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Upcoming special issue in memory of Richard Guy /97

Upcoming special issue in memory
of Richard Guy

Canadian mathematical legend Richard Guy passed away on March 9th, 2020 at
the age of 103. To honour his memory, we will have a special issue in fall 2020.

We encourage submissions of problems and articles as well as tributes and remi-
niscences. If you would like to contribute to the issue, please send the materials
to |crux-editors@cms.math.cal by August 1st.
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MATHEMATTIC
No. 13

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by May 15, 2020.

—_— O OC—————

MAG61. A hexagon has consecutive angle measures of 90°, 120°, 150°, 90°,
120° and 150°. If all of its sides are 4 units in length, what is the area of the
hexagon?

MAG62. A positive integer n is called “savage” if the integers {1,2,...,n} can
be partitioned into three sets A, B and C such that

i) the sum of the elements in each of A, B and C' is the same,
ii) A contains only odd numbers,
iii) B contains only even numbers, and
iv) C contains every multiple of 3 (and possibly other numbers).
Now consider the following:

(a) Show that 8 is a savage integer.

n
(b) Prove that if n is an even savage integer, then is an integer.

MAG63. One way to pack a 100 by 100 square with 10 000 circles, each of
diameter 1, is to put them in 100 rows with 100 circles in each row. If the circles
are repacked so that the centres of any three tangent circles form an equilateral
triangle, what is the maximum number of additional circles that can be packed?
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MAG64. A regular octagon is shown in the first diagram below, with the
vertices and midpoints of the sides marked.

An “inner polygon” is a polygon formed by traversing the octagon in a clockwise
manner, selecting some of the marked points as you go, ensuring that each side of
the original octagon contains exactly one selected point. Then each selected point
is connected to the next with a line segment, and the last is connected to the first
to complete the inner polygon.

An example of an inner polygon is shown in the second diagram.

How many inner polygons does the regular octagon have?

MAG65. There are four unequal, positive integers a, b, ¢, and N such that
N =5a+ 3b+ 5c. It is also true that N = 4a + 5b+ 4c and N is between 131 and
150. What is the value of a +b+ ¢ ?

Copyright (© Canadian Mathematical Society, 2020
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Les problémes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ict afin de soumettre vos solutions, commentaires ou
généralisations aux problémes proposés dans cette section.

Pour faciliter I’examen des solutions, nous demandons auzx lecteurs de les faire parvenir
au plus tard le 15 mai 2020.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire & la retraite a
I’Université de Saint-Boniface, d’avoir traduit les problémes.

—_— O OC—————

MAG61. un hexagone a des angles, dans 'ordre, de 90°, 120°, 150°, 90°, 120°
et 150°. Si tous les cotés sont de longueur 4, quelle est la surface de I’hexagone?

MAG2. Un entier positif n est dit “sauvage” si les entiers {1,2,...,n} peuvent
étre partitionnés en trois ensembles A, B et C' de fagon a ce que

i) les sommes des éléments dans A, B et C' sont les mémes,

ii) A contient seulement des entiers impairs,

iii) B contient seulement des entiers pairs et

)
)
)
iv) C contient tous les multiples de 3 (et possiblement d’autres nombres).

Alors:

(a) Démontrer que 8 est un entier sauvage.

(b) Démontrer que si n est un entier sauvage pair, alors est un entier.

MAG63. Une fagon de placer 10,000 cercles de diametre 1 dans un carré
de taille 100 par 100 serait de placer 100 cercles dans chacune des 100 rangées.
Si par contre on replace les cercles de fagon a ce que les centres de trois cercles
tangents forment un triangle équilatéral, quel est le nombre maximum de cercles
additionnels pouvant étre placés?
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MAG64. un octagone régulier est indiqué au premier diagramme ci-bas, ou
sont marqués les sommets et les mi points des cotés.

Un “polygone interne” est un polygone formé en parcourant ’octagone dans le
sens des aiguilles d’une montre, choisissant certains des points marqués, tout en
s’assurant que chaque coté de 'octagone original contient exactement un point
choisi. Et puis, chaque point choisi est relié au prochain avec un segment de ligne,
le dernier étant relié au premier.

Un exemple d'un polygone interne est indiqué au deuxieme diagramme.

Combien de polygones internes l'octagone a-t-il 7

MAG65. Soient a, b, c et N, quatre entiers positifs distincts tels que
N = 5a+3b+5c. De plus, N = 4a+5b+4c et N se situe entre 131 et 150. Quelle
est la valeur de a + b+ ¢?

OO
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2019: 45(8), p. 447-449.

MA36. Let A and B be sets with the property that there are exactly 144 sets
which are subsets of at least one of A or B. How many elements does the union
of A and B have?

Originally problem 13 of “A Mathematical Orchard: Problems and Solutions” by
Mark I. Krusemeyer, George T. Gilbert, and Loren C. Larson.

We received 5 submissions, of which 8 were correct and complete. We present the
solution by Digby Smith, slightly modified by the editor.

Let M be the number of elements in A and N the number of elements in B;
without loss of generality, assume N < M. Let K be the number of elements in
the intersection of A and B, and note 0 < K < N.

The number of subsets (including the empty set) of a set with n distinct elements
is 2™, so the number of sets which are subsets of at least one of A and B is
2M 4 2N _ 2K We have

144 = 2M 4 2N 2K < oM 4 oM — oM+l
which gives us 8 < M + 1, s0 7 < M. On the other hand,
144 = 2M 4 oN _ oK > oM,

so 7 > M, and we conclude that M = 7.

Hence there are 144 — 128 = 16 nonempty subsets which are subsets of B but not
of A. There are 2V — 2K sets which are subsets of B but not of A, so we must
have N > K and also

2K (2IN=K) _ 1) = 2%,

If N — K > 1 then 2V=5) — 1 is an odd number greater than 1, which cannot
divide 2%. Thus we must have K = 4 and N = 5. Hence the number of elements
in the union of A and Bis M + N — K = 8.

MA3T7. Both 4 and 52 can be expressed as the sum of two squares as well as
exceeding another square by 3:

4=0%+2% and 4-3=1%
52 =4%2+6> and 52—3="T2

Show that there are an infinite number of such numbers that have these two
characteristics.

Cruz Mathematicorum, Vol. 46(3), March 2020
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Originally problem 123 of “A Mathematical Orchard: Problems and Solutions” by
Mark 1. Krusemeyer, George T. Gilbert, and Loren C. Larson.

We received 7 submissions, of which 6 were correct and complete. We present the
solution by Anita Hessami Pilehrood.

We need to show that there is a k such that £k = a2 + 0% and k = ¢ + 3 for
nonnegative integers a,b, c. Let a = 2n, b = 2n? —2, and ¢ = 2n? — 1 for a positive
integer n. Then

a2+ b2 =4an? +4n* +4—8n? =4n* —4n>® + 4
and
A+3=4n*+1—-4n’+3=4n* —4n® + 4.

Therefore a? + b?> = ¢? 4+ 3 and hence there is an infinite sequence of numbers
k=4(n* —n%?+1),n=1,2,3,..., that have these two characteristics.

MA38. Consider a 12 x 12 chessboard consisting of 144 1 x 1 squares. If
three of the four corner squares are removed, can the remaining area be covered
by placing 47 1 x 3 tiles?

Originally problem 33 of “A Mathematical Orchard: Problems and Solutions” by
Mark I. Krusemeyer, George T. Gilbert, and Loren C. Larson.

We received 4 solutions, of which 8 were complete and correct. We present the
solution by the Missouri State University Problem Solving Group.

Number the squares of the (intact) chessboard as shown in the figure.

3|ty 2 (3|1 (2|3|1(2|3|1|2
2031231 |2(3|/1]|2]|3]1
1{2)3)1(2|3|1(2|3|1]2]3
3123|1231 ]2(3|1]2
2031231 |2(3|/1]|2]|3]1
1{2)3)1(2|3|1(2|3|1]2]3
31|23 (123|123 ]|]1]2
2031231 |2(3|/1]|2]|3]1
1{2]|3|1(2|3|1|2|3|1]2]3
3123|1231 ]2(3|1]2
2013123123 |1]2]|3]|1
1|23 |1|2(3|1(23|1|2]3

Each number appears 48 times and any 1 x 3 tile will cover exactly one of each
number, regardless of its position or orientation. Therefore, in order to tile the
board with three corner squares removed, we must remove one of each square
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with a given number. In particular, we cannot remove the upper-left and lower-
right corner squares, which are both labeled 3. Similarly, rotating the numbering
scheme 90°, we conclude that we cannot remove the lower-left and upper-right
corner squares. But removing any three corner squares will result in two diagonally
opposite corners being removed and this gives us a contradiction.

MA39. Point E is selected on side AB of triangle ABC' in such a way that
AE : EB = 1:3 and point D is selected on side BC so that CD : DB = 1:2.
The point of intersection of AD and C'E is F. Determine the value of g—g + ﬁ—g.

Originally MAA Problem Book II (1961-1965), Question 37, 1965 examination.

We received 8 submissions, all correct. We present the solution provided by Anita
Hessami Pilehrood.

DB
Let the area of ACFD be y. Then [DFB] = 2y since e = 2 and ADFB and
ACFD share the height dropped from vertex F'. Similarly, let the area of AAFE
EB
be z. Then the area of AEF B equals 3x since AE = 3 and both triangles have

a common height dropped from vertex F.

BE
Now let’s consider ABCE and AECA. Since 15 = 3 and these two triangles

(BCE)
[ECA]

have a common height from vertex C, we have = 3 which implies

y+2y+3z
[CFA]+z 7

and thus [CFA] = y.

Similarly in ABAD and ACAD, we have = 2 and a common height from

DC
vertex A. Thus,
[BAD] =2 implies Aot 2y =2, so % _1
[CAD] — P 9 )
We have
EF _[EAF] = 1
FC [FAC] vy 2’
AF _[ACH] _y _,
FD [FCD] y
and therefore
E + Al — 1 + 1= §
FC FD 2 2

Cruz Mathematicorum, Vol. 46(3), March 2020
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MAA40. racing over a given distance d at uniform speeds, A can beat B by
20 yards, B can beat C' by 10 yards, and A can beat C' by 28 yards. Determine
the distance d in yards.

Originally MAA Problem Book II (1961-1965), Question 37, 1961 examination.

We received 7 submissions, all of which were complete and correct. We present
the solution of Aaratrick Basu, lightly edited.

Let v4 be the speed of A, vg be the speed of B, and ve be the speed of C.
As per the problem, A beats B by 20 yards, i.e,

d d—20
= = 1)
vA UB
Similarly, we have
d—10
i 2
—=-= )
d d—28
= (3)
VA Vo

Then from and we get

d-20 _d-28 _ wvg _d=20
B N vo vo d—28

With (2) this becomes

d  d-20

B 2 _ 200 = d? — 2
TG = gy = 4 30d+200 = d* — 28,

which reveals d = 100. Hence, we have that A, B, C' were racing over d = 100
yards.

Copyright (© Canadian Mathematical Society, 2020
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Bracelet made of cubes

¢ >

Take eight unit cubes, or playing dice, and mark them with dots so that the
sums of dots on opposite faces are all equal to 7 (that is, the opposite faces
have 1 and 6 dots, 2 and 5 dots, 3 and 4 dots). Then, for each cube, drill an
all-the-way-through diagonal hole from the vertex where faces with 1, 2 and 3
dots meet to the vertex where faces with 4, 5 and 6 dots meet. Take a strong
thread and string all 8 cubes together through their holes in the direction they
were drilled. Tie the thread to get a beautiful bracelet made of cubes:

* : ,i*.
® " e
oo, e o
: we_2
o_tt‘ e o
®
e 2\ e o
® "‘p.
o -9

Now, perform the following tasks:

1. fold this bracelet into a 2 X 2 x 2 cube;

2. fold this bracelet into a 2 x 2 x 2 cube so that the sum of dots on each of
its faces is 14;

3. prove that you cannot fold this bracelet into a 2 x 2 x 2 cube so that the
sum of dots on each of its faces is 13.

Puzzle by Nikolai Avilov.

¢ 9
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TEACHING PROBLEMS

No.9
Erick Lee
The Spider and the Fly

Inside a rectangular room, measuring 30 feet in length and 12 feet in
width and height, a spider is at a point on the middle of one of the
end walls, 1 foot from the ceiling, as at A; and a fly is on the opposite
wall, 1 foot from the floor in the centre, as shown at B. What is the
shortest distance that the spider must crawl in order to reach the fly,
which remains stationary? Of course the spider never drops or uses its
web, but crawls fairly.

:

&

12 §¢.
L. - s .

( ]
.
»
’
0
0

30 4t

This problem was created by Henry Ernest Dudeney. It is problem 75 from his book
The Canterbury Puzzles published in 1908. Dudeney was an English mathemati-
cian and prolific creator of logic puzzles and recreational mathematics problems.
From 1910 until his death in 1930, Dudeney wrote a monthly column in The Strand
Magazine entitled “Perplexities” which featured mathematical brain-teasers. As
The Canterbury Puzzles was published over 100 years ago, it is freely available on
The Project Gutenberg website at http://www.gutenberg.org/files/27635/
27635-h/27635-h.htm.

When introducing this problem to students, I draw a spider and a fly each on
their own index card and tape them to the appropriate spots on the wall in the
classroom which is the shape of a rectangular prism, although not exactly the same
dimensions as the given problem. I then describe the problem of the spider and the
fly using the classroom to physically model the problem. Students often struggle to
visualize problems in three dimensions despite living in a three-dimensional world.
Many students will quickly determine that the spider should take the “straight
path” directly up to the ceiling (1 ft), directly across the ceiling (30 ft), and down
the opposite wall (11 ft). This will give a total distance of 42 ft.

After the majority of the class has come to this conclusion, we have a discussion.
I ask them, “How do you know that this is the shortest path?” Students often
respond that a straight line is the shortest distance between two points. To chal-
lenge their thinking, we discuss how a straight line might look different in three
dimensions than in two dimensions. The great circle routes that airplanes fly of-

Copyright (© Canadian Mathematical Society, 2020
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108/ Teaching Problems

ten seem counterintuitive when students visualize the Mercator projection maps
commonly found in classrooms. Where we live in Nova Scotia, we can look into
the sky at almost any time of the day and see airplanes high in the sky flying from
the Northeastern United States to European destinations. This only makes sense
when looking at the great circle route on a spherical globe.

I challenge the class to brainstorm a variety of different routes that the spider
might take and to calculate the distances for each of these new routes. To help in
their brainstorming, I suggest that they examine possible routes on a net drawing
of the room instead of a three dimensional drawing. Some students might find it
helpful to model the room with a manipulative which allows them to link polygons
together (such as Polydrons) on which they could label the walls, floor and ceiling
of the room as well as the position of the spider and the fly. This would allow
students to see how the path might change depending on how they create the net
of the room. You might challenge the students to find a net that results in the
spider crossing three sides of the room, four sides of the room or even five sides
of the room and to see how these different nets result in different distance paths.
Eventually, students will find the solution of the shortest path. Below are four
different nets that Dudeney showed in The Canterbury Puzzles.

30 (F.
1 2 A
. A= ;_.
&30‘:‘5,&“..
e o
o " .
ﬁ 5'"'?[2:'&""""" FLOOR
A
".
. a'A \."-‘
3 el G| o
&Q; - "'
g “* FLOOR ' . FLOOR

The distances for each of the solutions above can be found by applying the
Pythagorean Theorem. Students at times have difficulty imaging the shortest
path given in solution number 4. Returning to the pictures of the spider and the
fly taped to the walls, a long piece of yarn is used to show the path of the spider
along the sides of the classroom.
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In his book The Pythagorean Theorem: A 4,000-Year History, Eli Maor describes
how we could accurately trace the spider’s path using trigonometry. In case 4
above, the spider’s horizontal distance is 1 + 30 + 1 = 32 feet and the vertical
distance travelled is 6 + 12 + 6 = 24 feet.

24

tana = —
32

24
arctan — = «
32

a ~ 36.9°

The diagram below shows how the spider travels using this angle across the sides
the room.

ceiling

?7'

..:é“ o 7236.9°

floor

To imagine why this is the shortest path think about the shape of the room as
a cylinder with hemispherical ends instead of a rectangular prism (like a hot dog
instead of a block of wood). Imagine the piece of yarn wrapping around this shape
from the spider to the fly’s position. Now imagine if this “hot dog” shape slowly
changed shape, or “deflated”, until it was the rectangular prism. The curving
path from the cylinder would now be the angled path of the spider around the
classroom.

There are several extensions to this problem that could be explored:

e How do the dimensions of the room affect the shortest path that the spider
takes? Would the path from the problem we solved be the shortest path for
a room with any dimensions?

e How does the spider’s height on the wall affect this problem? For which
starting heights, h, would there be a different shortest route?

e Investigate the study of geodesics. How do geodesics apply to this problem?

Copyright (© Canadian Mathematical Society, 2020
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A Follow Up Problem — The Russian Motorcyclists

The following is another problem from Henry Ernest Dudeney which was published
in The Strand Magazine, Volume 53 (1917).

Two Army motorcyclists, on the road at Adjbkmlprzll, wish to go to
Brezrtwxy, which, for the sake of brevity, are marked in the accompa-
nying map as A and B. Now, Pipipoff said: “I shall go to D, which is
six miles, and then take the straight road to B, another fifteen miles.”
But Sliponsky thought he would try the upper road by way of C. Cu-
riously enough, they found on reference to their cyclometers that the
distance either way was exactly the same. This being so, they ought to
have been able easily to answer the General’s simple question, “How
far is it from A to C?” It can be done in the head in a few moments,
if you only know how. Can the reader state correctly the distance?

N

15 - 5

There are several ways to solve this problem with a bit of algebra and the appli-
cation of the Pythagorean Theorem. Dudeney cryptically states that, “It can be
done in the head in a few moments, if you only know how.” Can you deduce the
clever solution method that Dudeney is referring to?

Erick Lee is a Mathematics Support Consultant for the Halifax Regional Centre
for Education in Dartmouth, NS. Erick blogs at https: //pbbmath. weebly. com/
and can be reached via email at lelee@hrce. cal and on Twitter at|@TheErickLee

— O =

Cruz Mathematicorum, Vol. 46(3), March 2020


https://pbbmath.weebly.com/
elee@hrce.ca
@TheErickLee

OLYMPIAD CORNER /111

OLYMPIAD CORNER
No. 381

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by May 15, 2020.

—_— O OCT————

OC471. Thereare n > 3 distinct natural numbers less than (n—1)! written on
a blackboard. For each pair of these numbers, Sergei divided the bigger number by
the smaller with the remainder and wrote on his notebook the resulting incomplete
quotient. For example, so if he divided 100 by 7, he got 100 = 14 -7+ 2 and wrote
14 in the notebook. Prove that among the numbers in the notebook there are two
that are equal.

0C472. Let P(z) be a polynomial of degree n > 2 with nonnegative coef-
ficients and let a, b and ¢ be the side lengths of an acute-angled triangle. Prove

that the numbers {/P(a), {/P(b) and {/P(c) are also the side lengths of an

acute-angled triangle.

0C473. m square ABCD, let M be the midpoint of AB, let P be the
projection of point B onto line C'M and let NV be the midpoint of segment C'P. The
angle bisector of ZDAN intersects line DP at point ). Prove that quadrilateral
BMQ@N is a parallelogram.

0OC474. Givena right triangle ABC with hypotenuse AB, let D be the foot
of the altitude drawn from point C, let M and N be the intersections of the angle
bisectors of ZADC and ZBDC, respectively, with sides AC and BC'. Prove that

2.-AM - BN = MN?2.

OC475. Let N >1bean integer. Denote by x the smallest positive integer
with the following property: there exists a positive integer y strictly less than z —1
such that x divides N + y. Prove that x is either p™ or 2p , where p is a prime
number and n is a positive integer.
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Les problémes présentés dans cette section ont déja été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ict afin de soumettre vos solutions, commentaires ou
généralisations aux problémes proposés dans cette section.

Pour faciliter I’ezamen des solutions, nous demandons auzx lecteurs de les faire parvenir
au plus tard le 15 mai 2020.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire a la retraite a
U’Université de Saint-Boniface, d’avoir traduit les problémes.

—_— e OoCT—————

OC471. Sur un tableau noir sont écrits n > 3 nombres naturels distincts,
tous inférieurs & (n — 1)!. Serge choisit deux de ces nombres et divise le plus gros
par le plus petit, puis il inscrit la partie entiere de la division dans son carnet. Par
exemple, si les nombres avaient été 100 et 7, il aurait obtenu 100 = 14 -7+ 2 et
il aurait inscrit 14 dans son carnet. Il fait ceci pour chaque paire de nombres au
tableau. Démontrer que parmi les nombres au carnet se retrouvent deux nombres
égaux.

0C472. soit P(z) un polynéme de degré n > 2 a coefficients non négatifs et
soient a, b et ¢ les longueurs des cotés d’un triangle acutangle. Démontrer que les
nombres {/P(a), {/P(b) et {/P(c) sont aussi les longueurs des cotés d’un triangle
acutangle.

0OC473. Pour un carre ABCD, soit M le mi point de AB, soit P la projection
du point B sur la ligne C M, et soit N le mi point du segment C'P. Or, la bissectrice
de ZDAN intersecte la ligne DP au point (). Démontrer que le quadrilatere
BMQ@N est un parallélogramme.

0OC474. Pour un certain triangle rectangle ABC' d’hypoténuse AB, soit
D le pied de l'altitude émanant du point C, et soient M et NN les intersections
des bissectrices de ZADC et ZBDC avec les cotés AC et BC, respectivement.

Démontrer que
2-AM - BN = MN?.

OCA475. Soit N > 1 un entier. Dénoter par z le plus petit entier positif avec
la propriété suivante : il existe un entier positif y plus petit que x — 1 tel que =
divise N + y. Démontrer que x est soit de la forme p™ soit de la forme 2p, ou p
est un nombre premier et n est un entier positif.

—_——— OO ]l e———

Cruz Mathematicorum, Vol. 46(3), March 2020


https://publications.cms.math.ca/cruxbox/

OLYMPIAD CORNER /113

OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2019: 45(8), p. 463-465.

OC446. Given the numbers 2,3,...,2017 and the natural number n < 2014,
Ivan and Peter play the following game: Ivan selects n numbers from the given
ones, then Peter selects 2 numbers from the remaining numbers, then all the
selected n + 2 numbers are ranked in value:

a < ag <...<0ap42.

If there exists 4, 1 <i < n+1 for which a; divides a; 11, then Peter wins, otherwise
Ivan wins. Find all n for which Ivan has a winning strategy.

Originally Bulgaria Math Olympiad, 3rd Problem, Grade 11, Second Round 2017.
We received 1 submission. We present the solution by Oliver Geupel.

We show that Ivan has a winning strategy if and only if n > 10.

First, suppose n > 10. Consider the intervals I, = [2871 + 1, 2¥], where 1 < k <
10, and I;; = [210 +1, 2017}. Note that {2,3,...,2017} = kt:j1 I. Every interval

has the property that its upper endpoint is less than twice its lower endpoint.
Hence, for any two distinct integers in the same interval, it cannot happen that
one of them divides the other one. From this observation, it follows that Ivan wins
if his selection includes the lower endpoints of all intervals (except for the number
2). As consequence, it is enough for Ivan to include the ten numbers 3, 5, 9, 17,
33, 65, 129, 257, 513, and 1025 in his selection.

It remains to show that Ivan has no winning strategy when n < 10. Consider the
disjoint intervals Ji = [2’“71 +2, 2F 1] where 1 < k < 10. By the pigeonhole
principle, there exists an index k such that Ji is disjoint to Ivan’s selection. So
Peter can avoid choosing any numbers from the interval J;, which Ivan has already
avoided, and can choose the numbers 2¥~! +1 and 2* 4 2 (if not selected by Ivan).
Thus these two numbers become a; and a; 1 for some ¢, so Peter wins the game.

0C447. Let m > 1 be an integer and let N = m?2°17 4 1. Positive numbers
N,N —m,N —2m,...,m+ 1,1 are written in a row. At each step, the leftmost
number and all of its divisors (if any) are erased. This process continues until all
the numbers are erased. What are the numbers deleted at the last step?

Originally Bulgaria Math Olympiad, 2nd Problem, Grades 9-12, Final Round 2017.

We received 1 submission. We present the solution by Oliver Geupel.
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We prove that the number deleted at the last step is

1006

N
M:71+m:m2016+17m2(m71)2m2k.
m+ o

First, M =1 (mod m) and M < N, which implies that M is a member of the row.
Second, M is not a proper divisor of any number in the row, because numbers
2M, 3M, 4M, ..., mM are not congruent to 1 (mod m), and (m + 1)M > N.
Thus, the number M is the leftmost remaining number at some step.

Next, we show that all numbers in the row that are strictly smaller than M are
erased before M. Let » < M be a number in the row. It is enough to prove that
there exists a positive integer k such that the number (km + 1)r is in the row and
(km+1)r > M; consequently, r is erased before M. Equivalently, we have to show
that at least one member of the arithmetic progression {r + kmr}g=1 2, . is in the
interval (M, N]. For example, for the largest r < M in the row, r = N/(m + 1),
it is enough to select k = 1: (km + 1)r = N. For an arbitrary r < N/(m + 1) in
the row

m

mr <
m—+1

~N—m:N—(L+m>:N—M.
m+1

Therefore, the increment of arithmetic progression, {r + kmr}r=12 ., is strictly
smaller than the length of interval (M, N], and at least one member of the arith-
metic progression must belong to interval (M, N].

Hence M is the number erased at the last step.

0C448. 1Lt 1 <29 < ... < T9,_1 be real numbers whose arithmetic mean
is equal to A. Prove that

2n—1 2n—1
23 (wi— A= ) (i —an)
i=1 i=1

Originally Poland Math Olympiad, 3rd Problem, Second Round 2017.

No solutions were received.

0C449. a sequence (ay,as,...,ax) consisting of pairwise distinct squares
of an n x n chessboard is called a cycle if k > 4 and the squares a; and a;41
have a common side for all ¢ = 1,2,...,k, where agy1 = a1. Subset X of this
chessboard’s squares is mischievous if each cycle on it contains at least one square
in X. Determine all real numbers C' with the following property: for each integer
n > 2, on an n X n chessboard there exists a mischievous subset consisting of at
most Cn? squares.

Originally Poland Math Olympiad, 2nd Problem, Final Round 2017.

No solutions were received.
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OC450. Findall pairs (z, y) of real numbers satisfying the system of equations

w-\/l—y2=%<\/§+1),
1
Y- 1—$2=Z<\/§—1).

Originally Germany Math Olympiad, 3rd Problem, Grades 11-12, Second Day, 3rd
Round 2017.

We received 19 submissions. We present two solutions.
Solution 1, by the Missouri State University Problem Solving Group.

Suppose z,y are solutions. From the given equations, 0 < z,y < 1. So we may set
x =sina and y = sin 8 for some 0 < «, 5 < /2. Then

4sinacosf=vV3+1,

4cosasinff = V3—1.
Add and subtract the two equations and divide by 4 to get

sin v cos 3 + cos asin 5 = \/5/2,

sinacos B — cosasin 8 =1/2.

Hence solving the original system reduces to solving
sin(a + £) = V3/2,
sin(a — 8) =1/2,
with 0 < a, 8 < 7/2. The angles o and (3 are given by
a+ B =7/3+2mn, a—B=7/6+21m
a+ f=2m/3+ 2mn, a—p=r/6+42rm
a+f=m/3+2mn, a—f3=>5r/6+2Tm
a+ B =2m/3+ 2mn, a—fB=51/6+2mm

or by
a=m/4+ (n+m)m, B=n/124+ (n —m)m,

a=57/12+ (n+m)m, B=7/4+ (n—m)m,
a="Tr/12+ (n +m)m, B=—-r/4+ (n—m)m,
a=3r/4+ (n+m)m, B =—-7m/12+ (n —m)m.

for some integers n, m. Since 0 < «, 8 < /2, then either « = 7/4, § = w/12, or
a =57/12, f = w/4. The two solutions of the initial system are

(z,y) = (sin%, sin 17T—2) - (?7 W)

Copyright (© Canadian Mathematical Society, 2020



116/ OLYMPIAD CORNER

and W) ) (M’ \/i)

(2.1) ( . bm
X = Sin ——, SIn —
4 120 My 4 2

Solution 2, by David Manes.
The two pairs (x,y) of real numbers that satisfy the system of equations are
(\/Q \/2—\/3) o <\/2+x/§ \/5)
2’ 2 2 A

We can check that these values of x and y satisfy the two equations.

Since 1 — g2 > 0 and 1 — 2% > 0 it follows that —1 < z,y < 1. Moreover,
(V3+1)/4 >0, (V3-1)/4 >0, VI—22 >0, and y/1 —y2 > 0. Therefore,
x,y > 0. Hence, if x and y solve the system then 0 < z,y < 1. Squaring each of
the two equations, we obtain

m2(1—y2):é(2+\/§)7
yz(l—m2):é(2—\/§).

Adding and then subtracting the two equations yields

222 + 2y — 4a%y? =1,

2 2 @

Tt —y 1
From the second equation, we obtain 32 = 2> — v/3/4. Rearranging the terms in
the first equation, we obtain 22 (1 —2y?) = 1 — 2y%. Hence, either 22 = 1/2 or

1-2y2 =0.

First, if z = +/2/2 then y? = 22 — V/3/4 = (2 — V3)/4, and y = +v/2 — V/3/2.
Note that v/2/2 and /2 — \/§/2 belong to the interval (0,1). We obtain the first
solution x = ﬁ/? and y = /2 — \/3/2

Second, if 1 —2y? = 0, then y = +v/2/2 and 22 = 3® + v/2/4 = (2 + V/3)/4.
Therefore, 2 = +1/2 ++/3/2. Since 0 < z,y < 1, we find the second solution
=2+ \/3/2 and \/§/2 This solves the system.

Editor’s comments. All submissions followed one of the two techniques presented
above: trigonometric or algebraic approach.

— <X <
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FOCUS ON...

No. 40
Michel Bataille
Inequalities via auxiliary functions (I)

Introduction

In attempts at proving an inequality, a resort to the study of an auxiliary function
often arises naturally. Most of the time, choosing an appropriate function and
using calculus to obtain its variations lead to a solution. The goal of this number
is to illustrate the method through various examples.

From their very definition, convex functions are connected to inequalities and
consequently regularly appear in the treatment of inequalities. In this first part,
we will leave them aside, devoting our next number to their use.

A series of simple examples

We start with some cases when the auxiliary function is readily deduced from the
proposed inequality itself.

Our first example is problem 2970 [2004 : 368, 371 ; 2005 : 414]:

If m and n are positive integers such that m > n, and if a,b,¢ > 0,
prove that

am bm CTYL an bn cn

> .
bm+cm+cm+am+am+bm - bn+cn+cn+an+an+bn

It is quite natural to introduce the function f defined on [0, c0) by

a® b* c®

fla) = b* + ¢ +c”3—|—ar +az—|—bm'

The key is that we may suppose a > b > ¢ (since f(z) remains unchanged when
a, b, c are permuted). The derivative of f is easily calculated:

x

f(x) = Z (bxaTx)(bwm(Q“ ln(c))

cyclic

=a"0"In (%) ((bx _:cx)2 T (e _:ax )+bwcm ln( ) ( c* —I—a”) - (a’”—l}bx)2>

1
vt ( B )
+ca Il bx+cz (ax+bx)2

Since a > b > ¢, the numbers In (%) ,In (2 ) n (4 ) are nonnegative and for
z > 0 we have (b* + ¢*)2 < (¢ + a®)? < (a + b")%, whence f'(z) > 0 (the

Copyright (© Canadian Mathematical Society, 2020



118/ Focus On... Inequalities via auxiliary functions (I)

three summands above are nonnegative). Thus, f is nondecreasing on [0, c0) and
f(u) > f(v) whenever u > v > 0, which is more general than the required result.

The auxiliary function is also chosen at once in the next example, problem 3889
[2013 : 413 ; 2014 : 404]:

Prove that

2 2\ ¢
e +m
> ( ) .
© 2e
First we take logarithms, transforming the given inequality into

! (6)+1 (1+7T2) (1)
2= n 7

e 2 e/’

and define the auxiliary function f by f(x) = x — In(1 + 22). Its derivative

2
f(x) = (‘:;ﬂ is positive for x € (1,00), hence f is increasing on [1,00). As a

result, f (%) > f(1) =1 —1In(2) and (1) follows.
In our last example, problem 2933 [2004 : 173 ; 2005 : 186], the auxiliary function
is less obvious:

Prove, without the use of a calculator, that sin(40°) < /2.

Here the key observation is that sin(3 x 40°) is well-known. Recalling the formula
sin 30 = 3sinf — 4sin® @, we are led to introduce the function f defined by f(z) =
3z —4x3. From the derivative f’(z) = 3(1—2z)(1+2x), we see that f is decreasing
on the interval on (1/2,1].

Both sin(40°) and \/g lie in this interval and, in addition to sin(3 x 40°) =
sin(120°) = ?, a short calculation gives f(\/g) = %\/g From 7 > %5, we
deduce that 2 > 2. 2L hence @ > %\/g Thus, f(sin(40°)) > f(ﬁ) and
sin(40°) < \/g follows.

Auxiliary functions in succession

The resort to two or more auxiliary functions frequently occurs, for instance when
another study of function is needed to obtain the sign of a derivative. A good
example is extracted from problem 3228 [2007 : 169, 172 ; 2008 : 178]:

For z € (0, §), prove that

T ™
<

sinz ~ 2+cosz’
The inequality is equivalent to ¢ (z) > 0 where () = wsinx — 2z — x cosxz. We
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calculate

' (x) = (m —1)cosz + xrsinx — 2,
" (z) = xcosx — (m — 2)sinx,
G

"(z) = —xsinz — (7 — 3) cos z.

Since " (x) < 0 for = € [0, §], the function ¢” is decreasing. Remarking that

¥"(0) = 0, we deduce that " (z) < 0 for € (0, 5] and ¢’ is decreasing as well.

Since ¢’(0) > 0, 9'(%) < 0 we have 1)'(«) = 0 for some unique o € (0, 7).

It follows that 4 is increasing on (0, «) and decreasing on («, 5). Observing that
¥(0) = (%) = 0, we may conclude that ¢(z) > 0 for z € (0, §).

Our next example is problem 4061 [2015 : 302, 303 ; 2016 : 318]. We offer a
variant of solution making use of two independent auxiliary functions.

Let ABC be a non-obtuse triangle none of whose angles are less than
7. Find the minimum value of sin Asin Bsin C.

We begin by obtaining inequalities about two auxiliary functions:
(a) For x € [, 5], let f(x) = sin® zsin 2z. Then f(z) > 1.
Proof. The derivative f’ satisfies

f'(x) = 2sin® z(1 4 2cos2x) > 0
(since § <2z < 2T), hence f(z) > f() = 3. a
(b) Let 6 be a fixed real number in [%, Z]. For « € [0, =52], let

go(x) = sinz sin(x + 0).

Then gp(x) > sin 6 sin 26.

Proof. Here gy(x) = sin(2z + 6) > 0 (since 0 < 3¢ < 2z + 60 < 7), hence

go(x) > go(#) = sin O sin 26.

Turning to the problem, we may suppose that ' < B < A. Then, 7
(note that 3C < A+ B+ C =7) and B<7— B —C sothat C <B<

IA
wly

<C
T—C

2

Now, applying successively (b) and (a), we obtain

sin A sin Bsin C' = sin C'sin Bsin(B + C)
sinC' - go(B)
sinC' - sin C'sin 2C

1

f(C>Z§-

AV
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In addition, sin AsinBsinC = 1 if A = 2, B = C = Z. Thus, the desired

1

5.

To conclude, we consider problem 4267 [2017 : 303, 305 ; 2018 : 311]. We propose
a solution, which, if longer than the featured one, may show to the beginner how
to deal with a difficult inequality in a natural way.

minimum value is

Let a, b, c and d be real numbers such that 0 < a,b,c < 1 and abed = 1.
Prove that
4

> .
Satbtetd)+ abe + abd + acd + bed 221

Since abed = 1, the inequality is equivalent to L > 21 where

1 4
L=5<a+b+c+—>+ﬁ.
abc abc+ o + 3+ <

To prove the inequality L > 21, we use a chain of auxiliary functions.

Let a,b be fixed in (0,1] and f(z) = 5(a+b+z+ =) + W—i——%l?—_ so that
alb e
L = f(c). We calculate the derivative of f in (0, 1]:

1- 2 4
fl(x): (;b.'L' . _i .
T (abr +14+14+1)° ab

Since 0 < a,b,z < 1 we have 1 — abz? > 0 and on the other hand % + % + % >3,
hence

4
(abz+ 1+ ¢+ 1)
while 5 > 5. Therefore f’(z) < 0 for = € (0,1]. It follows that f is decreasing on
(0,1] and so

4
235

f(c)zf(1)=5<a+b+1+$>+ab+l;‘ji—l+1=g(b)
a b

Whereg(:v)=5(a+x+1+$)+m4?_ﬁ~

, 1 — ax? 4 5
g(:l:): 72 1 12_5
(ax+ L +1+12)

is negative on (0, 1] and so

Similarly,

1 4 1
>g(1) = 2 — _ = 2 —
g(b) > g(1) 5( +a+a>+2+a+% h( +a+a>

where h(z) = 5z + 2. Since 2+ a+ 1 > 2+ 2 = 4, we study h on the interval
[4,00). On this interval, h'(z) =5 — z%— > 0 so that h is increasing. Consequently

h<2+a+£> > h(4) = 21.
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In conclusion, we have
1
L=f@)2g) > h(24a+ )22
a
and the required inequality follows.

About the choice of an auxiliary function

To avoid a complicated study, it is sometimes better to delay the introduction of
an auxiliary function. We give two examples of such situations. First, here is a
variant of solution to problem 3908 [2014 : 29, 31 ; 2015 : 39]:

(n — 1)2n72 n :
Prove that W < n" for each integer n > 3.
n—
2x—2
The function =z — x* — % does not seem a very good choice! We rewrite

the inequality in a more convenient form:

(1+n(nl_2>)"<(1+7112)2.

But once again, a function like z +— (1 + %)2 — (1 + ﬁ)r would not lead to a

nice study! However, recalling that for any positive real number x and any positive

integer n,
x n
(1 + 7> <e”
n

we see that it is sufficient to prove that

1 2
(1+-15) e
n—2

for n > 3. At that stage we can efficiently consider f(z) = (1 + z)? — e® for

€ [0,1]. A quick study of the derivative f'(x) = 2(1 + x) — €” shows that f’ is
increasing on [0,1n 2] and decreasing on [In 2, 1]. Since f/(0) =1, f/(1) =4—e > 0,
it follows that f/(x) > 0 for all « € [0,1]. Therefore f is increasing on [0, 1] and
f(z) > f(0) = 0 whenever z € (0, 1] and the desired inequality follows.

A similar difficulty is to be found in problem 3929 [2014 : 122,124 ; 2015 : 135]:

Show that for all 0 < x < 7/2, the following inequality holds:
1 1 4 (T 4
14— 1+ >5 140" (Z-2) |
sin x Ccos T 2

The inequality is f(z) > 4 + 5z* (g — x)4 where

1 1 2
- + + — .
sinx cosx  sin2x

fz) =
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Again, it is better to remark that for 0 < & < /2 we have

IS r+Z—z\2 72
e
< g ~7)= 9 16

hence

4 2\4
1t (5 -x) a5 ()

4
and therefore it is enough to prove that f(z) > 4+ 5 (’17—2) . Now, we readily

obtain that f’(z) has the same sign as g(z) = sin®z — cos® z — cos2z. A quick

study of g then will show that f(z) > f(w/4) = 2 + 2v/2 [details are left to the
4
reader] and the conclusion follows from 2 + 2v/2 > 4 + 5 (7{—;) .

As usual, we end this number with a couple of exercises.

Exercises

1. Let n € IN and let

n n
A(zy, 9,0 2n) = E fCi—vai-
i=1 i=1

If a1, a9, ...,a, € (0,1] prove that

A(al,ag,...,an)2A<i,i,... i)

ay az ’ Gy

2. For y € (0,1], let f : [0,1] — R be defined by f(z) = y* + 2¥ — 1 and
9 :(0,1] = R be defined by g(z) = f(x) — { - f'(z). From the study of g deduce
that f(xz) > 0 for = € (0,1].

3. (inspired by problem 1061 of the College Mathematics Journal) Let m be an
integer with m > 2 and r a real number in [1,00). Prove that

( 14 7™ >m+1 1+ pmtl
T >
1+ rm1 =7

[Hint: determine the sign of u(z) = (m — 1)(1 + ™) — (1 + 2™ 1) for x > 1]

— OO =
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PROBLEMS

To facilitate their consideration, solutions should be received by May 15, 2020.

—_—— OO ]l e ——————

4521. Proposed by Robert Frontczak.

Let m € IN, define the sequence a,(n > 0) by ap =m, a1 =as =+ = a;, = 1
and a,, = \/Apn—m—1 * Gp—m for n > m + 1. Determine lim,,_,o, a,,.

4522. Proposed by Miguel Ochoa Sanchez, Leonard Giugiuc and Kadir Altintas.

Let ABC be an acute triangle with orthocenter H and circumcenter O. Denote
Area(AHO)=x, Area(BHO)=y and Area(CHO)=z. Prove that

2(x%y? + y?2% + 2%2%) = 2t +yt + 2t
A

B ¥
4523*. Proposed by Leonard Giugiuc.

Let n be a natural number such that n > 2. Further, let {a1,a2,...,a,} C [0,1]
and {b1,b2,...,b,} C [1,00) such that

n n
dar+Y bp=n+l
k=1 k=1

Prove that
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4524. Proposed by Lorian Saceanu.

Let x,y, z be non-negative real numbers at most one of which is zero. Prove that
if
2, .2 2 _
¥ +y°+ 2% =2(xy 4+ yz + x2),
then

1 27
5<(@ty+2)| Y el s

cyclic

and determine when equality holds for either bound.

4525. Proposed by Julio Orihuela and Leonard Giugiuc.

Let H be the foot of the altitude from vertex A to side BC of the acute triangle
ABC, let the circle with center B and radius BH meet the perpendicular from
H to AB again at M, and the circle with center C' and radius CH meet the
perpendicular from H to AC again at N. Moreover, let the line M N meet the
first circle again at L and the second circle again at ), and finally, let Y be the
point where HL intersects AB and Z the point where H( intersects AC. Prove
that AY HZ is a parallelogram and /ZMHL = ZQHN.

A
Q

B H C

4526. Proposed by Michel Bataille.

Let ABC be a scalene, not right-angled triangle with orthocenter H and let D, E, F’
be the midpoints of BC, C A, AB, respectively. Points U, V, W respectively on the
lines BC,C A, AB, are such that AU, BV, CW are perpendicular to HD, HE, HF
(respectively). Prove that U, V, W are collinear.

4527. Proposed by George Stoica.

Let n > 4 be a positive integer. Prove that the roots of the polynomial ag + a1z +
-+ + apx™, whose coeflicients satisfy |an—al,|an—-1] < |an| < |ag|, cannot be all
real.
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4528. Proposed by Leonard Giugiuc.
Let ABCD be a rectangle situated in a plane P. Find

. (MA+MC)
rep \MB+ MD) "

4529. Proposed by George Apostolopoulos.
Let a,b, ¢ be the side-lengths of a triangle. Prove that

2a+b 2b+c¢c 2cHa
+ + >
a+c b+a c+b

9
>

4530. Proposed by Arsalan Wares.

Let A be a square with vertices Ak, k = 1,2,3,4. On each side of A, mark 2
points which divide the side into 3 equal parts. These 8 points and the vertices of
A are connected to one another, dividing A into 16 disjoint regions, as shown in
the figure. Determine the ratio of the area of the shaded regions to the area of A.

A Ay
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Pour faciliter I’ezamen des solutions, nous demandons auzx lecteurs de les faire parvenir
au plus tard le 15 mai 2020.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire & la retraite a
I’Université de Saint-Boniface, d’avoir traduit les problémes.

—_—— OO O e ——————

4521. Proposeé par Robert Frontczak.

Soit n > 0 et soit la suite a,, définie par ag =m,m € N, a; =as =--- =a,, = 1
et ap = \/An_m_1 - Gn_m pour n > m + 1. Déterminer lim,, _,, a,.

4522. Proposeé par Miguel Ochoa Sanchez, Leonard Giugiuc et Kadir Altintas.

Soit ABC' un triangle acutangle d’orthocentre H et soit O le centre de son cercle
circonscrit. Dénoter Surface(AHO)=z, Surface(BHO)=y et Surface(CHO)=
Démontrer que
2(x%y? + y?2? + 220%) = 2+t + 2t
A

B C

4523*. Proposeé par Leonard Giugiuc.

Soit m un nombre naturel tel que n > 2. De plus, soient {a1,as,...,a,} C [0,1]
et {b1,ba,...,b,} C [1,00) tels que

Z ap + Z by =n+1.
k=1
Démontrer que

n+1) zn: zn:bisn+3
k=1 k=1
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4524. Proposeé par Lorian Saceanu.

Soient z,y, z des nombres réels non négatifs dont au plus un est zéro. Démontrer
que si

22 +y? + 2% = 2(xy +yz + x2),

alors

1 27
5<(z4y+2) Zb+c <5

cyclic

et déterminer les situations ou égalité tient pour 'une inégalité ou l'autre.

4525. Proposeé par Julio Orihuela et Leonard Giugiuc.

Soit H le pied de l'altitude émanant du sommet A vers le c6té BC' d’un triangle
acutangle ABC. Supposons que le cercle de centre B et rayon BH rencontre la
perpendiculaire de H vers AB une seconde fois & M, puis que le cercle de centre C
et rayon C'H rencontre la perpendiculaire de H vers AC une seconde fois & N. De
plus, supposer que la ligne M N rencontre le premier cercle une seconde fois a L et
le deuxieme cercle une seconde fois a . Enfin, soient Y le point d’intersection de
HL et AB, puis Z le point d’intersection de HQ et AC. Démontrer que AYHZ
est un parallélogramme et que /M HL = ZQHN.

A

4526. Proposeé par Michel Bataille.

Soit ABC' un triangle scaléne non rectangle d’orthocentre H et soient D, E, F
les mi points de BC, C A, AB respectivement. Les points U, V, W se trouvent
sur les lignes BC, CA, AC, respectivement, de fagon a ce que AU, BV, CW sont
perpendiculaires & HD, HE, HF, respectivement. Démontrer que U, V, W sont
colinéaires.
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4527. Proposeé par George Stoica.

Soit n un nombre naturel tel que n > 4. Démontrer que les racines du polynéme
ap+ a1z + -+ apz™, dont les coefficients vérifient |a,_s|, |an—1| < |an| < |agl, ne
peuvent pas toutes étre réelles.

4528. Proposeé par Leonard Giugiuc.
Soit ABC'D un rectangle dans le plan P. Déterminer

. <MA+MC>
Mer \MB+ MD) "

4529. Proposeé par George Apostolopoulos.

Soient a, b, ¢ les longueurs des cotés d'un triangle. Démontrer que

2a+b 2b+c 26+a>9
a+c b+a c+b T2

4530. Proposeé par Arsalan Wares.

Soit A un carré de sommets Ay, k = 1,2,3,4. Sur chaque c6té de A, on note 2
points qui divisent le c6té en 3 parties égales. Ces 8 points et les sommets de A
sont reliés de fagon a diviser A en 16 régions, tel qu’indiqué. Déterminer le ratio
de la surface ombragée par rapport a la surface de A.

A A

Cruz Mathematicorum, Vol. 46(3), March 2020



SOLUTIONS

No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2019: 45(8), p. 476—479.

4471. Proposed by Michael Diao.

In AABC, let H be the orthocenter. Let M4 be the midpoint of AH and D be
the foot from H onto BC, and define Mg, M¢, E and F similarly. Suppose P is
a point in the plane distinct from the circumcenter of AABC, and suppose that
P4, Pg and Pg are points such that quadrilaterals PABC, PAAEF, P DBF and
PoDEC are similar with vertices in that order. Show that M4 P, MpPg and
MePe concur on the circumcircle of ADEF.

We received 5 submissions, all of which were correct. Only the proposer avoided
the use of coordinates, so we provide two solutions: the proposer’s together with
one example of a solution via coordinates.

Solution 1, by Michel Bataille.

First, a few remarks (see figure):
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(1) the circumcircle of ADEF is the nine-point circle whose centre is the mid-
point N of OH (O being the circumcentre of AABC'). Its radius is half the
circumradius of AABC and it passes through M,4. We add the hypothesis
that AABC' is not right-angled (to keep the triangle D EF non-degenerate).

(2) The statement of the problem assumes as known that triangles ABC and
AEF are oppositely similar, a fact for which a proof is as easily found as
a reference: Points E, F, B,C lie on the circle with diameter BC' (since
/BEC = ZCFB = 90°), hence, using directed angles modulo 7, we have

/(EA,EF) = /(EA,EB) + Z(EB,EF) = g + Z(CB,CF)
— 2+ 4(BC,BF)+ 3
— /(BC, BA).

Similarly, Z/(FE,FA) = Z(CA,CB), whence corresponding angles of trian-
gles ABC and AEF are equal. The similarity o such that o(A4) = A,0(B) =
E,o(C) = F is indirect (since Z(c(CB),0(CA)) = Z(CA,CB)); moreover,
by definition o(P) = Pj4.

This said, we embed the problem in the complex plane and suppose without
loss of generality that AABC is inscribed in the unit circle. We denote by
a,b,c,mq,p,pa,n the affixes of A, B,C, My, P,Pa, N and we set m = %, the
affix of the midpoint of BC. Note that m # 0 since AABC' is not right-angled.
We have

h
h=a+b+c, n:§:g+m, and mg =
The equation of the line AC' is z4+aczZ = a+c and the equation of the perpendicular

to AC through B is

a+h

=a-+m.

z—b Z—Db
+—==0,
c—a ¢—a
that is, bz — abcz = b? — ac (using a = %, etc.). From these equations, we deduce

the affix e of E:

The similarity o transforms the point with affix z into the point with affix 2/ =
az + B, where «, 8 satisfy

hb — ac

a=caa+ L and =ab+ .

_@ = —am and 8 = a + m and therefore,

This yields o =
Do = —amp + a + m.

Now, let W (affix w) be the point of intersection distinct from My of the line
M4 P4 and the nine-point circle: for some real number A\, we have

w=mg+ ANmg — pa) = a+m+ Aamp.
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Solutions /131

Expressing that w must satisfy |w — n|? = 1, we obtain
o Ao
A mmpp + §(mp +mp) = 0.

Since w # my, we have A # 0, hence \ = —% (% + -1 ) and we readily deduce

mp
that
a+b+c abcp

2 2p

Since the affix w is invariant under permutations of a,b, c, the lines MpPp and
M¢ Pe also pass through W and the required result follows.

Solution 2 by the proposer, revised by the editor.

We work in the Euclidean plane extended by the line at infinity. We shall be using
properties of isogonal conjugation with respect to triangle M4 MpM¢c: Recall that
the isogonal conjugate of a point with respect to AMaMpM¢ is constructed by
reflecting each line joining it to a vertex in the internal angle bisector at the cor-
responding vertex; the three reflected lines then concur at the isogonal conjugate.
This type of conjugation is an involution of the points of the extended plane that
are not on a sideline of the triangle; in particular, every point not on an extended
side of the triangle is interchanged with its conjugate; moreover, each point other
than a vertex on the circumcircle is interchanged with a point at infinity. Details
can be found in standard textbooks such as Roger A. Johnson’s Advanced Fu-
clidean Geometry and Nathan Altshiller Court’s College Geometry, as well as in
standard internet sources.

Note that E'F is antiparallel to BC' with respect to ZBAC (where two lines are
said to be antiparallel with respect to an angle if the image of either line under
reflection in the angle bisector is parallel to the other line). For a proof, see
the second preliminary remark in Solution 1 above. Because PABC is similar
to PAAEF, the similarity that takes AABC to AAFEF takes the circumcenter
O of the former to the circumcenter M4 of the latter, whence the line OP and
its image line M 4 P4 must also be antiparallel with respect to ZBAC. Since the
triangles M4 MM and ABC are homothetic, it follows that OP and M4 P4 are
antiparallel with respect to ZMpMsM¢. Letting P,, denote the point at infinity
of the line OP, we have M 4 P is parallel to OP, so we may conclude, finally, that
M4Py, and M4 P4 are isogonal in ZMpMaMe (in the sense that ZMpMaMe
and ZPsM 4P, have the same angle bisectors).

Analogously, MpP,, and MpPg are isogonal in ZMcMpM 4, and Mc P, and
Mg Po are isogonal in ZMaMcMp. Because these three lines (namely My Ps,
MpP,, and M¢Py,) meet on the line at infinity, their isogonal conjugates with re-
spect to AMaMpgM¢, namely the lines M4 P4, Mg Pg and Mc Pe, must concur at
the isogonal conjugate of P,,, which must lie on the circumcircle of AM s MpgMc.
But that circle is the nine-point circle of AABC, which coincides with the cir-
cumcircle of ADEF'; in other words, the three lines concur at a point of the
circumcircle of ADEF as claimed.
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Editor’s comments. The proposer observed that the concurrence point in question
is the Poncelet point of the isogonal conjugate of P with respect to AABC. He
also stated that by starting with P at the orthocenter, the result becomes,

The Euler lines of AAEF, ABFD and ACDE concur on the nine-
point circle.

4472. Proposed by Liam Keliher.
Let n be a positive integer. Prove that n divides

n—1

T -2).

=0

We received 22 submissions, all correct. Several solvers proved a stronger result
that the given product is actually divisible by n!. We present the solution of Prith-
wijit De.

n—1

Observe that |GL,(Z3)| = ] (2™ —2") and the group of permutation matrices of

1=

order n (itself a group of order n!) is a subgroup of GL,,(Z3). Therefore

n!| 1:[(2"—2i).

=0

Editor’s Comment. Bataille pointed out that this result is well-known as it was
problem 5 of the 4th National Mathematical Olympiad of Turkey, appearing in
Cruz before: see [2000 : 390] and [2002 : 503].

4473. Proposed by Nguyen Viet Hung.
Let |a] denote the greatest integer not exceeding a. For every positive integer n,
(a) find the last digit of [(2 + v/3)"],

(b) find ged([(2 +v3)"] + 1, (2 4+ v/3)"] + 1), where ged(a,b) denotes the
greatest common divisor of a and b.

We received 15 correct solutions. Most followed the tack of the gemeral solution
presented below.

(a) Letu=2++v3and v, =u"+u"forn>1. Then0 <u!=2-—+v3<1and
v, — 1 <u” <,

for each positive integer n. Since u and ©~! are the roots of the quadratic equation
2?2 = 4z — 1, the sequence {v,} satisfies the recursion

Un+2 = 4'Un—i-l — Un
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with initial conditions v;1 = 4 and vy = 14. Thus {v,} is a sequence of even
integers and |u"| = v, — 1.

Modulo 10, {v,} has the period 3 cycle {4, 4,2}, so that |u™] ends in the digit 3
when n = +1 (mod 3) and in the digit 1 when n =0 (mod 3).

(b) Since ged (v1,v2) = 2 and vy 42 = 4,1 — vy, for n > 1, an induction argument
establishes that

ged(L(2+ V3" + 1, [(2+ V3)"| + 1) = ged(vpg1,vn) = 2.

4474. Proposed by Kadir Altintas and Leonard Giugiuc.

Let ABCD be a convex quadrilateral such that ZABC = 5, ZADB = 13,

/ZBDC = § and ZDBC = §. Prove that BD passes through the midpoint
of AC.

We received 23 submissions, all correct, and from the rich variety of solutions we
have chosen two that were relatively light on the use of trigonometric identities.

Solution 1, by Cristobal Sdnchez-Rubio.
D

B C

Let M be the point of intersection of the lines AC and BD. Since AABC is a
right triangle, it is enough to prove that the triangle MCB is isosceles; specifically,
since we have ZDBC = ZM BC' = 22.5°, we must show that ZMCB = 22.5°. By
the sine law applied to triangle ABD,

AB BD BD

sin15° ~ sin97.5°  cos7.5°’

and therefore,
BDsin 15°
AB= ——
€0s 7.5°
By the sine law for triangle BCD,

BC BD

sin30°  sin127.5°’

and therefore
_ BDsin 30°

BC = .
¢ cos 37.5°
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Then
A_B _ sin15° - ¢c0s37.5°  2sin7.5% - cos7.5° - cos 37.5°  2sin7.5% - cos 37.5°

BC ~ sin30°cos7.5° sin 30° cos 7.5° sin 30°
But

2sin7.5° - cos 37.5° = sin (7.5° + 37.5°) + sin (7.5° — 37.5°)

= sin45° — sin 30°

[N}
S
N =

whence, finally,

A_B _2sin7.5° - cos 37.5°
BC sin 30°
In other words, ZMCB = 22.5°, so that M B = M, as desired.

=+v2—1=tan22.5°.

Solution 2, by Ivko Dimitric.

Let M be the point of intersection of AC and BD, and let P and @ be the feet
of the perpendiculars from A and C to BD, respectively. Then, from AABP and
NAPD we have

BD_BP+PD_ t37r+ tﬂ-—t 7r+ t7r
AP~ Ap T Ap T Vg Tty TRy Ty
and from ABCQ and ACDQ,

@—%-FQ—D—CO‘EE—FCO‘GE
cQ CQ CQ 8 6

Using the relevant half-angle formulas we have

m  [l—cosh (2—\/5)2 _2—\/5_ _
tang_\/lJrcosg_\/(2+\/§)(2_\/§)_ /2 =v2-1

and cot% =2+ 1, whereas
T 1+ cosZ 2+43
o 12 \/1—005% \/2—\/§ +V3

tan%—i—cotl%z(\/§—1)+(2+\/§)=(\/§+1)+\/§=cot%+cot%.

Then,

Hence implying AP = CQ. As a consequence, the right triangles

_ BD
TAP CQ’
APM and CQM are congruent, implying AM = CM; that is, BD passes through
the midpoint of AC.
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4475. Proposed by Michel Bataille.

Let a, b be real numbers with a,b,a + b,a — b # 0. Prove the inequality

sinh(2(a + b)) N sinh(2(a — b)) (sinhQ(a) N sinhz(b))
a+b a—"b - a b ’

There were 4 correct and one incomplete solution. The correct solutions all used
an integration argument along the lines of the following.

We first establish that
(cosh z)(coshy) > sinhz + sinhy

for real 2 and y. This can be done either by using the identity cosh? ¢ = 1 +sinh? ¢
and squaring, or by making the substitutions

(sinh x, coshz) = (tanu,secu) and (sinhy,coshy) = (tanv,secv)
with /2 < u,v < 7/2, and noting that the inequality is equivalent to
1> sin(u + v).
Let (z,y) = (2ta,2th). For 0 <¢ <1,
%[cosh(Qt(a + b)) + cosh(2t(a — b))] = cosh(2ta) cosh(2tb)
> sinh(2ta) + sinh(2tb).

Integrate this inequality from 0 to 1 with respect to ¢ to obtain
sinh(2(a + b)) N sinh(2(a — b)) N cosh(2a) — 1 N cosh(2b) — 1

4(a+0) 4(a—b) ~ 2a 2b
_ <Sinh2 (a) N sinh? (b))
a b ’

as desired.

4476. Proposed by Leonard Giugiuc.

Prove that for any real numbers a,b and ¢, we have

3vV6(ab(a — b) + be(b — ¢) + calc — a)) < ((a — b)? + (a — ¢)® + (b — ¢)?)*/2.

We received 10 submissions, all correct. We present a composite of nearly the
same solutions by Michel Bataille and Marie-Nicole Gras.

Let

1
3 [(a=b)?+(b—c)+(c—a)’] =a*+b*+c* —ab—bc— ca,
ab(a — b) + be(b — ¢) + ca(c — a) = a®b + b*c + *a — ab?® — bc? — ca®.

p:

q
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We need to prove that

3v6g < (2p)%. (1)
If ¢ < 0, then (1) clearly holds. If ¢ > 0, then

(1) <= 54¢> < (2p)® < 27¢* < 4p>. (2)
Consider the polynomial

Plz)=(x—a+b)(z—-b+c)(x—c+a)

="+ [(a=b)(b—c)+ (b—c)(c—a) + (c—a)(a—b)]o— (a—b)(b—c)(c—a)

=23+ (=a® —b* = 4+ ab+ be+ ca)x — (—ab — bPc — *a + ab® + bc? + ca?)
=" —pr+q,

of discriminant
A = —4p® + 2742

Since P(z) has 3 real roots by its definition, we must have A < 0, so 4p3—27¢* > 0,
from which (2) follows, completing the proof.

4477 . Proposed by Warut Suksompong.

Given a positive integer n, let a1 > --- > a, > 0and by > --- > b, > 0 be integers
such that

lLai+---+a;>bi+---+bforalli=1,...,n—1;
2. a1+ +an=by 4+ by

Assume that there are n boxes, with box i containing a; balls. In each move, Alice
is allowed to take two boxes with an unequal number of balls, and move one ball
from the box with more balls to the other box. Prove that Alice can perform a
finite number of moves after which each box i contains b; balls.

There were 4 correct solutions, all along the lines of the following.
The proof is by induction, the result being trivial for n = 1.

Assume it holds for at most n — 1 boxes, with n > 2. If a; = b; for some j with
1 < j < n, we can remove box j from consideration. The conditions hold for the
remaining n — 1 boxes and we can invoke the induction hypothesis to rearrange
the balls among them.

Henceforth, let a; # b; for each i.
Since a1 > by and
a, = b, — [(a1+-~+an_1) - (b1+"’+bn—1)] < by,

then a, < b, and there is a positive integer k¥ < n — 1 for which a; > by and
ap+1 < bgy1. Start removing balls one at a time from box & and placing them in
box k + 1.
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If ar, — by < bgy1 — ak41, then transfer a total of ap — by balls from box k + 1,
leaving by, balls in box k£ and

k41 +ap — by < ap1 + bpr1 — Grg1 = b
balls in box k + 1.
Since
(a1 4+ -+ ap—1) +bp + (agy1 +ar —bg) =a1+ -+ agy1 > by + -+ + by1,

we see that the consequent arrangement of balls in the boxes satisfies the two
conditions.

If ap —bx > br41 — ak41, transfer by41 —ag41 balls from box k to box k+1, leaving
ar — (bk+1 — ag+1) > a — (ax — bg) = by,
balls in box k and b1 balls in box k + 1.
Since
(a1 4 +ak—1) + [ar — (bes1 — ag41)] > (b1 + -+ +bg—1) + by
and

(a1 + - +ag—1) + [ag — (bks1 — ap41)] + b1 = a1 + - + ap—1 + @k + a1
>br+ -+ by,

the consequent arrangement of balls in the boxes satisfies the conditions.

In either case, we have a rearrangement of balls for which the number of balls in
one of the kth and (k + 1)th boxes is equal to the corresponding value of b, so we
can apply the induction step.

4478. Proposed by Florin Stanescu.
Find all functions f : R — R such that
f@®) = F(*) < (f(a) +b)(a— f(b))
for all a,b € R.
There were 11 correct and 3 incorrect submitted solutions.
The only solutions are f(z) =« and f(x) = —=z.
Make the substitutions (a,b) = (x,y) and (a,b) = (y,z) to obtain
f@®) = f(y?) < wy — f(2) f(y) + 2 f(2) = yf(y)
and

F?) = f(@?) < ay — f(2)f(y) — 2f(2) + yf ().
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Adding these inequalities leads to f(z)f(y) < xy for all real x and y. In particular,
f(0)2 <0, so that £(0) = 0.

Substituting (a,b) = (x,0) and (a,b) = (0, ) yields
f@®) <af(z) and - f(x)? < —af(2),

whence f(22) = xf(z) for all real z. In particular, f(1) = —f(—1).

Since
ff(z) <z and = f(1)f(z)=f(-1)f(z) < -z,

then f(1)f(x) = z and f(1)2> = 1. When f(1) = 1, then f(z) = z, and when
f(1) = —1, then f(z) = —=.

4479. Proposed by George Apostolopoulos.

Let ABC be a triangle with ZA = 90° and let H be the foot of the altitude from

A. Prove that
6 1 1

(AB+AC)2 ~ 2- AH? ~ BC2

We received 32 solutions, including two from the featured solver. We present the
solution by Miguel Amengual Covas.

Denote the length of the hypotenuse of the given triangle by a and the legs by b
and ¢. Then the area of AABC may be expressed as bc/2, and also as a - AH/2.
Equating these and solving for AH, we get
b
AH ==
a
When this is substituted into the proposed inequality, the proposed inequality
becomes )
6 a 1
—_— < 1
(b+c¢)2  2b2¢2 ~ a? (1)

We subsitute b? + ¢? for a? in (1), obtaining

6 _bz—i-c2 - 1
R

or, equivalently,
b+ 2b%c — b e 4+ 8b°¢® — Th2 et + 2bc® + ¢ > 0.
This in turn is equivalent to
(b—c)? (b* + 4b3c + 4bc® + ¢*) > 0,

whose validity is obvious. Equality occurs if and only if b = c.

Cruz Mathematicorum, Vol. 46(3), March 2020



4480. Proposed by Leonard Giugiuc.

Find all the solutions to the system

at+b+c+d=4,
a2+ v+ +d*=6,
ad+ 034+ +dd =,
in [0,2]*.
We received 11 submissions, all correct. We present the solution by Digby Smith.

Note first that

ab+ac+ad+bc+bd+cd= = ((a+b+c+d)* — (a® +b* +c* + d?))

N = DN

(42 - 6) = 5, (1)
and

(a+bt+ct+d?P=a>+0*+E+d>+3d*(b+c+d) +3b%(c+d+a)
+3c*(d+ a+b) + 3d*(a+ b+ c) + 6(abc + abd + acd + bed)
=3(a+b+ctd)(a® +b*++d*) -2+ v+ +d¥)
+ 6(abc + abd + acd + bed)
. 64 = 3(4)(6) —2% + 6(abe + abd + acd + bed)

=>abc+abd+acd+bcd:%(644—%—72)2g—i. (2)

Next, let k = abed and p(x) be the polynomial function defined by
p(z) = (z —a)(z —b)(z — ¢)(z — d).
Then by (1) and (2) we have

p(z) =2 — (a+ b+ c+d)z® + (ab + ac + ad + be + bd + cd)z®
— (abe + bed + cda + dab)x + abed

58
4 3 2

Since

p'(z) = 42® — 1227 + 102 — ;

1
= 2—7(108333 — 3242? + 270z — 58)

2
2—7(33: —1)(182% — 48z +29),
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solving p’(z) = 0 yields

1 4

_14y 8
373 2

Since p(z) is a 4th degree polynomial with positive leading coefficient and p’(z)

has 3 distinct real roots in (0,2), it follows that in order for a, b, ¢, d to be solutions

of the given equations, where 0 < a, b, ¢,d < 2, we must have

p0) 20, oy <0 p - 20w+ ) <0 )20

T

Evaluating, we find p(%) =p(2)=k-— 2%. Hence, k = 2%, from which we obtain

58 8
p(z) = a* — 423 +52% — —x 4+ —

1

= ﬁ(zm‘* —1082% + 13522 — 58z + 8)
1

= ﬁ(&c —1)2(3z — 4)(z — 2).

Therefore, the solutions in [0,2]* are the 12 permutations of (%, %,

SV

,2).

2 S O oS O W
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