

OC496. The six digits 1, 2, 3, 4, 5, and 6 are used to construct a one-digit
number, a two-digit number and a three-digit number. Each digit must be used
only once and all six digits must be used. The sum of the one-digit number and the
two-digit number is 47 and the sum of the two-digit number and the three-digit
number is 358. Find the sum of all three numbers.

Originally from 2015 International Mathematics Competition, EMIC, Individual
Contest, Changchun, China.

We received 21 correct and complete submissions. We present a typical solution.

The one-digit number can be 1, 2, 3, 4, 5, and 6. Using the facts that the sum of
the one-digit and two-digit numbers is 47 and the sum of the two-digit and three-
digit numbers is 358, once the one-digit number is known we can find the other
numbers. Hence, we can construct the following table:

One-digit Two-digit Three-digit
number number number

1 46 312
2 45 313
3 44 314
4 43 315
5 42 316
6 41 317

From this table we can see that the fifth row is the only admissible solution, a
solution where the digits 1, 2, 3, 4, 5, and 6 appear exactly once. Hence, 5 is the
one-digit number, 42 is the two-digit number, and 316 is the three-digit number.
The sum of all three numbers is 5 + 42 + 316 = 363.

OC497. Does there exist a positive integer that is divisible by 2020 and has
equal number of digits 0,1,2, . . . , 9?

Originally from 41st International Mathematical Tournament of Towns (Spring
2020), Junior A-level, proposed by Mikhail Evdokimov.

We received 9 correct and complete submissions. We present the solution by Cor-
neliu Manescu-Avram.

Yes, the number exists. Choose c, an even nonzero digit, and form the number
c0c0 that is divisible by 20. Split the remaining eight nonzero digits into pairs and
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form numbers of the form abab that are divisible by 101. Append the numbers of
form abab and add at the end c0c0. Obviously, every digit is repeated twice in the
obtained number. The obtained number is divisible by 2020 = 4×5×101. Indeed
the last two digits c0 form a number divisible by 20. Moreover, starting from left
to right, each group of four digits is a number divisible by 101. Such an example
is

12123434565679798080 = 2020× 6001700280039504.

Editor’s comments: Other examples were found. Aditya Gupta proposed an ex-
ample where each digit is repeated four times:

9999888877776666555544443333222211110000.

UCLan Cyprus Problem Solving group proposed an example where each digit
appears only one time: 1237548960 and showed that this is the smallest number
with the requested properties. The largest number with each digit appearing only
once was found by Richard Hess: 9876521340.

OC498. A collection of 8 cubes consists of one cube with edge-length k for
each integer k, 1 ≤ k ≤ 8. A tower is to be built using all 8 cubes according to
the rules:

(a) Any cube may be the bottom cube in the tower.

(b) The cube immediately on top of a cube with edge-length k must have edge-
length at most k + 2.

Let T be the number of different towers than can be constructed. What is the
remainder when T is divided by 1000?

Originally from 2006 American Invitational Mathematics Examination (AIME).

We received 6 correct and complete submissions. We present a typical solution.

We proceed recursively.

Suppose we can build Tm towers using cubes with edge-lengths 1, 2, . . . ,m. Next
we count the towers that we can build using cubes of sizes 1, 2, . . . , (m + 1). If
we remove the cube of size (m+ 1) from such a tower (keeping all other blocks in
order), we get a valid tower that includes only cubes of sizes 1, 2, . . . ,m. Given
a valid tower that includes only cubes of sizes 1, 2, . . . ,m, where m ≥ 2, we can
insert the cube of size m + 1 in exactly 3 places: at the beginning, immediately
following the cube of size (m− 1), or immediately following the cube of size m in
order to obtain a valid tower of cubes of sizes 1, 2, . . . , (m+ 1). Thus, there are 3
times as many towers of cubes of sizes 1, 2, . . . , (m + 1) as there are towers that
include only the cubes of sizes 1, 2, . . . ,m, equivalently T(m+1) = 3Tm. There are
2 towers of cubes of sizes 1, 2. So there are T8 = 2 × 36 = 1458 towers that we
can build using cubes of sizes 1, 2, . . . , 8. So the remainder when T8 is divided by
1000 is 458.
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OC499. A self-avoiding rook walk on a chessboard (a rectangular grid of
unit squares) is a path traced by a sequence of moves parallel to an edge of the
board from one unit square to another, such that each begins where the previous
move ended and such that no move ever crosses a square that has previously been
crossed, i.e., the rook’s path is non-self-intersecting.

Let R(m,n) be the number of self-avoiding rook walks on an m × n (m rows, n
columns) chess board which begin at the lower-left corner and end at the upper-
left corner. For example, R(m, 1) = 1 for all natural numbers m; R(2, 2) = 2;
R(3, 2) = 4; R(3, 3) = 11. Find a formula for R(3, n) for each natural number n.

Originally from 40th Canadian Mathematical Olympiad (2008).

We received 5 correct submissions. We present the solution by UCLan Cyprus
Problem Solving Group.

We consider the rook walks on a 3 × n board that intersect the last column, the
column n, and split them into three mutually disjoint sets. We denote by An, Bn,
and Cn the counts of walks in the three sets. Specifically, An is the count of walks
that enter the last column at the bottom and exit it in the middle, Bn is the count
of walks that enter the last column at the bottom and exit it at the top, and Cn
is the count of walks that enter the last column at the middle and exit it at the
top.

Note that there is no other way to use the last column as part of a self-avoiding
rook walk. If a walk enters at the top and exits at the bottom, then the top-left
path is now blocked. Intuitively, the argument looks obvious but needs topological
tools such as Brouwer’s fixed-point theorem to be established rigorously.

We now claim that for every n > 2

An+1 = An +Bn, Bn+1 = An +Bn + Cn, and Cn+1 = Bn + Cn. (1)

The following figure shows the first of these equalities. The others are proved
similarly. The blue lines show the path that needs to be followed while crossing
from the column n to n + 1 in order to have a walk counted by An+1. The red
lines show the only two ways in which the blue path can be extended. The total
numbers of ways to complete the rook walk in the left part is An while in the right
part is Bn.

It is easy to check that A2 = B2 = C2 = 1. If we define A1 = C1 = 0 and B1 = 1
then (1) holds for every n > 1. It is now easy to see by induction that An = Cn
for every n ∈ N. Hence, for every n > 1 we get

An+1 = An +Bn,

Bn+1 = 2An +Bn,

Bn+2 = 2An+1 +Bn+1

= 2(An +Bn) +Bn+1 = (Bn+1 −Bn) + 2Bn +Bn+1 = 2Bn+1 +Bn.
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Note that Bn+2−2Bn+1−Bn = 0 is a homogeneous linear second order difference
equation with characteristic equation x2 − 2x − 1 = 0. Its roots are 1 ±

√
2 and

therefore, there are constants a and b such that

Bn = a(1 +
√

2)n + b(1−
√

2)n

for every n > 1. Using the initial conditions B1 = B2 = 1, or for convenience
using B0 defined as B0 = B2 − 2B1 = −1, we find that for every n > 1

Bn =
(
√

2− 1)(1 +
√

2)n − (
√

2 + 1)(1−
√

2)n

2
.

Note that Bn+1 = An + Bn + Cn is the total number of self-avoiding rook walks
on a 3× n board that intersect the last column, the column n. Therefore

R(3, n) = B2 +B3 + · · ·+Bn+1

= B0 +B1 +B2 +B3 + · · ·+Bn+1

=
1

2

ñ
(
√

2− 1)
(1 +

√
2)n+2 − 1

(1 +
√

2)− 1
− (
√

2 + 1)
(1−

√
2)n+2 − 1

(1−
√

2)− 1

ô
=

(
√

2− 1)(1 +
√

2)n+2 + (
√

2 + 1)(1−
√

2)n+2

2
√

2
− 1

=
(1 +

√
2)n+1 − (1−

√
2)n+1

2
√

2
− 1 .

We point out that {R(3, n), n ≥ 1} is the sequence A005409 recorded by The
On-line Encyclopedia of Integer Sequences (OEIS), https://oeis.org/A005409

We mention the first few terms of the sequence {R(3, n), n ≥ 1} that were submitted
by Richard Hess: 1, 4, 11, 28, 69, 168, 407, 984, 2377, 5744, 13859, 33460.
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OC500. An n ×m matrix is nice if it contains every integer from 1 to mn
exactly once and 1 is the only entry which is the smallest both in its row and in

its column. Prove that the number of n×m nice matrices is
(nm)!n!m!

(n+m− 1)!
.

Originally from the 2019 Miklós Schweitzer Memorial Competition in Mathemat-
ics.

We received 3 correct submissions. We present the solution by Oliver Geupel.

Let s and t be integers such that 0 ≤ s < n and 0 ≤ t < m. Break up an empty
n×m table into an upper-left s× t block A, an upper right s× (m− t) block B,
a lower-left (n− s)× t block C, and a lower-right (n− s)× (m− t) block D. Fill
the block D as follows:

D=


1 2 . . . m− t

m− t+ 1 m− t+ 2 . . . 2(m− t)
. . . . . . . . . . . .

(n− s)(m− t) + 1 (n− s− 1)(m− t) + 2 . . . (n− s)(m− t)

 ,
which is a nice (n−s)×(m− t) matrix. Given this situation at start, we randomly
fill the remaining cells of the table with all the integers from (n− s)(m− t) + 1 to
mn to obtain an n×m matrix M .

Let P (s, t) denote the probability that the outcome M is nice. If M is nice then
the number (n− s)(m− t) + 1 is either in block B or in C. The probability that
it is in B is

s(m− t)
mn− (n− s)(m− t) =

s(m− t)
ms+ nt− st .

If it is in B, then its actual position in B as well as the remaining m − t − 1
entries in the same row have no impact on the fact, whether M is nice or not.
Moreover, the precise order of entries in D is not important, as long as D remains
nice. Hence, the conditional probability that M is nice, under the condition that
the element (n− s)(m− t) + 1 is in block B, is P (s− 1, t).

With similar observations on block C, we obtain

P (s, t) =
s(m− t)

ms+ nt− st · P (s− 1, t) +
(n− s)t

ms+ nt− st · P (s, t− 1).

We prove by induction on min{s, t} that

P (s, t) =
(m+ n− 1− s)!(m+ n− 1− t)!
(m+ n− 1)!(m+ n− 1− s− t)! . (1)

The base case P (s, 0) = P (0, t) = 1 is immediate. By induction, we have

s(m− t)
ms+ nt− st ·P (s−1, t) =

(m+ n− 1− s)!(m+ n− 1− t)!
(m+ n− 1)!(m+ n− s− t)! ·

s(m− t)(m+ n− s)
ms+ nt− st
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and

(n− s)t
ms+ nt− st ·P (s, t−1) =

(m+ n− 1− s)!(m+ n− 1− t)!
(m+ n− 1)!(m+ n− s− t)! ·

(n− s)t(m+ n− t)
ms+ nt− st .

Since

s(m− t)(m+ n− s) + (n− s)t(m+ n− t) = (ms+ nt− st)(m+ n− s− t),

the formula (1) follows, which completes the induction.

Now, P (n−1,m−1) is the probability that M is nice under the condition that the
lower-right entry is 1. We can drop the condition that 1 is placed in the lower-right
entry, since the property of M to be nice is invariant under permutation of rows
and columns. Consequently, the total number of nice n×m matrices is

(mn)!P (n− 1,m− 1) =
(mn)!m!n!

(m+ n− 1)!
,

which completes the proof.
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Lagrange Interpolation
Sushanth Malipati

Lagrange Interpolation is an advanced trick for Math Olympiad problems. It is
very useful and aids in solving function problems.

1 Lagrange Interpolating Polynomial

Definition 1 The Lagrange Interpolating polynomial P (x) of degree ≤ (n − 1)
that passes through n points (x1, y1 = f(x1)), (x2, y2 = f(x2)), ..., (xn, yn = f(xn))
is given by

P (x) =
n∑
j=1

Pj(x)

where

Pj(x) = yj

n∏
k=1;k 6=j

x− xk
xj − xk

.

The definition (taken from Wolfram.com) written explicitly is:

P (x) =
(x− x2)(x− x3)...(x− xn)

(x1 − x2)(x1 − x3)...(x1 − xn)
y1 +

(x− x1)(x− x3)...(x− xn)

(x2 − x1)(x2 − x3)...(x2 − xn)
y2

+ · · ·+ (x− x1)(x− x2)...(x− xn−1)

(xn − x1)(xn − x2)...(xn − xn−1)
yn

This works because this polynomial is an nth degree polynomial approximation to
f(x) and the nth degree polynomial passing through (n+ 1) points is unique.

2 Examples

Before doing a problem, here is an exercise to get a handle on writing the polyno-
mials.

Exercise 1 Write the Lagrange Polynomial for n = 3 points.

Let the points be (x1, y1), (x2, y2), (x3, y3). Then we get P1(x) to be

y1
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
,

we get P2(x) to be

y2
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
,
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and lastly we get P3(x) to be

y3
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
.

Adding these three up we get P (x):

y1
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
+ y2

(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
+ y3

(x− x1)(x− x2)

(x3 − x1)(x3 − x2)

Example 2 (Brilliant.org) If P (x) is a cubic polynomial with P (1) = 1,
P (2) = 2, P (3) = 3, P (4) = 5, find P (6).

Using the formula for generating the polynomial we get:

P (x) = 1
(x− 2)(x− 3)(x− 4)

(1− 2)(1− 3)(1− 4)
+ 2

(x− 1)(x− 3)(x− 4)

(2− 1)(2− 3)(2− 4)

+ 3
(x− 1)(x− 2)(x− 4)

(3− 1)(3− 2)(3− 4)
+ 5

(x− 1)(x− 2)(x− 3)

(4− 1)(4− 2)(4− 3)

=
−1

6
(x− 2)(x− 3)(x− 4) + (x− 1)(x− 3)(x− 4)

+
−3

2
(x− 1)(x− 2)(x− 4) +

5

6
(x− 1)(x− 2)(x− 3)

We calculate each Pj(x) and add them to get the final P (x). Now plugging in

x = 6 we get 16 .You can also use Finite Differences to solve this problem. Here
is the finite difference table method way of solving this problem:

1
∣∣∣ 1 1 0 1

2
∣∣∣ 2 1 1

3
∣∣∣ 3 2

4
∣∣∣ 5

From here we get

1
∣∣∣ 1 1 0 1

2
∣∣∣ 2 1 1 1

3
∣∣∣ 3 2 2 1

4
∣∣∣ 5 4 3 1

5
∣∣∣ 9 7 4 1

6
∣∣∣ 16 11 5 1
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Example 3 (HMMT) Let P (x) be the unique polynomial of degree at most 2020
satisfying P (k2) = k for k = 0, 1, 2, ..., 2020. Compute P (20212).

Applying the formula, we get:

P (x) =
2020∑
k=0

k
∏

0≤j≤2020j 6=k

x− j2
k2 − j2 =

2020∑
k=0

2(−1)kk

(2020− k)!(2020 + k)!(x− k2)

∏
0≤j≤2020;j 6=k

x−j2.

What we do above is factor out the denominator because it’s a constant and seems
like a denominator of a binomial coefficient. Substituting for x = 20212, we see
the binomial coefficient arise, and using Pascal’s identity multiple times:

P (20212) =
2020∑
k=0

4042!(−1)kk

(2021− k)!(2021 + k)!
=

2020∑
k=0

Ç
4042

2021− k

å
(−1)kk

= 2021−
(

2020∑
k=0

(−1)k+1k

ÇÇ
4041

2021− k

å
−
Ç

4041

2020− k

åå)
= 2021−

(
2020∑
k=0

(−1)k+1

Ç
4041

2021− k

å)
= 2021−

(
2020∑
k=0

(−1)k+1

ÇÇ
4040

2021− k

å
−
Ç

4040

2020− k

åå)
= 2021−

Ç
4040

2020

å
3 Problems

Problem 1 (Brilliant.org) Let f(x) be a quintic polynomial such that f(1) = 1,
f(2) = 1, f(3) = 2, f(4) = 3, f(5) = 5, f(6) = 8. Find f(7)

Problem 2 (HMMT) Given that P is a real polynomial of degree at most 2012
such that P (n) = 2n for n = 1, 2, ..., 2012, what choice(s) of P (0) produces the
minimal possible value of P (0)2 + P (2013)2?

Problem 3 (CHMMC) Suppose that P (x) is a monic polynomial with 20 roots,
each distinct and of the form 1

3k
for k = 0, 1, 2, . . . , 19. Find the coefficient of x18

in P (x).

Problem 4 (USAMO) Prove that any monic polynomial (a polynomial with lead-
ing coefficient 1) of degree n with real coefficients is the average of two monic
polynomials of degree n with n real roots.
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FOCUS ON...
No. 45

Michel Bataille
Quadratics (II)

Introduction

In this number, we examine various links between quadratic polynomials and poly-
nomials of degree 3 or 4. In particular, we will illustrate Cardano’s and Ferrari’s
methods sometimes used for solving cubic and quartic equations, respectively.

Connections with the cubic polynomial

Our first example is problem CC48, [2012 : 403 ; 2013 : 438], a nice problem
about cubic polynomials, which shows how their quadratic derivatives can lead to
a solution.

Determine whether there exist two real numbers a and b such that both
(x − a)3 + (x − b)2 + x and (x − b)3 + (x − a)2 + x contain only real
roots.

Let P1(x) = (x− a)3 + (x− b)2 + x and P2(x) = (x− b)3 + (x− a)2 + x. We show
that it is not possible to choose real numbers a and b such that all the roots of the
polynomials P1 and P2 are real numbers. For the purpose of a contradiction, we
assume that all the roots of P1 and P2 are real numbers.

Writing P1(x) = (x− a)3 + ((x− a) + (a− b))2 + (x− a) + a, we readily see that

P1(x) = (x− a)3 + (x− a)2 + (1 + 2a− 2b)(x− a) + (a− b)2 + a.

Similarly, we have

P2(x) = (x− b)3 + (x− b)2 + (1 + 2b− 2a)(x− b) + (a− b)2 + b

and from assumption, we deduce that all the roots of

Q1(x) = x3 + x2 + (1 + 2a− 2b)x+ (a− b)2 + a

and
Q2(x) = x3 + x2 + (1 + 2b− 2a)x+ (a− b)2 + b

are also real numbers. It follows that the functions x 7→ Q1(x) and x 7→ Q2(x)
cannot be strictly monotone. Thus, the discriminants of the quadratics

Q′1(x) = 3x2 + 2x+ (1 + 2a− 2b) and Q′2(x) = 3x2 + 2x+ (1 + 2b− 2a)

cannot be negative. In other words, we must have 1 − 3(1 + 2a − 2b) ≥ 0 and
1 − 3(1 + 2b − 2a) ≥ 0 that is, b − a ≥ 1

3 and b − a ≤ − 1
3 , which is clearly

impossible. This contradiction completes the proof.
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We point out to the interested reader that the featured solution in [2013: 438]
does not use derivatives.

The following solution to a 1988 U.S.A. Olympiad problem also rests upon prop-
erties of the quadratic derivative:

The cubic equation x3+ax2+bx+c = 0 has three real roots. Show that
a2 − 3b ≥ 0, and that

√
a2 − 3b is less than or equal to the difference

between the largest and smallest roots.

Let f(x) = x3 +ax2 + bx+ c. As in the previous example, the quadratic derivative
f ′(x) = 3x2+2ax+b cannot be strictly positive for all real x, hence its discriminant
∆ = 4(a2 − 3b) cannot be negative.

Now, suppose that x0, x1, x2 are the roots of f(x) = 0 with x0 < x1 < x2.

Because x0 + x1 + x2 = −a and x0x1 + x1x2 + x2x0 = b, we have

(x2 − x0)2 = (x0 + x2)2 − 4x0x2

= (−a− x1)2 − 4(b− x1(x0 + x2))

= (−a− x1)2 − 4(b− x1(−a− x1)) = −3x21 − 2ax1 + a2 − 4b.

The inequality x2 − x0 ≥
√
a2 − 3b, which is equivalent to

−3x21 − 2ax1 + a2 − 4b ≥ a2 − 3b,

that is, to f ′(x1) ≤ 0, does hold because x1 is between the roots of f ′(x) (observe
that if α, β are the roots of f ′(x) with α < β, then we must have x0 < α < x1 <
β < x2). 2

Consider the cubic equation x3 − 3px + q = 0. To solve this equation, Cardano’s
method consists in looking for solutions of the form z + p

z . This leads to the
equation z6 +qz3 +p3 = 0, which can be solved by the quadratic X2 +qX+p3 = 0
(Lagrange’s resolvent). We illustrate the method through a problem posed in the
July 2009 issue of The Mathematical Gazette:

Solve the equation of the 6th order (a + x3)(1 − bx)3 = x3 where a
and b( 6= 0) are real parameters.

We will content ourselves with reducing the problem to solving quadratic equa-
tions.

Since 1
b is not a solution, the given equation (E) is equivalent to

ab3 + (bx)3 +

Å
bx

bx− 1

ã3
= 0.

Remarking that bx+
bx

bx− 1
= bx · bx

bx− 1
and recalling that

u3 + v3 = (u+ v)3 − 3uv(u+ v),
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we readily deduce that (E) is also equivalent to

p

Å
b2x2

bx− 1

ã
= 0,

where p(x) = x3 − 3x2 + ab3 = (x− 1)3 − 3(x− 1) + ab3 − 2.

Let us apply Cardano’s method to the cubic equation x3 − 3x + ab3 − 2 = 0.
Lagrange’s resolvent is readily obtained: X2 − (2 − ab3)X + 1 = 0. If α3 is a
solution to this quadratic and ω = e2πi/3, it quickly follows that

p(x) = (x− s1)(x− s2)(x− s3),

where

s1 = 1 + α+
1

α
, s2 = 1 + ωα+

1

ωα
, s3 = 1 + ω2α+

1

ω2α
.

Thus, the equation (E) rewrites as

(b2x2 − s1bx+ s1)(b2x2 − s2bx+ s2)(b2x2 − s3bx+ s3) = 0,

and the six solutions (counting multiplicity) can now be found by solving the three
quadratics b2x2 − sibx+ si = 0, (i = 1, 2, 3).

For example, the numerical example a = 1
2 , b = 2 yields the six solutions

1 + i

2
(double),

1− i
2

(double),
−1 +

√
5

4
,
−1−

√
5

4

(details are left to the reader).

Connections with the quartic polynomial

In part I, we have already met biquadratic equations, of the form ux4 +vx2 +w =
0. These quartic equations are of course immediately solved via the quadratic
equation uX2 +vX+w = 0. Other quartic equations can easily be solved, namely
reciprocal equations. Consider for example the following exercise:

Find t ∈ [0, π2 ] given that

cos 2t =
4 sin4 t cos4 t

6 sin4 t+ cos4 t
.

Let x = cos 2t. From 2 cos2 t = 1 + cos 2t and 2 sin2 t = 1 − cos 2t, the given
condition writes as x(7− 10x+ 7x2) = 1− 2x2 + x4, that is,

x4 − 7x3 + 8x2 − 7x+ 1 = 0.

Such a reciprocal equation is classically solved via quadratic equations: equiva-
lently, the equation writes as x2 − 7x+ 8− 7

x + 1
x2 = 0 or

y2 − 7y + 6 = 0
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if we set y = x + 1
x (since x2 + 1

x2 = y2 − 2). This gives y = 1 or y = 6. If
1 = y = x + 1

x leads to x2 − x + 1 = 0 with no real solutions, the equation

6 = x + 1
x gives x = 3 + 2

√
2 or x = 3 − 2

√
2. Since |x| = | cos 2t| ≤ 1, we must

have x = cos 2t = 3 − 2
√

2 and so cos2 t = 1+cos 2t
2 = 2 −

√
2. We conclude that

t = arccos(
√

2−
√

2). 2

To solve a quartic equation, quite rarely one has to resort to the general method
invented by the Italian mathematician Ferrari (who, like Cardano, lived in the
sixteenth century). The method is rather simple in theory, but can lead to very
complicated calculations in practice. Its principle is to seek λ such that

x4 + ax3 + bx2 + cx+ d = (x2 + (a/2)x+ λ)2 − (q(x))2

where the degree of q(x) is not greater than 1. This leads first to a cubic equation
for λ (the resolvent) and then to a factorization of the quartic as the product
of two quadratic polynomials, hence to the roots. Here is an example, providing
another solution to problem 4317 [2018 : 71 ; 2019 : 98]:

Solve the following system of equations over reals: a+ b+ c+ d = 4
abc+ abd+ acd+ bcd = 2

abcd = − 1
4

Let

u =
1 +
√

3

2
, u′ =

1−
√

3

2
, v =

5− 3
√

3

2
, v′ =

5 + 3
√

3

2
.

It is easily checked that (u, u, u, v), (u′, u′, u′, v′) (and all their permutations) are
solutions for (a, b, c, d). We show that there are no other solutions. To this end,
we consider real numbers a, b, c, d satisfying the system and set

m = ab+ ac+ ad+ bc+ bd+ cd.

Then, (a, b, c, d) is a list of the roots of the polynomial

p(x) = x4 − 4x3 +mx2 − 2x− 1

4
.

To solve the equation p(x) = 0, we use Ferrari’s method and look for λ ensuring
that

p(x) = (x2 − 2x+ λ)2 − (q(x))2,

as indicated above. The calculation of (x2 − 2x+ λ)2 − p(x) gives

(q(x))2 = (2λ+ 4−m)x2 − 2(2λ− 1)x+ λ2 +
1

4
.

The discriminant ∆(λ) of this quadratic polynomial must satisfy ∆(λ) = 0 (the
cubic resolvent). Being of degree 3 and with real coefficients,

∆(λ) = 4

Å
(2λ− 1)2 −

Å
λ2 +

1

4

ã
(2λ+ 4−m)

ã
= −8λ3 + 4mλ2 +m− 18λ
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has at least one real root for λ. From now on, we assume that λ has been so

chosen. Then m = 8λ3+18λ
1+4λ2 and after some algebra, we finally obtain

p(x) = (x2 − 2x+ λ)2 −
Ç

2(2λ− 1)x√
4λ2 + 1

−
√

4λ2 + 1

2

å2

.

Factoring this difference of two squares and setting 2λ = sinh t, the equation
p(x) = 0 finally writes asÅ

x2 − 2x · e
t − 1

cosh t
+
et

2

ãÅ
x2 − 2x · e

−t + 1

cosh t
− e−t

2

ã
= 0.

The discriminants of the first and second factors respectively are

∆1 =
−2et(cosh t− 2)2

cosh2 t
≤ 0 and ∆2 =

2e−t(cosh t+ 2)2

cosh2 t
> 0

and since the four roots of p are real, we must have cosh t = 2, hence sinh t =
√

3
or −

√
3.

If sinh t =
√

3, then et = cosh t+ sinh t = 2 +
√

3, e−t = cosh t− sinh t = 2−
√

3
and we have to solveÇ

x− 1 +
√

3

2

å2Ç
x2 − x(3−

√
3) +

√
3

2
− 1

å
= 0.

The (easily found) solutions are u (triple) and v. Similarly, we find u′ (triple) and
v′ in the case sinh t = −

√
3. This completes the proof.

Exercises

1. Let p be a real number such that 13
32 < p < 8. Prove that the equation

x3 − 6x2 + 2(p− 2)x− p = 0

has only one real solution.

2. Let P (x) = x4 +ax3 + bx2 + cx+d where a, b, c, d are complex numbers. Prove
that the sum of two of its roots is equal to the sum of the two remaining roots if
and only if P ′ and P ′′′ have a common root. Application: find the roots of the
polynomial x4 + 2x3 + 2x2 + x+ 1

16 .
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by May 15, 2021.

4621. Proposed by Michel Bataille.

In the plane, circles C and C′ are externally tangent at T . Points P,Q of C′ are
such that P 6= T and ∠PQO = 90◦ where O is the centre of C. Points A,B of C
are such that PA and QB are tangent to C. If the line PT intersects C again at
S, prove that PS ·QT = PA ·QB.

4622. Proposed by Mihaela Berindeanu.

Let ABC be an acute triangle and AA′, BB′ and CC ′ be its medians. Let Γ
be the circumcircle of M A′B′C ′ and let Γ ∩ AA′ = {A′′}, Γ ∩ BB′ = {B′′},
Γ ∩ CC ′ = {C ′′}. Show that if

−−→
AA′′ +

−−−→
BB′′ +

−−→
CC ′′ =

−→
0 , then ABC is an

equilateral triangle.

4623. Proposed by Nguyen Viet Hung.

Let p(x) = x2 + 2ax− b− 1 and q(x) = x2 + 2bx− a− 4 be two polynomials with
integer coefficients. Determine all pairs (a, b) of non-negative integers such that
these two polynomials simultaneously have integer solutions.

4624. Proposed by George Apostolopoulos.

Let a, b, c be positive real numbers with a+ b+ c = 3. Prove that 
ab

2a+ b+ c
+

 
bc

2b+ c+ a
+

…
ca

2c+ a+ b
≤ 3

2
.

4625. Proposed by Corneliu Manescu-Avram.

Let a,m and n be positive integers greater than 1. Prove that a2 + a+ 1 divides
(a+ 1)m + an if and only if m is odd and 3 divides m+ n.

4626. Proposed by Alpaslan Ceran.

Let ABCDE and ABFKM be regular pentagons and suppose that AC intersects
EB at a point L. Show that

|LK|
|DL| =

√
5 + 1

2
.

Copyright © Canadian Mathematical Society, 2021

https://publications.cms.math.ca/cruxbox/


152/ Problems

4627. Proposed by Dong Luu.

Let P be a point not on the circumcircle (O) of a given triangle ABC, nor on
the extensions of any of its sides. Define U, V,W to be the projections of P
on the lines BC,CA,AB, and X,Y, Z to be the vertices of the triangle formed
by the perpendicular bisectors of the segments PA,PB,PC. Suppose that the
circumcircle of ∆XY Z intersects (O) in two points, E and F . Prove that the foot
of the perpendicular from P to the line EF is the circumcenter of triangle UVW .

4628. Proposed by Russ Gordon and George Stoica.

Let A be a nonempty set of positive integers that is closed under addition and such
that N \ A contains infinitely many elements. Prove that there exists a positive
integer d ≥ 2 such that A ⊆ {nd : n ∈ N}.

4629. Proposed by Minh Nguyen.

Determine the smallest natural number n such that in any n-element subset of
{1, 2, . . . , 2020} there exist four different a,b,c,d satisfying a+ 2b+ 3c+ 4d ≤ 2020.

4630. Proposed by George Stoica.

We consider an equilateral triangle ABC with the circumradius R = 1 and a point
D on or inside its circumcircle. Prove that 3 ≤ AD +BD + CD ≤ 4.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 mai 2021.

La rédaction souhaite remercier Frédéric Morneau-Guérin, professeur à l’Université
TÉLUQ, d’avoir traduit les problèmes.

4621. Proposée par Michel Bataille.

Dans le plan, les cercles C et C′ sont tangents extérieurement en T . Les points P
et Q de C′ sont tels que P 6= T et ∠PQO = 90◦, où O désigne le centre de C. Les
points A et B de C sont tels que PA et QB sont tangents à C. Si la droite PT
rencontre C en S, montrez que PS ·QT = PA ·QB.

4622. Proposée par Mihaela Berindeanu.

Soit ABC un triangle acutangle. Soient AA′, BB′ et CC ′ ses médianes. Désignons
par Γ le cercle circonscrit à M A′B′C ′ et Γ ∩ AA′ = {A′′}, Γ ∩ BB′ = {B′′},
Γ ∩ CC ′ = {C ′′}. Montrez que si

−−→
AA′′ +

−−−→
BB′′ +

−−→
CC ′′ =

−→
0 , alors ABC est un

triangle équilatéral.

4623. Proposée par Nguyen Viet Hung.

Soient p(x) = x2 + 2ax − b − 1 et q(x) = x2 + 2bx − a − 4 deux polynômes à
coefficients entiers. Identifiez toutes les paires (a, b) d’entiers non négatifs pour
lesquels ces deux polynômes admettent simultanénement des solutions entières.

4624. Proposée par George Apostolopoulos.

Soient a, b, c des nombres réels positifs satisfaisant a+ b+ c = 3. Montrez que 
ab

2a+ b+ c
+

 
bc

2b+ c+ a
+

…
ca

2c+ a+ b
≤ 3

2
.

4625. Proposée par Corneliu Manescu-Avram.

Soient a,m et n des entiers positifs supérieurs à 1. Montrez que a2 + a+ 1 divise
(a+ 1)m + an si et seulement si m est impair et 3 divise m+ n.
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4626. Proposée par Alpaslan Ceran.

Soient ABCDE et ABFKM des pentagones réguliers. Supposons que AC ren-
contre EB au point L. Montrez que

|LK|
|DL| =

√
5 + 1

2
.

4627. Proposée par Dong Luu.

Soit P un point n’appartenant pas au cercle circonscrit (O) d’un triangle donné
ABC et n’appartenant pas non plus à l’extension de l’un de ces côtés. Soient U ,
V et W les projections de P sur les droites BC, CA, et AB. Soient encore X,
Y et Z les sommets du triangle formé par les médiatrices relatives aux segments
PA,PB,PC, respectivement. Supposons que le cercle inscrit de ∆XY Z rencontre
(O) en deux points notés respectivement E et F . Montrez que le pied de la
perpendiculaire de P à la droite EF est le centre du cercle circonscrit au triangle
UVW .

4628. Proposée par Russ Gordon et George Stoica.

Soit A un ensemble non vide d’entiers positifs qui est stable sous l’addition et tel
que N \ A contient une infinité d’éléments. Montrez qu’il existe un entier positif
d ≥ 2 tel que A ⊆ {nd : n ∈ N}.

4629. Proposée par Minh Nguyen.

Déterminez quel est le nombre naturel minimal n pour lequel tout sous-ensemble à
n éléments de {1, 2, . . . , 2020} admet quatre éléments distincts a,b,c,d satisfaisant
a+ 2b+ 3c+ 4d ≤ 2020.

4630. Proposée par George Stoica.

Considérons un triangle équilatéral ABC dont le cercle circonscrit est de rayon
R = 1. Soit D un point situé sur ou à l’intérieur du cercle circonscrit. Montrez
que 3 ≤ AD +BD + CD ≤ 4.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2020: 46(8), p. 415–419.

4571. Proposed by Ed Barbeau. Dedicated in memoriam to Richard K. Guy.

What is the smallest square integer expressible as the product of three distinct
nonzero integers in arithmetic progression?

We received 20 submissions, out of which 13 were complete and correct. We present
the solution by Charles Burnette, lightly edited.

The smallest such integer is 36. Observe that 36 = (−9)(−4)(1) where −9, −4,
and 1 are in arithmetic progression. To see that no smaller perfect square satisfies
this property, we invoke the following facts:

• 1 only has two distinct divisors.

• The square of a prime number cannot be the product of three distinct integers
in arithmetic progression. The only triples of distinct integers whose product
is the square of a prime p are (−p2,−1, 1) and (−p,−1, p), neither of which
are in arithmetic progression.

• The number 16 cannot be the product of three distinct integers in arith-
metic progression either. The only triples of distinct integers whose prod-
uct is 16 are (−16,−1, 1), (−8,−2, 1), (−8,−1, 2), (−4,−2, 2), (−4,−1, 4),
(−2,−1, 8), and (1, 2, 8), none of which are in arithmetic progression.

Editor’s comment. The next squares that can be written as the product of
three distinct integers in arithmetic progression are 82 = (−8)(−2)(4), 92 =
(−9)(−3)(3), and 352 = (1)(25)(49), which is the smallest square that is the prod-
uct of three positive integers in arithmetic progression, as some readers pointed
out.

4572. Proposed by Veselin Jungić. Dedicated in memoriam to Richard K. Guy.

D

E

G

A

B

C

F

In 1961, Canadian mathematicians Leo and
William Moser introduced a geometric object con-
sisting of seven vertices and eleven line segments
of the unit length. This object is now known as
the Moser spindle: see p. 390-396 of this issue for
more details.

In the Moser spindle, find the measure of the angle
∠GAF .
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We received 20 solutions, all correct. Presented is the one by the Eagle Problem
Solvers.

Quadrilaterals ABCG and AFDE each consist of two equilateral triangles sharing
an edge, so they are congruent. Let α be the angle of rotation about A that takes
ABCG to AFDE; then ∠BAF = ∠CAD = α. Triangle CAD is isosceles with
sides of length

√
3,
√

3, and 1, so by the Law of Cosines

α = cos−1
Å

3 + 3− 1

2 · 3

ã
= cos−1

Å
5

6

ã
.

Thus the measure ∠GAF is

π

3
− α =

π

3
− cos−1

Å
5

6

ã
= cos−1

Å
5 +
√

33

12

ã
.

Editor’s comments. The last equation can be obtained from the known equation
cos−1(5/6) = π/3− ∠GAF by taking the cosine on both sides, using the formula
for the sum of angles, applying sin =

√
1− cos2 and solving for cos(∠GAF ).

4573. Proposed by J. Chris Fisher.

For any triangle ABC let γ be the circle through A and B that surrounds the
incircle α and is tangent to it, while β is a circle inside the triangle that is tangent
to the sides AC and BC. Then β is externally tangent to γ if and only if it is
also tangent to the line parallel to (but not equal to) AB that is tangent to the
incircle.

This result was conjectured following the solution of Honsberger problem H4 [2018:
143-144], which related H4 to Problem 2.6.4 in H. Fukagawa and D. Pedoe, Japanese
Temple Geometry Problems: San Gaku, The Charles Babbage Research Centre
(1989) page 37.

We received three submissions, all correct, and feature the solution by Sergey Sadov.

Let A′B′C be the triangle homothetic to 4ABC (with homothety centre C) such
that β is the incircle of 4A′B′C. If line A′B′ moves (staying always parallel to
AB) from AB towards C, there is a unique position where the circle γ happens to
be externally tangent to β. We need to prove that in this position A′B′ is tangent
to α.

Because of the uniqueness of such a position, we can rearrange the setup: Given
the incircle α of ∆ABC, define the line A′B′ parallel to AB (with A′ ∈ AC,
B′ ∈ BC) by the condition that it is tangent to α (on the side opposite to AB),
and define β to be the incircle of ∆A′B′C. We have to prove that there exists a
circle containing the points A, B and tangent to α and β.

The proof below is based on Casey’s theorem and is analogous to a short proof
of Feuerbach’s Tangency Theorem (Shailesh Shirali, On the Generalized Ptolemy
Theorem. Crux Mathematicorum 22:2 (1996), 49–53).
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Casey’s theorem, or the Generalized Ptolemy Theorem, states an existence cri-
terion for a circle to be tangent to four given circles in terms of their tangential
distances. In our case we need a criterion for the existence of a circle that passes
through two points (circles of radius zero) being tangent externally to one given
(proper) circle and internally to another.

Consider first the abstract situation. Let the circles ωi, i = 1, 2, 3, 4 be such that
no one of them lies inside another. The suitable form of Casey’s criterion says that
there exists a circle tangent to ω1 internally and to ω2,3,4 externally if and only if

t412 + t413 + t414 + t423 + t424 + t434 − 2(t212t
2
34 + t213t

2
24 + t214t

2
23) = 0,

where tij is the length of the common tangent (bitangent) to the circles ωi and
ωj : external if i, j ∈ {2, 3, 4} and internal if i = 1.

It is convenient to introduce the notation Pij,kl = tiktjl + tiltjk − tijtkl. The
polynomial in Casey’s criterion factors out as

−(t12t34 + t13t24 + t14t23)P12,34P13,24P14,23.

We will apply Casey’s criterion to the 4 circles: ω1 = α, ω2 = β, ω3 = A and
ω4 = B (of which the last two are point-circles).

Denote the relevant tangency points:

K = AB ∩ α, K ′ = A′B′ ∩ β,
L = AC ∩ α, L′ = AC ∩ β,
M = BC ∩ α, M ′ = BC ∩ β,

N ′ = A′B′ ∩ α.

Let N be the (auxiliary) point of tangency of the line AB with corresponding
excircle.

Instead of tij we will write tαA, tαβ , etc. When at least one of the circles is a
point, there is no difference between external and internal bitangents. However,
we must consider the internal bitangent for the pair (α, β). We have

tαβ = K ′N ′, tAB = AB,
tαA = AK, tαB = BK,
tβA = AL′, tβB = BM ′.

It remains to express these lengths in terms of the sides a = BC, b = AC, c = AB
of 4ABC and to check that one of the P -factors in Casey’s criterion equals zero.
We will assume that b ≥ a as in the following figure.
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A B

C

K

α

M

γ N ′
B′

K′

β

N

A′

L

L′

M ′

Introduce also the following notation:

s =
a+ b+ c

2
, u = s− a, v = s− b, w = s− c.

Let k be the homothety coefficient for the pair 4A′B′C, 4ABC, so that

k =
CA′

CA
=
CB′

CB
=
A′L′

AL
, etc.

As in Honsberger problem H4, we find an equation for k: since AN = BK = v =
s− b and k ·AN = A′N ′ = A′L = w − kb, it follows that

k =
w

s
.

Therefore
tAB = c, tαA = u, tαB = v,
tαβ = k ·NK = k(u− v) = k(b− a),
tβA = b− k · CL = b− kw,
tβB = a− k · CM = a− kw.

Now,
tαAtβB = u(a− kw),
tαBtβA = v(b− kw),
tαβtAB = kc(b− a).

Next,

ua− vb = a(s− a)− b(s− b) = (b− a)(b+ a− s) = (b− a)w.
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Therefore

tαAtβB − tαBtβA = (b− a)w(1− k) = (b− a)w
c

s
= (b− a)ck = tαβtAB

and we get the vanishing Casey’s factor

PαA,βB = 0.

The verification of Casey’s criterion is complete and the existence of the circle γ
through A and B tangent to both α and β is proved.

Editor’s comment. Let K ′ be the point where CK (in the notation of the featured
solution) intersects A′B′, and let T be the point where the second tangent from
K ′ touches α. The proposer proved that T is the point where α is tangent to γ,
so that γ is the circle through A,B, and T .

4574. Proposed by George Apostolopoulos.

Let x1, . . . , xn be positive real numbers with xi < 64 such that
∑n
i=1 xi = 16n.

Prove that
n∑
i=1

1

8−√xi
≥ n

4
.

We received 20 submissions of which 16 were correct and complete. We present 2
solutions.

Solution 1, by Michel Bataille.

Let ti =

√
xi
8

(i = 1, . . . , n). The problem then becomes to show that

n∑
i=1

1

1− ti
≥ 2n

under the constraints 0 < ti < 1 (i = 1, . . . , n) and
∑n
i=1 t

2
i = n

4 .

Now, for t ∈ (0, 1), we have

1

1− t = 1 + t2 + t+
t3

1− t
and

t+
t3

1− t ≥ 3t2

(an inequality equivalent to t(2t− 1)2 ≥ 0). We deduce that

n∑
i=1

1

1− ti
=

n∑
i=1

(1 + t2i ) +
n∑
i=1

Å
ti +

t3i
1− ti

ã
≥ n+

n

4
+

n∑
i=1

3t2i =
5n

4
+ 3 · n

4
= 2n.
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Solution 2, by Paul Bracken, Titu Zvonaru and the UCLan Cyprus Problem Solving
Group (done independently).

For x ∈ (0, 64) the following inequalities are equivalent to each other:

1

8−√x >
x+ 16

128

⇐⇒ x
√
x− 8x+ 16

√
x > 0

⇐⇒ √
x(
√
x− 4)2 > 0.

Therefore

n∑
i=1

1

8−√xi
>

n∑
i=1

xi + 16

128
=

16n+ 16n

128
=
n

4
.

Equality holds if and only if xi = 16 for every i.

4575. Proposed by Nguyen Viet Hung.

Determine the coefficient of x in the following polynomialÇ
1 +

Ç
n

0

å
x

åÇ
1 +

Ç
n

1

å
x

å2Ç
1 +

Ç
n

2

å
x

å3

· · ·
Ç

1 +

Ç
n

n

å
x

ån+1

.

We received 27 submissions and 26 of them were all correct and complete.

It is easy to check that the coefficient of x isÇ
n

0

å
+ 2

Ç
n

1

å
+ 3

Ç
n

2

å
+ · · ·+ (n+ 1)

Ç
n

n

å
. (1)

To get a closed form of equation (1), we present the following three solutions, two
of which were common approaches.

Solution 1.

We regard equation (1) as the derivative of a function evaluated at x = 1. Using
the binomial theorem, equation (1) can be written as

d

dx

ñÇ
n

0

å
x+

Ç
n

1

å
x2 + · · ·+

Ç
n

n

å
xn+1

ô ∣∣∣∣
x=1

=
d

dx
[x(1 + x)n]

∣∣
x=1

= 2n + n2n−1

= (n+ 2)2n−1.
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Solution 2.

We evaluate equation (1) directly using the binomial identity

k

Ç
n

k

å
= n

Ç
n− 1

k − 1

å
, 1 ≤ k ≤ n.

Using the binomial theorem, equation (1) can be written as

n∑
k=1

k

Ç
n

k

å
+ 2n =

n∑
k=1

n

Ç
n− 1

k − 1

å
+ 2n = n2n−1 + 2n = (n+ 2)2n−1.

Solution 3, by UCLan Cyprus Problem Solving Group.

The n+ 1 residents of a city are going to elect a committee. This committee has
to include the mayor of the city but there are no other restrictions. Then the
committee will elect a chair which may be the mayor or not.

If the committee contains k other members apart from the mayor, this can be done

in (k + 1)
(
n
k

)
ways. So in total, this can be done in

n∑
k=0

(k + 1)

Ç
n

k

å
ways.

We can also count this as follows: If the mayor also chairs the committee, then
this can be done in 2n ways. If he does not chair the committee, then this can be
done in n · 2n−1 ways. (We choose first the chair and then the other committee
members out of the n− 1 citizens left.)

4576. Proposed by Dao Thanh Oai and Leonard Giugiuc.

Let ABDE, BCFG and ACHI be three similar rectangles as given in the figure.
Suppose AB

AE is constant and let O be the center of ACHI. Show that OD = OG
and ∠GOD is constant when A and C are fixed but B can move.

We received 12 submissions, of which one was incomplete. Most of the 11 correct
solutions used complex numbers; we shall sample two of them.
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Solution 1, by Oliver Geupel.

We consider the problem in the complex plane where point O is zero and the
midpoint of segment CH is 1. Capital letters represent a point as well as its
corresponding complex number. Let ∠COH = 2ϕ and OA = r, so that cosϕ = 1

r .
We have A = −reiϕ and C = re−iϕ. By similarity of rectangles, we have

D = A+ (B −A)reiϕ = r
(
−eiϕ + re2iϕ +Beiϕ

)
,

G = C + (B − C)re−iϕ = r
(
e−iϕ − re−2iϕ +Be−iϕ

)
.

Also,

2eiϕ

r
= 2 cosϕ(cosϕ+ i sinϕ) = 1 + cos 2ϕ+ i sin 2ϕ = 1 + e2iϕ,

or
eiϕ − r = −eiϕ + re2iϕ.

Hence, (
e−iϕ − re−2iϕ

)
e2iϕ = eiϕ − r = −eiϕ + re2iϕ.

Thus, D = Ge2iϕ. Consequently, OD = OG and ∠GOD = 2ϕ = ∠COH.

Solution 2, by the UCLan Cyprus Problem Solving Group.

Assume that AB = kAE. We use complex numbers with B at the origin: for
each point X we write zX for the complex number representing X. Using the fact
that multiplication by i represents an anticlockwise rotation through 90◦ about
the point B, we find that zA = kzDi and zC = −kzGi. Then

zI = zA + (zC − zA)
i

k
= kzDi+ (−kzGi− kzDi)

i

k
= kzDi+ zG + zD .

It follows that

zO =
zC + zI

2
=
kzDi− kzGi+ zD + zG

2

Now let M be the midpoint of DG; that is, zM = (zD + zG)/2. We observe that

zO − zM =
ki(zD − zG)

2
,

from which it follows that OM is perpendicular to DG with OM = k
2DG; whence,

k =
MO

MG
=
AC

AI
= cot∠ICA

so that the triangles GMO and IAC are similar.

We can now conclude that OD = OG with ∠GOD = 2∠ICA, which is constant.

Editor’s comment. Sergey Sadov generalized the problem by replacing the three
given similar rectangles by three similar parallelograms; his conclusion is that the
triangles ODG and OAI are similar.
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4577. Proposed by Nikolai Osipov.

For any integer k, solve the equation

xy2 + (kx2 + 1)y + x4 + 1 = 0

in integers x, y.

We received 6 submissions, of which 2 solutions were incomplete. We present the
solution by Sergey Sadov, slightly modified by the editor.

For convenience, we use (x, y, k) to denote any solution, where k represents H.

1. Note first that y = 0 yields no solution and (0,−1, k) is a solution for all k.
Hence we may assume that xy 6= 0.

2. If x = ±1, then y must divide 2, so y ∈ {±1,±2}. It turns out that the 4
possibilities correspond to integer values of k to yield 8 triples (x, y, k) below:

(1, 1,−4), (1,−1, 2), (1, 2,−4), (1,−2, 2), (−1, 1,−2), (−1,−1, 0), (−1, 2, 0), (−1,−2,−2).

In the sequel we assume that |x| ≥ 2.

3. Let z =
1 + x4

y
, which is an integer since by the given equations we have

z = −xy − kx2 − 1 (1)

and
yz = x4 + 1. (2)

Note that y ≡ −1 (mod x) and z ≡ −1 (mod x). Hence we may write y =
ux− 1, z = vx− 1 for some u, v ∈ Z. It follows that xy ≡ −x

(
mod x2

)
, hence by

(1) we have z+1 ≡ −xy ≡ x
(
mod x2

)
. Since z+1 = vx, we have vx ≡ x

(
mod x2

)
.

Therefore v = qx+ 1 for some integer q.

Next yz = uvx2 − (u + v)x + 1. Then by (2), we have yz ≡ −1
(
mod x2

)
, so we

get (u+ v)x ≡ 0
(
mod x2

)
. Since v ≡ −1 (mod x), it follows that u = px− 1 for

some integer p. Therefore

y = px2 − x− 1, z = qx2 + x− 1. (3)

4. Using (2) and (3), we can exclude the possibility that |p| > 1 and |q| > 1
simultaneously as follows. Since |x| ≥ 2, then x2 ≥ 2|x| and x2 ≥ 1

4 , we deduce
that if |t| ≥ 2, then |tx2 ± x − 1| ≥ x2(2 − 1/2 − 1/4) = (5/4)x2.Suppose |p| > 1
and |q| > 1. Substituting t = p and t = q respectively into the above inequalities,
we get |yz| ≥ (5/4)2x4 > x4 + 1, contradicting (2). Hence we conclude that at
least one of the inequalities |p| ≤ 1 and |q| ≤ 1 is true.

Thus there are 6 cases to consider: p ∈ {0,±1} and (separately) q ∈ {0,±1}.

5. In all cases, we exploit (2), specifically the fact that x4 + 1 is divisible by the
integer expressed as a quadratic polynomial from (3), of the form εx2 ± x − 1,
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where ε ∈ {0,±1}. This divisibility condition turns out to be sufficiently strong to
imply that only a finite number (if any) of suitable integer values of x exist.

In essence, we use Euclid’s algorithm to find the GCD of the polynomial x4+1 and
the given polynomial of degree 1 or 2, avoiding however the divisions by integers
greater than 1. Then we analyse the result to see what integer values of x are
admissible. It will be useful to express k in terms of x and y or in terms of x and
z:

k = −xy
2 + y + x4 + 1

x
= −x

5 + x+ z2 + z

x2z
.

In Cases 1–3 below, for given value of admissible p, we use y = px2 − x − 1 as a
divisor-to-be of x4 + 1, and in Cases 4–6, for given value of admissible q, we use
z = qx2 + x− 1 as such a candidate divisor.

Case 1. p = −1, so y = −(x2 + x+ 1). We have

x4 + 1 = (x2 + x+ 1)(x2 − x) + (x+ 1),
x2 + x+ 1 = (x+ 1)x+ 1.

Conclusion: gcd(x4 + 1, x2 + x + 1) = 1 for any integer x. In order for y to be a
divisor of x4+1, we must have |y| = 1. The value y = 1 yields x2+x+2 = 0, which
produces no solution. The value y = −1 yields x2 + x = 0, so (x, y) = (0,−1) or
(−1,−1), which have already been produced.

Case 2. p = 0, so y = −(x+ 1). We have

x4 + 1 = (x3 − x2 + x− 1)(x+ 1) + 2.

Hence gcd(yz, y) = gcd(y, 2). It follows that |y| = 1 or |y| = 2. Considering the
4 possible values of y, we find the following new solutions: (x, y, k) = (−2, 1,−4)
and (−3, 2,−4). The value y = −1 yields x = 0 and a solution already listed in
item 1 above. The value y = −2 yields x = 1 and a solution already listed above
in item 2.

Case 3. p = 1, so y = x2 − x− 1. We have

x4 + 1 = (x2 − x− 1)(x2 + x+ 2) + 3(x+ 1),
x2 − x− 1 = (x+ 1)(x− 2) + 1.

Hence gcd(x4+1, x2−x−1) = gcd(x2−x−1, 3(x+1)) = gcd(x2−x−1, x+1) = 1
since 3 does not divide x4 +1. We conclude that x4 +1 and x2−x−1 are coprime
for any integer x. Therefore we have |y| = 1.

The value y = 1 yields x2 − x− 2 = 0 and the new solution (x, y, k) = (2, 1,−5).
(The solution when x = −1 is not new). The value y = −1 yields x2 − x = 0 and
solutions already listed in items 1 and 2 above.

Case 4. q = −1, so z = −(x2 − x+ 1). Here

x4 + 1 = (x2 − x+ 1)(x2 + x)− (x− 1),
x2 − x+ 1 = (x− 1)x+ 1.
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Hence gcd(yz, z) = 1 and we have |z| = 1. So either x2 − x = 0 or x2 − x+ 2 = 0.
No new solutions result from this case.

Case 5. q = 0, so z = x− 1. Here

x4 + 1 = (x− 1)(x3 + x2 + x+ 1) + 2.

Therefore |z| = 1 or |z| = 2, yielding 2 new solutions:

z = 1⇒ (x, y, k) = (2, 17,−9),

z = 2⇒ (x, y, k) = (3, 41,−14).

Case 6. q = 1, so z = x2 + x− 1. Here

x4 + 1 = (x2 + x− 1)(x2 − x+ 2)− 3(x− 1),
x2 + x− 1 = (x− 1)(x+ 2) + 1.

Like in Case 3, we conclude that |z| = 1. The value z = 1 yields x2 + x − 2 = 0
and a new solution (x, y, k) = (−2, 17, 8).

In summary, there are 15 solutions (x, y, k) including infinite class (0,−1, k), k ∈ Z
and the 14 solutions given by:

(1,−2, 2), (1,−1, 2), (1, 1,−4), (1, 2,−4), (−1,−2,−2), (−1,−1, 0), (−1, 1,−2),

(−1, 2, 0), (−2, 1,−4), (−3, 2,−4), (2, 1,−5), (2, 17,−9), (3, 41,−14), (−2, 17, 8).

4578. Proposed by Ed Barbeau. Dedicated in memoriam to Richard K. Guy.

Suppose that {a, b, c} and {u, v, w} are two distinct sets of three integers for which
a + b + c = u + v + w and a2 + b2 + c2 = u2 + v2 + w2. What is the minimum
possible value assumed by |abc− uvw|?
We received 9 solutions, one of which was incorrect. We present the solution by
UCLan Cyprus Problem Solving Group.

We observe that if (a, b, c, u, v, w) is a suitable sextuple, then so is

(a′, b′, c′, u′, v′, w′) = (a− 1, b− 1, c− 1, u− 1, v − 1, w − 1).

Furthermore, abc − uvw = a′b′c′ − uvw. From the above, we may assume that
w = 0. Thus we are trying to minimize |abc|.
There are two possible interpretations, one in which a, b, c (respectively u, v, w)
have to be pairwise distinct and one in which we are allowing, for example, a = b.

We will show that in the first interpretation the minimum is 12 and in the second
interpretation the minimum is 4. The examples are (1, 2, 6) and (0, 4, 5) in the
first case, and (1, 1, 4) and (0, 3, 3) in the second case. It remains to show that
these cannot be improved.
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We start with the second interpretation which is simpler. Since a2+b2+c2 = u2+v2

then a, b, c cannot all be odd as then u2 + v2 ≡ 3 mod 4 which is impossible. So it
remains to check that we cannot have |abc| = 2.

Note that if abc = 0, say because a = 0, then b2 + c2 = u2 + v2 and b+ c = u+ v
which gives that {a, b, c} = {u, v, w}.
If |abc| = 2, then without loss of generality we have a = ±2, b = ±1, c = ±1. Then
u2 + v2 = a2 + b2 + c2 = 6 which is easily seen to be impossible.

In the first interpretation it remains to prove that |abc| /∈ {4, 6, 8, 10}. Without
loss of generality we need to consider the triples (±2n,±1,±1) and (±n,±2,±1)
for n ∈ {2, 3, 4, 5}. These give

u2 + v2 ∈ {9, 18, 14, 38, 21, 66, 30, 102} .

Since we additionally demand u, v 6= 0, they can all be checked by hand that they
are impossible except in the case u = 3, v = −3. Then without loss of generality
a = ±4, b = ±1, c = ±1. But then u+ v + w = 0, while a+ b+ c 6= 0.

Note: In order to avoid laborious checking by hand of the impossibility of the
above, let us recall that if p is a prime of the form p ≡ 3 mod 4 with p|u2 +v2 then
we also have that p|u and p|v, which together imply that p2|u2 + v2. Applying it
with p = 3, 7, 19 immediately excludes all possibilities except u2 + v2 ∈ {9, 18}.
For those two we can immediately see that they lead to u = 0, v = 0 or u = v.

Editor’s comment: The proposer’s intended interpretation was the one requiring
uniqueness, and, indeed, the stipulation that {a, b, c} and {u, v, w} are sets, as
opposed to (ordered) triples, would suggest that this is the correct interpretation.
Nonetheless, both versions of the problem are of interest, and the two versions
were equally represented in the submitted solutions.

4579. Proposed by George Stoica.

Let a, b, c ∈ Z∗ such that
ab

c
+
bc

a
+
ca

b
∈ Z. Prove that

ab

c
,
bc

a
,
ca

b
∈ Z.

We received 16 submissions, all correct. We present a composite of the nearly
identical but independent solutions by 8 different solvers.

By the given assumption, the function

f(x) = (x− ab

c
)(x− bc

a
)(x− ca

b
) = x3 − (

ab

c
+
bc

a
+
ca

b
)x2 + (a2 + b2 + c2)x− abc

is a monic polynomial with integer coefficients. Hence by the well-know Rational
Roots theorem, every rational root of f(x) must be an integer. It then follows

that
ab

c
,
bc

a
, and

ca

b
must all be integers.

Editor’s comment: Walther Janous pointed out this proposal was problem #6 of
the 2016 Austrian Mathematics Olympiad.
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4580. Proposed by Alpaslan Ceran.

In an isosceles triangle ABC with AB = AC = 1, find the length of BC which
maximizes the inradius.

We received 36 solutions, all of which were correct. We present the solution by
Brian Bradie.

Let x denote the length of BC. Then the inradius is

r =
x

2

 
1− x

2

1 + x
2

=
x(2− x)

2
√

4− x2
,

and
dr

dx
=

4− 2x− x2
2(2 + x)

√
4− x2

.

For 0 < x < 2, the only critical point of r is x =
√

5− 1. Because

dr

dx
> 0 for 0 < x <

√
5− 1 and

dr

dx
< 0 for

√
5− 1 < x < 2,

it follows that r achieves an absolute maximum when x =
√

5 − 1. Thus, in an
isosceles triangle ABC with AB = AC = 1, the inradius is maximum when the
length of BC is

√
5− 1.
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