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La Société mathématique du Canada permet aux lecteurs de reproduire des articles de la présente publication à des
fins personnelles uniquement.
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274/ Editorial

EDITORIAL
Issue 6 always marks the beginning of summer and Crux too takes a break with
no issues coming out in July and August. Our workload changes very little though
as we try to build up future material in the preview of the fall, which is always a
busy time of the year.

We still don’t know what exactly the fall will look like for us in academia, but
most institutions are running classes in all possible formats: face-to-face, hybrid,
fully online synchronous and asynchronous. Remote format allowed seminars and
conferences to include a greater variety of speakers and participants as travel and
hotel considerations were no longer a concern, replaced instead by more manage-
able accommodations of time zones. CMS already announced a fully online 2021
Winter meeting and I bet the future will see hybrid conference formats as we
embrace and capitalize on the affordances of the online format.

But summer was conference and travel season for many of us and, while I ap-
preciate the ability to attend a conference from my living room, I miss having
side-chats with people during coffee breaks, the social time where new ideas and
collaborations are born. I also greatly miss the opportunity to tag on a week (or
two) of vacation before or after a conference to explore a new place. To avoid
cabin fever, for our stay-cation my family is taking advantage of the rivers and
the lakes in our area to try out paddle boarding and kayaking. Course prep and
an extensive reading and podcast list to get through – thank goodness for a deck
and warm summer evenings.

To give our readers something more to do over the next two months, this pre-
summer issue contains our usual set of problems and solutions, supplemented by
The Last Problem (when first passed down from Chris Fisher to Ed Barbeau, the
comment was “it was given to me by an enemy”) and 25 bonus problems.

I hope this summer everyone is able to take time off and hopefully even see some
friends and family in a safe way. Send us pictures of where you will be spending
this summer!

Kseniya Garaschuk
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MATHEMATTIC
No. 26

The problems in this section are intended for students at the secondary school level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by August 15, 2021.

MA126. Let A,B,C,X, Y represent distinct, non-zero digits. Consider the
following subtraction (and specific example, taking (A,B,C,X, Y ) = (4, 5, 2, 9, 8)):

A B C
− C B A

1 X Y
Example:

4 5 2
− 2 5 4

1 9 8

How many ordered quintuplets (A,B,C,X, Y ) are there that satisfy the subtrac-
tion shown above?

MA127. If log10 2 = a and log10 3 = b, find log5 12.

MA128. I invested $100. Each day, including the 1st day, my investment
first increased in value by p%, then decreased in value. The 1st day’s decrease was
one-quarter of the 1st day’s increase. The 2nd day’s decrease was two-quarters of
the 2nd day’s increase. In general, the nth day’s decrease was n-quarters of the
nth day’s increase. (Note that, from day 5 on, the decrease exceeded the increase.)
If my investment first became worthless on the 1000th day, what was the value of
p?

MA129. Five marbles of various sizes are placed in a conical funnel of circular
cross section. Each marble is in contact with the adjacent marble(s) and with the
funnel wall. The smallest marble has a radius of 8 mm. The largest marble has a
radius of 18 mm. Determine the radius, measured in mm, of the middle marble.

MA130. Prove that there are infinitely many positive integers k such that
kk can be expressed as the sum of the cubes of two positive integers.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes dans cette section sont appropriés aux étudiants de l’école secondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire par-
venir au plus tard le 15 août 2021. La rédaction souhaite remercier Rolland Gaudet,
professeur titulaire à la retraite à l’Université de Saint-Boniface, d’avoir traduit les
problèmes.

MA126. Soient A, B, C, X, Y des entiers distincts, non nuls. Considérer
le schéma de soustraction ci-bas, y inclus le cas particulier (A,B,C,X, Y ) =
(4, 5, 2, 9, 8):

A B C
− C B A

1 X Y
Example:

4 5 2
− 2 5 4

1 9 8

Combien de tels quintuplets ordonnés (A,B,C,X, Y ) satisfient le schéma ?

MA127. Si log10 2 = a et log10 3 = b, déterminer log5 12.

MA128. J’investis 100$. Chaque jour, incluant le premier, mon fond aug-
mente premièrement par un pourcentage p%, puis perd de la valeur. Le 1ier jour,
cette perte est le quart de l’augmentation du 1ier jour. Le 2ième jour, cette perte
est de deux quarts de l’augmentation du 2ième jour. De façon générale, la perte
le nième jour est n quarts de l’augmentation du nième jour. (Noter qu’ partir du
5ième jour, la perte dépasse l’augmentation.) Si mon fond atteint une valeur nulle
le 1000ième jour, déterminer la valeur de p.

MA129. Cinq billes de diverses tailles sont placées dans un entonnoir de
forme conique circulaire. Chaque bille est en contact avec toute bille voisinante
et avec l’entonnoir. La plus petite bille a un rayon de 8 mm, tandis que la plus
grosse a un rayon de 18 mm. Déterminer le rayon en mm de la bille qui se trouve
au milieu.

MA130. Démontrer qu’il existe un nombre infini d’entiers positifs k tels que
kk peut être représenté comme somme de cubes de deux entiers positifs.

Crux Mathematicorum, Vol. 47(6), June 2021
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2021: 47(1), p. 4–6.

MA101. Standard six-sided dice have their dots arranged so that the opposite
faces add up to 7. If 27 standard dice are arranged in a 3× 3× 3 cube on a solid
table what is the maximum number of dots that can be seen from one position?

Originally problem I21 from the 2014 competition of Australian Math Trust.

We received 5 submissions, of which 4 were correct and complete. We present the
solution by the Missouri State University Problem Solving Group.

More generally, we will answer the analogous question for abc standard dice ar-
ranged in an a × b × c cuboid. The maximum number of faces that can be seen
are three faces that share a common vertex. There are

(a− 1)(b− 1) + (a− 1)(c− 1) + (b− 1)(c− 1)

cubes with one face showing, (a−1)+(b−1)+(c−1) cubes with two faces showing,
and one cube with three faces showing. This gives

6 ((a− 1)(b− 1) + (a− 1)(c− 1) + (b− 1)(c− 1))

+ (6 + 5) ((a− 1) + (b− 1) + (c− 1)) + (6 + 5 + 4)

= 6(ab+ ac+ bc)− a− b− c

as the maximum number of dots. For a = b = c = 3, we have 153 dots. The figure
below shows the case when a = 3, b = 4, and c = 5. The white cubes have one
exterior face, the light gray cubes have two, and the dark gray cube has three.

Copyright © Canadian Mathematical Society, 2021
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MA102. As shown in the diagram, you can create a grid of squares 3 units
high and 4 units wide using 31 matches. I would like to make a grid of squares
a units high and b units wide, where a < b are positive integers. Determine the
sum of the areas of all such rectangles that can be made, each using exactly 337
matches.

Originally problem I29 from the 2014 competition of Australian Math Trust.

We received 8 submissions all of which were correct and complete. We present the
solution by Taes Padhihary, modified by the editor.

There are (a+1) rows of horizontal matches, each containing b matches. Similarly,
there are (b + 1) columns of vertical matches, each containing a matches. So the
total number of matches is (a+ 1)b+ (b+ 1)a = 2ab+ a+ b. Therefore,

2ab+ a+ b = 337 =⇒ 4ab+ 2a+ 2b = 674

=⇒ 4ab+ 2a+ 2b+ 1 = 675

=⇒ (2a+ 1)(2b+ 1) = 675.

Now, note that 675 = 1 × 675, 3 × 225, 5 × 135, 9 × 75, 15 × 45, 25 × 27 and
then 27×25, . . . and so on. Given this, we obtain (a, b) = (0, 337), (1, 112), (2, 67),
(4, 37), (7, 22), (12, 13) and vice-versa. Except the first one, all are valid. Thus
the sum of the areas is

112 + 134 + 148 + 154 + 156 = 704.

MA103. What is the largest three-digit number with the property that the
number is equal to the sum of its hundreds digit, the square of its tens digit and
the cube of its units digit?

Originally problem S26 from the 2014 competition of Australian Math Trust.

We received 7 submissions of which 5 were correct and complete. We present the
solution by William Alexander Digout.

Let’s start by giving the name ISC to the property where a three-digit number is
equal to the sum of its hundreds digit, the square of its tens digit and the cube of its
units digit. Let abc be a number with the ISC property, where abc = 100a+10b+c.
Then 100a + 10b + c = a + b2 + c3. To narrow down our list of possible numbers
containing the ISC property, we will look at the value of c.

Crux Mathematicorum, Vol. 47(6), June 2021
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c c3 a
0 0 0 or 1
1 1 0 or 1
2 8 0 or 1
3 27 0 or 1
4 64 0 or 1
5 125 1 or 2
6 216 2 or 3
7 343 3 or 4
8 512 5 or 6
9 729 7 or 8

Since b2 ≤ 81, we can eliminate c = 0, 1, 2 as a + b2 + c3 < 100. We can also
assume that if c = 3 or c = 4, then a = 1 since a = 0 yields a two-digit number.

If c = 3, then c3 = 27 and a = 1 implies that b2 ≡ 5 (mod 10), where b = 5. But
1 + 52 + 33 = 53 < 100, therefore c 6= 3.

If c = 4, then c3 = 64 and a = 1 implies that b2 ≡ 9 (mod 10), where b = 3 or
b = 7. But 1 + 32 + 43 = 74 < 100 and 1 + 72 + 43 = 114 6= 174. Therefore c 6= 4.

If c = 5, then c3 = 125 and a = 1 or a = 2.

If a = 2, then b2 ≡ 8 (mod 10), which is absurd since b is an integer. Then a = 1
implies that b2 ≡ 9 (mod 10), so b = 3 or b = 7. We have 1 + 32 + 53 = 135 =
100(1) + 10(3) + 1(5) and 1 + 72 + 53 = 175 = 100(1) + 10(7) + 1(5). Thus 135
and 175 both have the ISC property.

If c = 6, then c3 = 216 and a = 2 or a = 3. If a = 3, then b2 ≡ 7 (mod 10), which
is absurd. If a = 2, then b2 ≡ 8 (mod 10), which is also impossible since b is an
integer. Therefore c 6= 6.

If c = 7, then c3 = 343 and a = 3 or a = 4. If a = 3, then b2 ≡ 1 (mod 10),
so b = 1 or b = 9. But 3 + 12 + 73 = 347 6= 317 and 3 + 92 + 73 = 427 6= 397.
Therefore c 6= 7.

If c = 8, then c3 = 512 and a = 5 or a = 6. If a = 6, then b2 ≡ 0 (mod 10), so
b = 0. But 6 + 02 + 83 = 518 6= 608. Thus a = 5 implies that b2 ≡ 1 (mod 10),
so b = 1 or b = 9. We have 5 + 12 + 83 = 518 = 100(5) + 10(1) + 1(8) and
5 + 92 + 83 = 598 = 100(5) + 10(9) + 1(8). Therefore 518 and 598 both have the
ISC property.

If c = 9, then c3 = 729 and a = 7 or a = 8. If a = 7, then b2 ≡ 3 (mod 10), which
is absurd. If a = 8, then b2 ≡ 2 (mod 10), which is equally absurd. Thus c 6= 9.

Of the 900 three-digit numbers, only four have the ISC property. Since we want
the largest of the these numbers, we conclude that 598 is the largest three-digit
number that is equal to the sum of its hundreds digit, the square of its tens digit
and the cube of its units digit.

Copyright © Canadian Mathematical Society, 2021
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MA104. The sequence

2, 22, 22
2

, 22
22

, . . .

is defined by a1 = 2 and an+1 = 2an for all n ≥ 1. What is the first term in the
sequence greater than 10001000?

Originally problem S25 from the 2014 competition of Australian Math Trust.

We received 6 submissions, all of which were correct and complete. We present
the solution by Taes Padhihary, modified by the editor.

We want the smallest n for which an > 10001000 = 103000. We know

a4 = 216 = 65536 << 103000.

As 210 > 103, we have that

a5 = 265536 = (210)6553 · 26 > 1019659 · 64,

which is safely much greater than 103000. Hence, the fifth term is the first term of
the sequence greater than 10001000.

MA105. Eighteen points are equally spaced on a circle, from which you
will choose a certain number at random. How many do you need to choose to
guarantee that you will have the four corners of at least one rectangle?

Originally problem J27 from the 2014 competition of Australian Math Trust.

We received 6 solutions. We present the solution of Prithwijit De, modified by the
editor.

Suppose a rectangle ABCD is inscribed in a circle (see diagram below). Since
∠ABC = 90◦, the diagonal AC must be a diameter of the circle, and similarly so
does the diagonal BD. Conversely, if on a given circle A and C are points which
are diametrically opposite, and so are B and D, then ABCD is a rectangle.

Crux Mathematicorum, Vol. 47(6), June 2021
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Given 18 points equally spaced around the circle, they are the endpoints of 9
diameters. We label one endpoint of a diameter by Pi and the other by Qi for
i = 1, . . . , 9, as in the diagram below.

If the chosen set of points contains two pairs (Pi, Qi) and (Pj , Qj) for i 6= j then
Pi, Pj , Qi, Qj are the vertices of a rectangle, as described earlier. The smallest
number of points which we need to choose to guarantee that we have two such
pairs is 11. Clearly, if we were to choose only 10 points then it could happen that
we chose, say, all the P ’s and only one Q endpoint, and from those we cannot
choose the vertices of a rectangle. However, applying the Pigeonhole Principle, we
can show that a set of 11 points contains at least two pairs of points which are
diametrically opposite. Therefore, if we choose 11 points, we can guarantee that
this set contains the vertices of at least one rectangle.

Copyright © Canadian Mathematical Society, 2021
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PROBLEM SOLVING
VIGNETTES

No. 17

Shawn Godin

Geometric Constructions II

Welcome back. In the last column [2021 : 47(5), p. 232–237] we looked at some
geometric constructions using a compass and straightedge. In this column we
will look at some geometric construction problems from the course I took with
Professor Honsberger. Note that some of these are quite a bit more complex than
the ones we looked at last column. Hopefully, there will be problems that can be
enjoyed by both the beginner and experienced constructor.

#31. A segment AB is given and a line m crossing it. Determine the point C
on m such that m bisects angle ACB.

#32. Two circles A and B are given and a vector ~k. Determine a point P on
A and a point Q on B such that PQ is equal and parallel to ~k.

#33. Points A and B are given on the same side of the line XY . Determine
the point C on XY such that angle ACX is double angle BCY (suppose
the line XY runs from left to right and that A and B are above it; for
definiteness, label, from left to right, the line XY , and the points A and
B).

#34. Non-intersecting chords AB and CD of a circle are given. Determine a
point X on the circle such that AX and BX determine E and F on CD
making EF equal in length to a given segment k.

#35. A and B are points inside a given acute angle PQR. Construct an
isosceles triangle XY Z with X on PQ, Y and Z on QR, and A and B,
respectively, on the sides XY and XZ.

Let’s look first at problem #31, which involves angle bisectors, a topic we discussed
in the previous column. In several of the constructions in that column we used a
fact from an earlier column [2019: 45(1), pp. 13-16] that the angle bisector of the
apex angle of an isosceles triangle coincides with the perpendicular bisector of the
base. Maybe we can use that result here to find a segment somehow related to the
given points A and B for which the given line m is its perpendicular bisector?

If we drop a perpendicular from one of the points, say A, to m meeting at point
X, then draw a circle centred at X through A, it will meet the perpendicular to

Crux Mathematicorum, Vol. 47(6), June 2021



Shawn Godin /283

m at another point Y . Therefore, if we pick any point, Z, on m, then ZAY is
isosceles. In order to bring B into the mix, if we draw the line through B and Y ,
it will intersect m at the desired point C, that is, since ∆CAY is isosceles and m
is the perpendicular bisector of AY , it is the angle bisector of ∠ACY = ∠ACB.

A B

m

X
Y

C

Before we attack another problem, we need an algorithm to construct a line parallel
to a given line, `, through a given point, P (construction challenge #4 from the last
column). We can do this in any number of ways. Since we know how to construct
a line through P perpendicular to `, we can do this yielding line `′, and then
repeat the process constructing a line perpendicular to `′ through P . This new
line, `′′, will have to be parallel to ` by the parallel line theorem (interior angles are
supplementary, alternate angles are equal, corresponding angles are equal . . . take
your pick).

P

`

`′ `′′

The standard algorithm for constructing a parallel line through a given point
constructs a rhombus with one vertex P and one side on `. As a rhombus is
also a parallelogram, one of the sides will be parallel to ` and we are done. To
proceed, we pick any point, A, on ` and construct an arc, centred at A that passes
through P and intersects ` at B. Next we construct arcs centred at P and B
that pass through A. These arcs intersect at another point D. By construction
PA = AB = BC = CP , hence ABCP is a rhombus and therefore the line through
P and C is our desired line.

Copyright © Canadian Mathematical Society, 2021
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P

A

`

B

C

Of course there are other ways to construct the desired parallel line. For example,
if we had drawn two points A and B on `, then constructed a circle centred at P
with radius equal to AB and another circle centred at A with radius equal to PB,
then these two circles will intersect at two points X and Y . The line through one
of these points and P is our desired line. I will leave it to the reader to try this
construction and to come up with the justification.

Next we will consider problem #32. We will assume that the circles are given,
without the centres. It is useful to be able to determine the centre of a given
circle. We will use the fact that the perpendicular bisector of a segment is the
locus of points that are equidistant from the end points of the segment. Thus, on
a circle, if we construct the perpendicular bisector of any chord it will pass though
the centre of the circle. Hence, if we pick three points on the circle, and construct
two chords using these points as our endpoints, the perpendicular bisectors of the
two chords will intersect at the centre of the circle. This is linked to the fact that
the perpendicular bisectors of the three sides of a triangle are concurrent at the
circumcentre of the triangle.

O

It is often the case in construction problems that we do not know where to start,
so it sometimes helps to start with the finished picture and work backwards. For

Crux Mathematicorum, Vol. 47(6), June 2021
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problem #32 we draw circles A and B, stick points P on A, Q on B, and declare−−→
PQ to be the vector ~k that Professor Honsberger gave us. With just of touch
of inspiration we recall that vectors determine translations, and the translation
determined by ~k takes the circle A with its centre O and point P to a new circle
with centre O′ and point Q for which OO′QP is a parallelogram (because OO′ is
equal and parallel to PQ). So the construction is clear:

To translate A, we would need to construct its centre, O, then draw a line through
O parallel to ~k and finally use our compass to mark the length of ~k and mark
the distance from O along the parallel line in the direction of ~k to get the image
O′. If we construct the circle, A′, with centre O′ that is congruent to A, it might
intersect circle B in as many as two points. Label either of the points Q. If we
construct a line through O parallel to O′Q, then it will intersect A at two points,
one of which we claim is P (on the same side of O as Q is of O′). Since O′Q = OP

and O′Q ‖ OP , then OO′QP is a parallelogram and hence
−−→
PQ =

−−→
OO′ = ~k. Thus

problem #32 has two solutions if the translated circle meets B in two points, one
solution if it is tangent to B, and no solution at all if it misses B.

A

B

~k
O

O′ Q

A′

P

Finally, we will take a partial look at #35. Imagine the construction is finished,
then we have something like the diagram below.

Q

P

R

A

B

α

X

Y Z

β β

Let ∠PQR = α and ∠XY Z = ∠XZY = β. At the start of the construction
we have not been given β, but we are given α, so that α can be reproduced by

Copyright © Canadian Mathematical Society, 2021
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construction when needed. From our diagram we can determine that

∠Y XZ = 180◦ − 2β and ∠QXY = β − α,

hence
∠QXZ = 180◦ − β − α.

If we could produce a ray XF above QP such that ∠FXQ = ∠QXZ = β − α,
then ∠FXB = 180◦−2α, which is the measure of the apex of an isosceles triangle
with base angles α. Now that triangle we can construct.

Our desired ray is easily constructed. If we reflect A in QR, its image, A′, lies on
the desired ray. Then, if we form segment A′B, we can construct isosceles triangle
ABC with ∠CAB = ∠CBA = α making sure C is on the same side of A′B as X.
If we construct the circumcircle of ABC it will intersect QP in two points, one of
which is above both A and B. I claim the upper point is the desired point X. I
will leave the verification of this and the details of the construction as an exercise.

A′

C

Q

P

R

A

B

α

X

Y Z

β β

Hopefully you enjoyed this exploration of classical constructions. The construc-
tions from this column were meant to be a bit more challenging, so if you struggled
with them don’t worry, think about them, come back to them, you will get there
eventually. The ideas behind them can be useful in constructing figures in dynamic
geometry software that retain desired properties. I suggest you grab a compass
and ruler and get constructing!

My thanks again goes to longtime Crux editor Chris Fisher for his feedback on this
column and the previous one. His comments helped make both articles better.

Crux Mathematicorum, Vol. 47(6), June 2021
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The Last Problem
In days of yore, the Canadian Mathematical Bulletin had a problem section. It
was retired in 1983 with a fascinating problem that came by a circuituous route,
from A.E. Brouwer to Chris Fisher and finally to Ed Barbeau, then editor of the
problems section. Although there existed a solution, it involved work on partially
ordered sets beyond its immediate context, and a more natural solution was sought.

Here is the problem: A m×n rectangular array is made up of the positive integers
1, 2, 3, . . . ,mn arranged in such a way that each row and each column is mono-
tonically decreasing. In particular, mn must appear in the upper left corner and
1 in the lower right corner. An operation of the array is as follows. The number
in the lower right corner is circled. Once any number is circled, the smaller of
two of its neighbours, one immediately to the left in the same row and the other
immediately above in the same column, is also circled. If there is only one such
number, it is circled. In this way, a track of m + n − 1 circled numbers from the
lower right to the upper left is obtained. Now the number in the lower right is
transferred to the upper left position and the rest of the circled numbers are dis-
placed one position along the track. The uncircled numbers are not moved. The
same operation is then repeated, with the understanding that, once any number k
is transferred from the lower right position to the upper left position, it is treated
as though its magnitude were mn+ k.

An example of such an array with m = 3, n = 4 is given along with the results of
the first three operations:

12○ 11 7 6
10○ 8○ 5 3
9 4○ 2○ 1○

−→
1○ 11○ 7○ 6
12 10 5○ 3○
9 8 4 2○

−→
2○ 1 11 6
12○ 10○ 7○ 5
9 8 4○ 3○

−→
3○ 1○ 11○ 6○
2 12 10 5○
9 8 7 4○

Prove or disprove:

(a) After mn operations, each number in the array is restored to its initial position;

(b) If i moves down on the jth move, then j moves down on the ith move;

(c) If i moves right on the jth move, then j moves right on the ith move.

Send your comments, investigations, solutions to crux.eic@gmail.com

Copyright © Canadian Mathematical Society, 2021
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The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by August 15, 2021.

OC536. The triangle ABC has AB = CA and BC is its longest side. The
point N is on the side BC and BN = AB. The line perpendicular to AB which
passes through N meets AB at M . Prove that the line MN divides both the area
and the perimeter of triangle ABC into equal parts.

OC537. A, B, C are collinear with B betweeen A and C. K1 is the circle
with diameter AB, and K2 is the circle with diameter BC. Another circle touches
AC at B and meets K1 again at P and K2 again at Q. The line PQ meets K1

again at R and K2 again at S. Show that the lines AR and CS meet on the
perpendicular to AC at B.

OC538. Let us consider a polynomial P (x) with integer coefficients satisfying
P (−1) = −4, P (−3) = −40, and P (−5) = −156. What is the largest possible
number of integers x satisfying P (P (x)) = x2?

OC539. A pair of real numbers (a, b) with a2 + b2 ≤ 1
4 is chosen at random.

If p is the probability that the curves with equations y = ax2 +2bx−a and y = x2

intersect, then identify the integer that is closest to 100p.

OC540. Let Sr(n) = 1r + 2r + · · · + nr where r is a rational number and n
a positive integer. Find all triplets (a, b, c) ∈ Q+ × Q+ ×N for which there exist
infinitely many positive integers n satisfying Sa(n) = (Sb(n))

c

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.
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Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 août 2021.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

OC536. Soit BC le plus long côté du triangle ABC où, de plus, AB = CA.
Le point N se trouve sur le côté BC, de façon à ce que BN = AB. Enfin, la
ligne perpendiculaire à AB, passant par N , rencontre AB en M . Démontrer que
la ligne MN divise le triangle ABC en deux parties de même surface et périmètre.

OC537. Les points A, B et C sont alignés, avec B entre A et C. K1 est le
cercle ayant AB comme diamètre et K2 est le cercle ayant BC comme diamètre.
Un autre cercle touche AC en B et rencontre K1 de nouveau en P et K2 de
nouveau en Q. La ligne PQ rencontre K1 de nouveau en R et K2 de nouveau en
S. Démontrer que les lignes AR et CS se rencontrent en un point se trouvant sur
la perpendiculaire à AC en B.

OC538. Soit un polynôme P (x) à coefficients entiers tel que P (−1) = −4,
P (−3) = −40 et P (−5) = −156. Déterminer le plus grand nombre possible
d’entiers x vérifiant P (P (x)) = x2.

OC539. Une paire de nombres réels (a, b) vérifiant a2 + b2 ≤ 1
4 est choisie de

façon aléatoire. Si p est la probabilité que les courbes y = ax2 + 2bx− a et y = x2

se rencontrent, identifier l’entier le plus près de 100p.

OC540. Soit Sr(n) = 1r + 2r + · · ·+nr, où r est un nombre rationnel et n un
entier positif. Déterminer tous les triplets (a, b, c) ∈ Q+×Q+×N pour lesquels il
existe un nombre infini d’entiers positifs n tels que Sa(n) = (Sb(n))

c
.

Copyright © Canadian Mathematical Society, 2021
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Statements of the problems in this section originally appear in 2021: 47(1), p. 25–26.

OC511. All the proper divisors of some composite natural number n, in-
creased by 1, are written out on a blackboard. Find all composite natural num-
bers n for which the numbers on the blackboard are all the proper divisors of some
natural number m. (Note: here 1 is not considered a proper divisor.)

Originally from 2017 Russia Mathematics Olympiad, 5th Problem, Grade 10, Final
Round.

We received 6 solutions. We present the solution by Oliver Geupel.

For n = 4, only the number 3 is written on the blackboard, which is the unique
proper divisor of m = 9. For n = 8, the numbers written on the blackboard are 3
and 5, which are the proper divisors of m = 15.

We show that there are no other solutions.

Suppose that n has the desired property. If n has an odd proper divisor d then
the even number d + 1 is written on the blackboard, so that d + 1 | m. Hence
2 | m. But 2 is not written because 1 is not considered to be a proper divisor of n.
Thus, n is a power of 2. If n ≥ 16 then the numbers on the blackboard include 3,
5, and 9, so that 45 | m. Then, 15 is a proper divisor of m. This contradicts the
fact that 14 - n, because n is a power of 2. Hence the result.

OC512. A convex quadrilateral ABCD is given. We denote by IA, IB , IC and
ID the centers of the inscribed circles ωA, ωB , ωC and ωD of the triangles DAB,
ABC, BCD and CDA, respectively. It is known that ∠BIAA+∠ICIAID = 180◦.
Prove that ∠BIBA+ ∠ICIBID = 180◦.

Originally from 2017 Russia Mathematics Olympiad, 8th Problem, Grade 11, Final
Round.

We received 3 correct solutions. We present the solution by UCLan Cyprus Problem
Solving Group.

Let α1 = ∠BAC and α2 = ∠CAD. Then

∠IAAID = ∠BAID −∠BAIA = (α1 +α2−∠IDAD)− α1 + α2

2
=
α1

2
= ∠BAIB .

Similarly, we have ∠IBBIC = ∠ABIA.

Let X be a point on AB such that ∠AXIB = ∠AIAID. Then the triangles AXIB

Crux Mathematicorum, Vol. 47(6), June 2021
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and AIAID are similar. Thus

AX

AIA
=
AIB
AID

.

Since also ∠XAIA = ∠IBAID, it follows that the triangles XAIA and IBAID are
similar. We deduce that ∠AIBID = ∠AXIA.

Since ∠BIAA+ ∠ICIAID = 180◦ and ∠AXIB = ∠AIAID then

∠BIAIC = 180◦ − ∠AIAID = 180◦ − ∠AXIB = ∠BXIB .

Since also ∠IBBIC = ∠ABIA, then ∠XBIB = ∠IABIC . So the triangles BIBX
and BICIA are similar. A similar argument as above shows that the triangles
BXIA and BIBIC are also similar. Thus ∠BXIA = ∠BIBIC . Therefore

∠AIBID + ∠BIBIC = ∠AXIA + ∠BXIA = 180◦ .

It therefore follows that ∠BIBA+ ∠ICIBID = 180◦ as required.

OC513. In an acute triangle ABC the angle bisector of ∠BAC intersects
BC at point D. Points P and Q are orthogonal projections of D on lines AB and
AC. Prove that Area(APQ) = Area(BCQP ) if and only if the circumcenter of
ABC lies on line PQ.

Originally from 2017 Poland Mathematics Olympiad, 2nd Problem, Second Round.

We received 8 solutions. We present the solution by Oliver Geupel.

Let the point A′ be the reflection of the point A in the circumcenter of the triangle
ABC, and let E be the point where the line AA′ intersects the line PQ.

Copyright © Canadian Mathematical Society, 2021
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By Thales’s Theorem, we have ∠A′BA = 90◦ = ∠DPA; whence the line A′B is
parallel to the line DP . Thus, [PA′D] = [PBD]. Similarly, [QA′D] = [QCD]. It
follows that

[PA′Q] = [PDQ] + [PA′D] + [QA′D]

= [PDQ] + [PBD] + [QCD] = [BCQP ].

Therefore, [APQ] = [BCQP ] is equivalent to [PAQ] = [PA′Q], which is satisfied
if and only if EA = EA′, that is, if E is the circumcenter of 4ABC.

OC514. Consider the set M =

ßÅ
a b
c d

ã
∈M2(C) | ab = cd

™
.

(a) Give an example of a matrix A ∈ M such that A2017 ∈ M and A2019 ∈ M ,
but A2018 /∈M .

(b) Prove that if A ∈ M and there exists an integer k ≥ 1 such that Ak ∈ M ,
Ak+1 ∈M and Ak+2 ∈M , then An ∈M for all integers n ≥ 1.

Originally from 2018 Romania Mathematics Olympiad, 2nd Problem, Grade 11,
District Round.

We received 6 solutions. We present the solution by UCLan Cyprus Problem Solv-
ing Group.

(a) It is enough to find a matrix A such that A ∈M,A2 /∈M and A3 = I. Indeed
we would then have A2017 = A ∈ M,A2018 = A2 /∈ M and A2019 = I ∈ M .
The matrix

A =

Ç
1 −

√
6√

3/2 −2

å
Crux Mathematicorum, Vol. 47(6), June 2021
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satisfies the required properties. Indeed it is immediate that A ∈ M . Fur-
thermore, tr(A) = −1 and det(A) = 1, so A has characteristic equation
x2 + x+ 1 = 0 and therefore satisfies A3 = I. Finally,

A2 = −I −A =

Ç
−2

√
6

−
√

3/2 1

å
/∈M .

(b) Lemma 1. If A ∈M and k ∈ C, then kA ∈M .

Proof of Lemma 1. Immediate. �

Given matrices

A1 =

Å
a1 b1
c1 d1

ã
and A2

Å
a2 b2
c2 d2

ã
we call the pair (A1, A2) coupled, if a1b2 + a2b1 = c1d2 + c2d1. We have the
following result about coupled matrices:

Lemma 2. If A1, A2 ∈M and λ1A1 + λ2A2 ∈M for some λ1, λ2 ∈ C \ {0},
then the pair (A1, A2) is coupled.

Conversely, if A1, A2 ∈ M and the pair (A1, A2) is coupled, then λ1A1 +
λ2A2 ∈M for every λ1, λ2 ∈ C.

Proof of Lemma 2. Since

λ1A1 + λ2A2 =

Å
λ1a1 + λ2a2 λ1b1 + λ2b2
λ1c1 + λ2c2 λ1d1 + λ2d2

ã
then λ1A1 + λ2A2 ∈M if and only if

(λ1a1 + λ2a2)(λ1b1 + λ2b2) = (λ1c1 + λ2c2)(λ1d1 + λ2d2) .

Equivalently, λ1A1 + λ2A2 ∈M if and only if

λ21(a1b1 − c1d1) + λ22(a2b2 − c2d2) + λ1λ2(a1b2 + a2b1 − c1d2 − c2d1) = 0 .

So under the condition that A1, A2 ∈M , we have that λ1A1 + λ2A2 ∈M if
and only if

λ1λ2(a1b2 + a2b1 − c1d2 − c2d1) = 0 .

The statement of the lemma follows. �

Assume now that A ∈ M and Ak, Ak+1, Ak+2 ∈ M for some integer k > 1.
Let x2 − ax− b be the characteristic equation of A.

Case 1: If a = 0, then A2 = bI. By induction A2n = bnI and A2n+1 = bnA.
Since I, A ∈M , by Lemma 1 An ∈M for every integer n > 1.

Case 2: If b = 0, then A2 = aA. By induction An+1 = anA. Since A ∈M ,
by Lemma 1 An ∈M for every integer n > 1.

Copyright © Canadian Mathematical Society, 2021
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Case 3: Assume ab 6= 0. Let A1 = Ak and A2 = Ak+1. Then we have
Ak+2 = aA2 + bA1. Since Ak, Ak+1, Ak+2 ∈M and ab 6= 0, by Lemma 2 the
pair (Ak, Ak+1) is coupled.

It will be enough to show that for each natural number n, the matrix An is
a linear combination of Ak and Ak+1. Indeed then by Lemma 2 it will follow
that An ∈M .

This follows easily by induction and the facts that An+2 = aAn+1 +bAn and
An−1 = −abAn + 1

bA
n+1.

OC515. Let a, b, c, d be natural numbers such that a+ b+ c+d = 2018. Find
the minimum value of the expression:

E = (a− b)2 + 2(a− c)2 + 3(a− d)2 + 4(b− c)2 + 5(b− d)2 + 6(c− d)2.

Originally from 2018 Romania Mathematics Olympiad, 2nd Problem, Grade 8,
Final Round.

We received 8 solutions.

We present the solution by Roy Barbara.

The minimum value of E is 14, reached when a, b, c, d are (in any order) 504, 504,
505, 505.

More generally, let a, b, c, d be natural numbers such that a+ b+ c+d = n, where
n is an even positive integer. Set

E = (a− b)2 + 2(a− c)2 + 3(a− d)2 + 4(b− c)2 + 5(b− d)2 + 6(c− d)2.

Then,

minE =

®
0 if n ≡ 0 (mod 4)

14 if n ≡ 2 (mod 4) .

Indeed, if m = 4k, where k ∈ Z+, then E = 0 is reached with a = b = c = d = k.
From now on, we assume m = 4k + 2, where k ∈ N. Among the 6 gaps |a − b|,
|a − c|, |a − d|, |b − c|, |b − d|, |c − d|, consider m gaps, 2 ≤ m ≤ 6, ordered as
d1 ≥ d2 ≥ . . . ≥ dm. It should be clear that

E ≥
m∑
r=1

rd2r.

Set x = min(a, b, c, d), y = max(a, b, c, d) and δ = yx ≥ 0. That δ = 0 is
impossible, otherwise we would get a = b = c = d, so that 4 | m, a contradiction.
Hence δ ≥ 1.

(i) Suppose δ ≥ 3. Since x, y ∈ {a, b, c, d}, let z be one of the two remaining
variables. Set d = max(|z − x|, |z − y|). Since δ ≥ 3, then d ≤ 1 is clearly
impossible. Hence, d ≥ 2. Since δ ≥ d, we get

E ≥ 1 · δ2 + 2 · δ2 ≥ 1 · 32 + 2 · 22 = 17.
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(ii) Suppose δ = 2. For the remaining variables, we have z, t ∈ [x, y] = [x, x+ 2].
If one at least of z or t is equal to x or to x+ 2, we get 3 gaps of ‘2’. Hence,

E ≥ 1 · 22 + 2 · 22 + 3 · 22 = 24.

If z = t = x+ 1, the gaps are all 2, 1, 1, 1, 1, 0. Hence

E ≥ 1 · 22 + 2 · 12 + 3 · 12 + 4 · 12 + 5 · 12 = 18.

(iii) Suppose δ = 1. For the remaining variables, we have z, t ∈ [x, x + 1]. If we
had z = t = x or z = t = x + 1, we would get m = x + y + z + t = 4x + 1
or 4x+ 3, contradicting m ≡ 2 (mod 4). Hence, z, t are x, x+ 1, and hence
a, b, c, d are (in some order) x, x, x+ 1, x+ 1 (where x = k). Any of the 6
cases yields minE = 14.

We conclude that minE = 14.

Copyright © Canadian Mathematical Society, 2021
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A Remarkable Point of the
Circumcircle

Michel Bataille

We consider a triangle ABC inscribed in a circle Γ with centre O and denote by
M the midpoint of BC. The median AM intersects Γ at A1 (A1 6= A) and A′1 is
the point of Γ diametrically opposite to A1. We define S as the reflection of A1 in
the perpendicular bisector ` of BC (Figure 1). Note that S is a point of Γ (since
Γ is its own reflection in `).

The purpose of this note is to show that S has quite a number of interesting
properies, making it a remarkable point. Of course, S is associated with the
vertex A and two similar points of Γ are associated with the other vertices (see
problem 2 at the end).

For simplicity, we always suppose AB 6= AC and ∠BAC 6= 90◦. The reader will
easily adapt the results and proofs if ABC is isosceles or right-angled at A.

Figure 1

To become familiar with S, here are some very simple properties of S (Figure 1):

(i) The line MS is the reflection of the median AA1 in ` as well as in BC. (This
follows from the fact that ` and BC are perpendicular at M).

(ii) S is the second point of intersection of Γ with the parallel to BC through
A1.

(iii) The line SA′1 is perpendicular to BC. (Because A1A
′
1 is a diameter of Γ,

SA′1 is perpendicular to SA1, hence to BC).

From (iii), SA′1 intersects BC at the projection U of S onto BC. Since in addition
S is on the circumcircle of ∆ABC, this suggests to consider the Simson line of
S, that is, the line through the collinear projections of S onto the sidelines of the
triangle ABC ([2], p. 43 or [3], p. 42). We are led to our first theorem.
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Theorem 1 S is the only point of the circumcircle Γ whose Simson line is per-
pendicular to the median AM .

For the proof we use classical results about the Simson line. First, there is only
one point of Γ whose Simson line has a given direction, hence it is sufficient to
show that the Simson line of S is perpendicular to AM . But we know that if the
perpendicular to BC through S intersects Γ at D (D 6= S), then the Simson line
of S is parallel to AD (see [2] p. 128-9 or [3], p. 50). From (iii), D coincides with
A′1 and it just remains to observe that AA′1 is perpendicular to AA1 since A1A

′
1

is a diameter of Γ (Figure 2).

Figure 2

Another property connected to the Simson line of S is the object of Theorem 5
below.

Exercise 1 Show that S is the reflection in BC of the foot of the perpendicular
to the median AM from the orthocenter.

A close examination of Figure 2 will provide a simple proof of our next theorem.

Theorem 2 The line AS is the symmedian of ∆ABC through the vertex A.

Let V and W be the projections of S onto CA and AB, respectively. The points
A, V, S,W lie on the circle with diameter AS, hence

∠(AB,AS) = ∠(AW,AS) = ∠(VW, V S).

Now, VW is perpendicular to AM (Theorem 1) and V S is perpendicular to AC,
hence ∠(VW, V S) = ∠(AM,AC) and therefore ∠(AB,AS) = ∠(AM,AC). The
result follows.

Exercise 2 Let AS intersect BC at Q. Show that ∠(QA,QC) = ∠(BA,BA1).

Exercise 3 Prove that the midpoint of AS lies on the circumcircle of ∆BOC.
(Hint: see [1] p. 149)

An important consequence of Theorem 2 is the following characterization of S.

Copyright © Canadian Mathematical Society, 2021
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Theorem 3 S is the harmonic conjugate of A with respect to points B and C on
the circle Γ.

Recall that this means that for some P on Γ, the lines PA and PS are harmonic
conjugates with respect to PB,PC (and then this holds for any point P of Γ).

Figure 3

Let the parallel to AB through S intersect Γ at P with P 6= S (Figure 3). Using
the concyclicity of A,C, P, S, the parallelism of AB and PS, and Theorem 2 in
succession we obtain

∠(CP,CA) = ∠(SP, SA) = ∠(AB,AS) = ∠(AM,AC)

and so CP is parallel to the median AM . Let lines CP and AB intersect at B1.
Since M is the midpoint of BC and MA is parallel to CP , A is the midpoint of
BB1. Since PS is parallel to BB1, it follows that PS is the harmonic conjugate
of PA with respect to the lines PB and PB1 = PC, as desired.

Exercise 4 Use Theorem 3 to prove that the line AS passes through the pole of
BC with respect to Γ (see [1] p. 146)

Our next theorem shows that S lies on another important circle.

Theorem 4 S is the only point of Γ− {A} such that
SB

SC
=
AB

AC
.

When AB 6= AC, the locus of all points N such that NB
NC = AB

AC is a circle CA
(Apollonius’ circle associated with the vertex A). Thus, a corollary of Theorem 4
is that CA and Γ intersect at A and S. Note that a diameter of CA is DD′ where
D and D′ are the feet on BC of the bisectors of ∠BAC.

It suffices to prove that SB
SC = AB

AC . Since

∠(AB,AS) = ∠(AM,AC) and ∠(SB, SA) = ∠(CB,CA) = ∠(CM,CA),
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the triangles ABS and AMC are similar. It follows that SB
MC = AB

AM . Similarly,

we have SC
MB = AC

AM and the result is obtained by expressing that MB = MC.

Exercise 5 What is the symmedian of ∆SBC through S?

Exercise 6 Let BC = a,CA = b, AB = c and ma = AM . Prove that

SA =
bc

ma
, SB =

ac

2ma
, SC =

ab

2ma
, SM =

a2

4ma
.

In our last theorem, we return to the Simson line of S.

Theorem 5 S is the only point of Γ whose projections U, V,W onto the sidelines
BC,CA,AB, respectively, are such that U is the midpoint of VW .

Let S′ be a point of Γ, with S′ 6= A and let U ′, V ′,W ′ be its respective projections
onto BC,CA,AB. Since the triangle U ′W ′B is inscribed in the circle with diame-
ter BS′, the Law of Sines gives U ′W ′ = BS′ · sinB. Similarly, U ′V ′ = CS′ · sinC,
hence

U ′V ′ = U ′W ′ ⇔ S′B

S′C
=

sinC

sinB
⇔ S′B

S′C
=
AB

AC

and therefore U ′V ′ = U ′W ′ is equivalent to S′ = S.

We conclude with two problems.

Problem 1 [Two more circles through S]

Let A′ be the reflection of A in BC and let γB (resp. γC) be the circle passing
through A′ and tangent to BC at B (resp. at C). Prove that S is on γB and γC .

Problem 2 [About S and its analogues]

Define Sa = S and let Sb and Sc be constructed from B and C, respectively,
as S = Sa is from vertex A. Let ma,mb, and mc denote the lengths of the
medians from A,B, and C, respectively. Let K be the symmedian point, R the
circumradius, and r the inradius of ∆ABC. Prove that

(a) m2
a

−−→
KSa +m2

b

−−→
KSb +m2

c

−−→
KSc =

−→
0

(b) [ABC] · [SaSbSc] ≤
27(rR)2

4
,

where [·] denotes area.
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by August 15, 2021.

4651. Proposed by Michel Bataille.

The complex numbers z1 and z2 represent points on or inside the unit circle of the
Euclidean plane such that both Re(z1 + z2) ≥ 1 and Im(z1 + z2) ≥ 1. Find the
extremal values of Re(z1z2) and the pairs (z1, z2) at which they are attained.

4652. Proposed by Nguyen Viet Hung.

Let ABC be an equilateral triangle with centroid O and let M be any point inside
of the triangle. D,E, F are feet of altitudes from M onto the sides BC,CA,AB
respectively. Prove that

(MD −ME)4 + (ME −MF )4 + (MF −MD)4 =
81

8
MO4.

4653. Proposed by George Apostolopoulos.

Let ABC be a triangle with inradius r and circumradius R. It is known (e.g. Item
2.48 on page 31 of “Geometric Inequalities” by Bottema et al.) that

sec2
A

2
+ sec2

B

2
+ sec2

C

2
≥ 4.

Prove that

sec2
A

2
+ sec2

B

2
+ sec2

C

2
≤ 2R

r
.

4654. Proposed by Andrei Eckstein and Leonard Giugiuc.

Consider positive real numbers a1, a2, . . . , an such that

a1 + a2 + · · ·+ an =
1

a1
+

1

a2
+ · · ·+ 1

an
,

where n ≥ 3. Prove that ∑
i<j

aiaj ≥
n(n− 1)

2
.
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4655. Proposed by Daniel Brin.

Let A = (aij) be a matrix of order n where n > 1 is odd. Let C = (−1)i+jMij

denote the cofactor matrix of A where Mij are the minors of A. If X is an n× n
matrix such that XMX = C, find the sum of all the entries of X.

4656. Proposed by Abdollah Zohrabi.

If a, b, c and d are positive real numbers such that abcd = 1, prove that

(1 + a4)(1 + b4)(1 + c4)(1 + d4) ≥ 2(ab+ cd)(bd+ ac)(cb+ da).

4657. Proposed by George Stoica.

Let us consider the equation f(x) + f(2x) = 0, x ∈ R.

(i) Prove that, if f is continuous at 0, then f(x) = 0 for all x ∈ R.

(ii) Construct a function f , discontinuous at every x ∈ R, that solves the given
equation.

4658. Proposed by Mihaela Berindeanu.

In the right triangle ABC, let D be the foot of the altitude on the hypotenuse
BC, and let I1 and I2 be the incenters of triangles ABD and ADC, respectively.
Prove that the line I1I2 meets AB at a point on the circle BDI1.

4659. Proposed by Tien Nguyen.

For each positive integer n, find gcd(an, bn) such that

(4 +
√

5)n = an + bn
√

5,

where an and bn are positive integers.

4660. Proposed by Thanh Tung Vu, modified by the Editorial Board.

a) Given a triangle ABC with its orthocenter H, define the three circles

α = (HBC), β = (HCA), and γ = (HAB).

For a fixed line ` through H let
A1 and A2 be the points where α again meets ` and AH,
B1 and B2 be the points where β again meets ` and BH,
C1 and C2 be the points where γ again meets ` and CH.

Finally, define

A′ = BC ∩A1A2, B′ = CA ∩B1B2, C ′ = AB ∩ C1C2.
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Prove that the cevians AA′, BB′, CC ′ are concurrent at some point X of the
circumcircle of ∆ABC.

b)∗ Establish the corresponding result with the orthocenter H replaced by an
arbitrary point P not on a side of ∆ABC; prove that the locus of resulting
point X as ` turns about P is an ellipse that circumscribes ∆ABC.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 août 2021. La rédaction souhaite remercier Frédéric Morneau-Guérin,
professeur à l’Université TÉLUQ, d’avoir traduit les problèmes.

4651. Soumis par Michel Bataille.

Soient z1 et z2 des nombres complexes situés sur ou à l’intérieur du cercle unité
du plan complexe et tels que Re(z1 + z2) ≥ 1 et Im(z1 + z2) ≥ 1. Trouvez les
valeurs extrêmes de Re(z1z2) ainsi que les paires (z1, z2) pour lesquelles celles-ci
sont atteintes.

4652. Soumis par Nguyen Viet Hung.

Soit ABC un triangle équilatéral de centre de gravité O. Soit encore M un point
quelconque situé à l’intérieur du triangle. On désigne par D,E, F les pieds respec-
tifs des droites perpendiculaires aux côtés BC,CA,AB et passant par le point M .
Montrez que

(MD −ME)4 + (ME −MF )4 + (MF −MD)4 =
81

8
MO4.

4653. Soumis par George Apostolopoulos.

Soit ABC un triangle dont le rayon du circle inscrit est r et celui du cercle circon-
scrit est R. Il est établi (voir par exemple Item 2.48 à la page 31 de “Geometric
Inequalities” de Bottema) que

sec2
A

2
+ sec2

B

2
+ sec2

C

2
≥ 4.

Montrez que

sec2
A

2
+ sec2

B

2
+ sec2

C

2
≤ 2R

r
.

4654. Soumis par Andrei Eckstein et Leonard Giugiuc.

Considérons des nombres réels positifs a1, a2, . . . , an tels que

a1 + a2 + · · ·+ an =
1

a1
+

1

a2
+ · · ·+ 1

an
,

où n ≥ 3. Montrez que ∑
i<j

aiaj ≥
n(n− 1)

2
.
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4655. Soumis par Daniel Brin.

Soit A = (aij) une matrice d’ordre n où n > 1 est impair. Soit C = (−1)i+jMij

la comatrice (ou matrice des cofacteurs) de A, où les Mij sont les mineurs de A.

Étant donné X une matrice n × n vérifiant XMX = C, trouvez la somme de
toutes les composantes de X.

4656. Soumis par Abdollah Zohrabi.

Si a, b, c et d désignent des nombres réels positifs tels que abcd = 1, montrez que

(1 + a4)(1 + b4)(1 + c4)(1 + d4) ≥ 2(ab+ cd)(bd+ ac)(cb+ da).

4657. Soumis par George Stoica.

Considérons l’équation f(x) + f(2x) = 0, où x ∈ R.

(i) Montrez que si f est continue en 0 alors f(x) = 0 pour tout x ∈ R.

(ii) Construisez une fonction f qui est discontinue en tout point x ∈ R et qui
est une solution de l’équation ci-dessus.

4658. Soumis par Mihaela Berindeanu.

Considérons un triangle rectangle ABC. Soit D le pied de la hauteur projetée
sur l’hypothénuse BC. Notons respectivement par I1 et I2 les centres des cercles
inscrits aux triangles ABD et ADC. Montrez que la droite I1I2 rencontre AB en
un point du cercle BDI1.

4659. Soumis par Tien Nguyen.

Pour tout entier positif n, trouvez PGCD(an, bn) tel que

(4 +
√

5)n = an + bn
√

5,

oú an et bn sont entiers positifs.

4660. Soumis par Thanh Tung Vu puis modifié par le comité de rédaction.

a) Étant donné un triangle ABC d’orthocentre H, définissons les trois cercles
suivant :

α = (HBC), β = (HCA), et γ = (HAB).

Fixons une droite ` passant par le point H et considérons
A1 et A2 les points où α rencontre à nouveau ` et AH,
B1 et B2 les points où β rencontre à nouveau ` et BH,
C1 et C2 les points où γ rencontre à nouveau ` et CH.

Enfin, définissons

A′ = BC ∩A1A2, B′ = CA ∩B1B2, C ′ = AB ∩ C1C2.
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Montrez que les céviennes AA′, BB′, CC ′ sont concourantes en un point X
du cercle circonscrit à ∆ABC.

b)∗ Tâchez d’établir le résultat correspondant où, cette fois, l’orthocentre H est
remplacé par un point arbitraire P n’étant pas situé sur l’un des côtés de
∆ABC. Montrez que le lieu des points X obtenus lorsque ` pivote autour
de P est une ellipse circonscrivant ∆ABC.
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BONUS PROBLEMS
These problems appear as a bonus. Their solutions will not be considered for publication.

76. Proposed by Michel Bataille.

Let ABC be a triangle, M the midpoint of BC and Γb,Γc the circumcircles of
∆AMB,∆AMC, respectively. Let t be the tangent to Γc at the point N dia-
metrically opposite to M . If the lines MA,MC intersect t at A′, C ′, respectively,
prove that the tangent to Γb at M bisects A′C ′.

77. Proposed by Nguyen Viet Hung.

Given a positive integer k. Evaluate

lim
n→∞

Ç
1k

nk+1 + 1
+

2k

nk+1 + 2
+ · · ·+ nk

nk+1 + n

å
.

78. Proposed by George Stoica.

Let Sn =
∑n
i=[n/2]+1 ai, where [ ] denote the integer part. If lim

n→∞
Sn exists, must

lim
n→∞

ai equal to zero?

79. Proposed by Leonard Giugiuc.

Let a1, a2, . . . , an be positive real numbers with n ≥ 5. Prove that

(n− 2)(a21 + a22 + · · ·+ a2n + 1) + 2a1a2 · · · an ≥ 2
∑
i<j

aiaj .

80. Proposed by George Apostolopoulos.

Let a, b and c be positive real numbers with a2 + b2 + c2 = 12. Prove thatÅ
a2

bc
+
b2

ca
+
c2

ab

ãÅ
a2√
a3 + 1

+
b2√
b3 + 1

+
c2√
c3 + 1

ã
≥ 12.

81. Proposed by Minh Ha Nguyen.

Let ABC be a triangle with BC = a,CA = b and AB = c, where ma,mb and mc

are the lengths of medians from A,B and C, respectively. Prove that

ma +mb +mc =

√
3

2
(a+ b+ c),

if and only if one of ma =
√
3
2 a, mb =

√
3
2 b or mb =

√
3
2 b holds.
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82. Proposed by Leonard Giugiuc.

If a, b, c and d are nonnegative real numbers such that ab+ bc+ cd+ da > 0, then
prove that

a5 + b5 + c5 + d5√
ab+ bc+ cd+ da

+ 6abcd ≥ (ab+ bc+ cd+ da)2

2
.

83. Proposed by George Apostolopoulos.

Let ABC be a triangle with inradius r and circumradius R. Equilateral triangles
with sides AB, BC and CA are drawn externally to triangle ABC. Let K, L and
M be the centroids of the equilateral triangles. Prove that 2r ≤ R′ ≤ R, where
R′ denotes the circumradius of the triangle KLM .

84. Proposed by George Apostolopoulos.

Let ha, hb and hc be the altitudes, ra, rb and rc the exradii, r the inradius and R
the circumradius of a triangle ABC. Prove that

ra + rb»
h2a + h2b

+
rb + rc»
h2b + h2c

+
rc + ra√
h2c + h2a

≤ 3
√

2

Å
R

2r

ã2
.

85. Proposed by Nguyen Viet Hung.

Let a, b, c be positive real numbers such that a+ b+ c = 1. Prove thatÅ
a√
a+ b

+
b√
b+ c

+
c√
c+ a

ã2
+

4abc

(a+ b)(b+ c)(c+ a)
≤ 2.

86. Proposed by Daniel Sitaru.

Let x, y, z ∈ (0, 1) with xy + yz + zx = 1. Prove that

x2y2 + y2z2 + z2x2 + 4x2y2z2 ≥ 13

27
.

87. Proposed by Robert Frontczak.

Let Fn denote the nth Fibonacci number, defined by Fn = Fn−1 + Fn−2 with

F0 = 0, F1 = 1. For n ≥ 0, let An be defined by An =
∑n
k=0

Ck
2k

, where Cn is the

nth Catalan number, that is Cn =
1

n+ 1

(
2n
n

)
. Prove that

∞∑
n=0

An
Fn
4n

=
8

5

√
10

Ç
a3

(a3 + 2)(
√

2a+ 1)
− 1

(a+ 3)(
√

2 + a)

å
,

where a = (1 +
√

5)/2 is the golden ratio.
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88. Proposed by Conar Goran.

Let x1, . . . , xn > 0 be real numbers and s =
∑n
i=1 xi. Prove that

1

n

n∑
i=1

xxii
(1 + xi)xi

≥
Å

s

n+ s

ã s
n

.

When does equality occur?

89. Proposed by Lorian Saceanu and Marian Cucoanes.

Let x, y, z be positive real numbers. Prove that:

x3 + y3 + z3

3xyz
+

ï
8xyz

(x+ y)(y + z)(z + x)

ò3
≥ 2.

90. Proposed by Michel Bataille.

Let f : R → R be a twice differentiable function such that f ′′(x) · (f(x))3 = 1

for all real x and lim
x→∞

f(x)
x = 2. Prove that the equation f(x) = 1

2 has a unique

solution. Assuming that f ′(0) ≥ 0, express this solution as a function of f(0).

91. Proposed by George Stoica.

Let P be a polynomial whose coefficients are equal to ±1. Prove that 1
2 < |z0| < 2

for any root z0 of P .

92. Proposed by Michel Bataille.

Let m,n be integers such that 2 ≤ m < n. Express

n−1∑
j=1

õ
(2j + 1)m+ n

2mn

û
−
m−1∑
j=1

õ
(2j + 1)n+m

2mn

û
as a function of

⌊
n
m

⌋
, where bc denotes the greatest integer function.

93. Proposed by George Stoica.

Let a ≥ 2. Prove that if f 6= 0 is a continuous and periodic function, then there is
x such that f(x) + af(x+ 1) 6= 0.

94. Proposed by Daniel Sitaru.

Find:

Ω = lim
n→∞

(
n ·
∫ π

2

0

cosn xdx ·
∫ π

2

0

cosn+1 xdx

)
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95. Proposed by Michel Bataille.

In the plane, let ABC be a triangle with AB 6= AC and let S be the set of all
circles passing through B and C. If O is the centre of Γ ∈ S, the point M of Γ
is called the trace of Γ if A,O,M are collinear in this order. Given Γ1 ∈ S with
trace M1, construct Γ2 ∈ S with trace M2 such that M2 6= M1 and M1M2 ⊥ BC.
Discuss the number of solutions.

96. Proposed by George Stoica.

Let yn ∈ (0, 1) for all n ≥ 1 be such that
∞∑
n=1

yn =∞. Prove that there is a

unique sequence (an)n≥1 with an > 0 for all n ≥ 1,
∞∑
n=1

an = 1, and such that

an = yn ·
∞∑
k=n

ak for all n ≥ 1.

97. Proposed by Chen Jiahao.

Consider a triangle ABC with incenter I. Let circle with center J be tangent to
the sides AC and AB at D and E, respectively. Prove the following statements.

a) If the circumcircles of EIB and DIC intersect at I and X, then X lies on
(J).

b) The circumcircle of BXC is tangent to (J).

98. Proposed by Mihaela Berindeanu.

Let ABCD be a square and M be a point on the side BC so that MC =
BC

4
.

∠AMC bisector cuts DC in N, P ∈ AM, NP ⊥ AM . The middle points of NP
and MN are X, respectively Y . Show that ] (NAX) = ] (Y AM).

99. Proposed by D. M. Bătineţu-Giurgiu and Neculai Stanciu.

Let γn = − lnn+
∑n
k=1

1

k
with limn→∞ γn = γ, the Euler-Mascheroni constant.

a) Find limn→∞(γn − γ)n.

b) Find limn→∞(γnγn+1 − γ2)n.

100. Proposed by Nguyen Viet Hung.

Find b
√
n2 + 1+

√
n2 + 2+· · ·+

√
n2 + 2nc, where bxc denotes the greatest integer

not exceeding x.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2021: 47(1), p. 43–47.

4601. Proposed by Bill Sands.

One or more pieces of clothing are hanging on a clothesline. Each piece of clothing
is held up by either 1, 2 or 3 clothespins. Clothes do not overlap and each clothespin
holds up one piece of clothing. You want to remove all the clothing from the line,
obeying the following rules:

(i) you must remove the clothing in the order that they are hanging on the line;

(ii) all the pins holding up a piece of clothing must be removed at the same time;

(iii) the number of clothespins you remove each time must belong to the set
{n+ 1, n+ 2, . . . , n+ c}, where n and c are given positive integers.

Find the smallest positive integer c so that, for any positive integer n, all suffi-
ciently long lines of clothing can be removed.

There were 3 solutions submitted, all correct. We present all the approaches.

Solution 1, by UCLan Cyprus Problem Solving Group.

The smallest value of c is 6. We first show that the conditions cannot be satisfied
for c = 5 and thus for any smaller c. The choice set from which the number of
pins must be selected is {n+ 1, n+ 2, . . . , n+ 5}.
Let n = 6r + 3, so that the choice set is {6r + 4, 6r + 5, 6r + 6, 6r + 7, 6r + 8}.
Consider an arbitrarily long line with an odd number of items, each held by three
pins. To clear the line, we have no choice but to remove a multiple of 3 pins each
time, and the only option available to us is the even multiple 6(r+1). We must be
left with items held by an odd multiple of three pins not exceeding n that cannot
be cleared.

Before showing that c = 6 is suitable for the procedure, we make the important
observation that for any three consecutive integers not exceeding the number of
remaining pins on the line, at least one of them represents a possible number of
pins that can be removed in accordance with condition (ii).

Let n be a positive integer and the choice set be {n+ 1, . . . , n+ 6}. Suppose that
there are v(n+3)+w pins on the line where v ≥ n+3 and 0 ≤ w ≤ n+2. We begin
by removing either n+ 4, n+ 5 or n+ 6 pins, and continue clearing the line using
one of these three choices. After doing this k times we have removed k(n+3)+wk
pins where 1 ≤ wk − wk−1 ≤ 3 for k ≥ 1. Since w0 = 0 and wn+2 ≥ n + 2, there
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must be a number a ≤ n + 2 for which w − 1 ≤ wa ≤ w + 1. Thus, the first step
is to remove a(n+ 3) + wa pins where a ≤ n+ 2 and w − 1 ≤ wa ≤ w + 1.

We now increase k from a+ 1 to v− 1, with at each stage a total of k(n+ 3) +wk
pins having been removed while ensuring that w− 1 ≤ wk ≤ w+ 1. Suppose that
wa = w − 1. Then if possible remove n+ 3, n+ 4 or n+ 5 pins so that a total of
(a+ 1)(n+ 3) + wa+1 pins have been removed altogether, where w − 1 ≤ wa+1 ≤
w+ 1. If wa = w, we remove either n+ 2, n+ 3 or n+ 4 pins, while if wa = w+ 1,
we can remove either n + 1, n + 2 or n + 3 pins to the same effect. Repeat this
process as long as possible until we end up with removing (v − 1)(n+ 3) + u pins
where w− 1 ≤ u ≤ w+ 1, leaving n+ 3 +w−u pins. This is equal to one of n+ 2,
n+ 3 and n+ 4, so that one further removal takes away all the pins.

Thus we can remove all items from a line with at least (n+ 3)2 pins.

Solution 2, by the proposer and Sergey Sadov, done independently.

To show that c cannot be less than 6, let n ≥ 3 and c = 5. Let the finite sequence

S = {3, 1, 1, . . . , 1, 3; 3, 1, 1, . . . , 1, 3; . . . ; 3, 1, . . . , 1, 3; 3}
denote the number of pins in the items in order on the line, where there are m
blocks {3, 1, 1, · · · , 1, 3} of n−1 integers consisting of two threes separated by n−3
ones, these blocks followed by a single 3.

Since the sum of the first n − 2 terms is n, the corresponding items of clothing
cannot be removed. Since the first n or more terms add up to at least n + 6, we
have no choice but to clear the first n− 1 items by removing n+ 3 pins. Then we
must start afresh with the next block and clear the line block by block until there
is single item secured by three pins. Thus, there are arbitrarily long lines of items
that cannot be cleared.

We now show when c = 6, sufficiently long lines of clothing can be removed. Fix
n. Call a positive integer m removable if any line with m pins can be cleared.
The strategy is to construct a sequence {Sk} of blocks, each with k + 5 integers,
starting with S1 = {n + 1, n + 2, . . . , n + 6} such that each integer in Sk can be
reduced to an integer in Sk−1 by subtracting one of the numbers in S1. Eventually,
the blocks will overlap and together include all the integers from some point on.

Let S2 = {2n + 4, 2n + 5, . . . , 2n + 10}, S3 = {3n + 7, 3n + 8, . . . , 3n + 14}, and,
generally for k ≥ 2,

Sk = {k(n+ 3)− 2, k(n+ 3)− 1, . . . , k(n+ 4) + 1, k(n+ 4) + 2}.
As in solution 1, we can clear a succession of items from the line by taking away
at least one of {n + 1, n + 2, n + 3} pins and also by taking away at least one of
{n+4, n+5, n+6} pins. We follow a two-pronged process to ensure that for large
k, there is no gap between Sk and Sk+1.

Suppose that we have a line with m pins where m ∈ Sk, k ≥ 2. If

k(n+ 3)− 2 ≤ m ≤ k(n+ 3) + (k − 1),
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we can remove one of n+ 1, n+ 2 or n+ 3 to shorten the line, with a number of
pins lying between

k(n+ 3)− 2− (n+ 3) = (k − 1)(n+ 3)− 2

and

k(n+ 3) + (k − 1)− (n+ 1) = (k − 1)(n+ 4) + 2

inclusive, i.e. a number in Sk−1.

If k(n + 3) + k ≤ m ≤ k(n + 4) + 2, we can shorten the line by removing one of
n+ 4, n+ 5, n+ 6 pins to obtain a number between

k(n+ 3) + k − (n+ 6) = (k − 1)(n+ 3) + k − 3 > (k − 1)(n+ 3)− 2

and

k(n+ 4) + 2− (n+ 4) = (k − 1)(n+ 4) + 2

inclusive, i.e. within Sk−1. We can continue on in this way until we get to a line
with a number of pins in S1 which can then be cleared. Thus, by induction, we
see that every integer in each Sk is removable.

The blocks Sk and Sk+1 will abut or overlap iff k(n+4)+2 ≥ [(k+1)(n+3)−2]−1,
which reduces to k ≥ n− 2. Since the smallest integer in Sn−2 is

(n− 2)(n+ 3)− 2 = n2 + n− 8,

then
∞⋃

k=n−2

Sk = [n2 + n− 8,∞).

Therefore, each line with at least n2 + n− 8 pins can be cleared by taking away a
number of pins in S1 each time.

Two notes from the proposer.

(1) When c = 6, we ask whether the number n2 + n − 8 is a hard lower bound
for the number of pins on a line that can always be cleared. For 3 ≤ n ≤ 8, there
are examples of allocations of pins to items of clothing that cannot be cleared
following the rules where the total number of pins is n2 + n − 9. For example,
when n = 5, the line with nine items held by 21 pins with pin number sequence
{3, 2, 3, 1, 3, 1, 3, 2, 3} cannot be cleared if we can remove only 6 to 11 pins each
time. It is worth noting that, for each n from 3 to 8, there are maximal length
nonclearable lines which are palindromes, as in the above example for n = 5.

(2) In 2017, a problem was posed on the Alberta High School Mathematics Com-
petition, Part II, that treated the special case (n, c) = (1, 3). The candidates were
asked to find all finite sequences {ak} where the kth item has ak ∈ {1, 2, 3} pins
for which the line can be cleared. The competition can be found on the website.
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4602. Proposed by Nguyen Viet Hung.

Let ABC be an acute triangle. Prove that

hbhc
a2

+
hcha
b2

+
hahb
c2

=
r

2R
+

2hahbhc
wawbwc

.

We received 27 submissions, all of which are correct. We present the solution by
Marie-Nicole Gras.

The following identities are all well-known:

ha = b sinC = c sinB, wa =
2bc

b+ c
cos

A

2
,

r = 4R sin
A

2
sin

B

2
sin

C

2
, sinA =

a

2R
,

abc = 4rsR = 2(a+ b+ c)rR.

Using these formulas together with similar ones obtained by permutations, we have

hbhc
a2

+
hcha
b2

+
hahb
c2

= sinB sinC + sinC sinA+ sinA sinB =
bc+ ca+ ab

4R2
, (1)

and

2hahbhc
wawbwc

=
2abc(b+ c)(c+ a)(a+ b) sinA sinB sinC

8a2b2c2 cos A2 cos B2 cos C2

=
16(b+ c)(c+ a)(a+ b) sin A

2 cos A2 sin B
2 cos B2 sin C

2 cos C2
8abc cos A2 cos B2 cos C2

=
(b+ c)(c+ a)(a+ b)

abc

r

2R
· (2)

By the identity

(a+ b)(b+ c)(c+ a) = (a+ b+ c)(bc+ ca+ ab)− abc

and the formula that abc = 4rsR, we then obtain

2hahbhc
wawbwc

=
(a+ b+ c)(bc+ ca+ ab)− abc

abc

r

2R

=
2(a+ b+ c)(bc+ ca+ ab)rR

4abcR2
− r

2R

=
bc+ ca+ ab

4R2
− r

2R
· (3)

From (1) and (3) the result follows.

Remark. The condition of 4ABC being acute is redundant.
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4603. Proposed by Michel Bataille.

Let ABC be a triangle. The perpendiculars to AB through A and to AC through
C intersect at D. The perpendiculars to AC through A and to AB through B
intersect at E. Prove that the altitude from A in ∆DAE is a symmedian of
∆ABC.

We received 15 solutions, all correct. The solvers used a variety of analytic methods
involving cartesian and barycentric coordinates. Some of the solutions were pure
geometric including the following by Sergey Sadov.

Let F = EB ∩DC be the fourth vertex of the parallelogram EADF . Denote by
O the center of EADF .

A

B

C
D

E

M
F

O

We have ∠ADC = ∠AEB, hence 4ADC ∼ 4AEB, hence

AC

AB
=
AD

AE
=
EF

AE
. (1)

Now, ∠BAC = ∠EAC − ∠EAB = 90◦ − ∠EAB = ∠AEB. Taking (1) into
account, we find that 4CAB ∼ 4FEA.

Note that EO is the median of 4FEA corresponding to the median AM in the
similar triangle CAB. Hence ∠BAM = ∠AEO.

The assertion that the A-altitude in4ADE is a symmedian of4ABC is equivalent
to the equality of the angles

90◦ − ∠ADE = ∠EAM. (2)

To prove it, write, using the above,

∠EAM = ∠EAB + ∠BAM = 90◦ − ∠AEB + ∠AEO.

Finally, since
∠AEB − ∠AEO = ∠BEO = ∠ADE,

we obtain (2), as required.

Editor’s note. Author of the problem Michel Bataille observed that the result can
be used to construct the symmedians of ∆ABC only with a set square and ruler.
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4604. Proposed by Nguyen Viet Hung.

Prove that the triangle ABC is equilateral if and only if

a sin(A− π

3
) + b sin(B − π

3
) + c sin(C − π

3
) = 0.

We received 27 submissions, of which 2 were incomplete. We present the solution
by UCLan Cyprus Problem Solving Group.

If the triangle is equilateral then the identity obviously holds. So assume now that
the identity holds. Since

sin
(
x− π

3

)
= sin(x) cos

(π
3

)
+ cos(x) sin

(π
3

)
=

sin(x) +
√

3 cos(x)

2
,

then we have that

a sin(A) + b sin(B) + c sin(C) =
√

3 (a cos(A) + b cos(B) + c cos(C)) .

Using a = 2R sin(A), b = 2R sin(B), c = 2R sin(C), we get

sin2(A) + sin2(B) + sin2(C) =

√
3

2
(sin(2A) + sin(2B) + sin(2C)) .

We now see that

sin(2A) + sin(2B) + sin(2C) = 2 sin(A+B) cos(A−B) + sin(2C)

= 2 sin(C) (cos(A−B) + cos(C))

= 2 sin(C) (cos(A−B)− cos(A+B))

= 4 sin(A) sin(B) sin(C)

=
abc

2R3

=
2∆

R2

where R is the circumradius and ∆ is the area of the triangle ABC.

We also have

sin2(A) + sin2(B) + sin2(C) =
a2 + b2 + c2

4R2

from which we deduce that

a2 + b2 + c2 = 4
√

3∆ .

However by Weitzenböck’s inequality we have a2 + b2 + c2 > 4
√

3∆ with equality
if and only if the triangle is equilateral.
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4605. Proposed by George Stoica.

Let {xi}mi=1 be any set of non-zero vectors in Rn. Prove the following:

(1) If 〈xi, xj〉 < 0 for all i 6= j, then m ≤ n+ 1.

(2) If 〈xi, xj〉 ≤ 0 for all i 6= j, then m ≤ 2n.

We received 5 submissions and 4 of them were complete and correct. We present
the following 2 solutions.

Solution 1, by Michel Bataille, Sergey Sadov, and the proposer (independently),
slightly modified by the editor.

(1) We proceed by inducting on the dimension n of the space.

For n = 2, if there are 4 vectors in R2, then by the pigeonhole principle, the
angle formed by 2 of them will be at most π

2 , and thus their inner product will
be non-negative. On the other hand, it is easy to construct three vectors in R2

such that the pairwise inner product is negative, for example (1, 0), (− 1
2 ,
√
3
2 ), and

(− 1
2 ,−

√
3
2 ).

Assuming the result is true for n, now consider the case of n+ 1. Suppose {xi}mi=1

is a set of non-zero vectors in Rn+1, such that 〈xi, xj〉 < 0 for all i 6= j. Without
loss of generality, we can assume that x1 has unit norm. Let P be the orthogonal
projection onto span{x1}. Then Px = 〈x, x1〉x1 for all x ∈ Rn+1. Note that the
set of vectors {(I−P )xi}mi=2 lies on the hyperplane x⊥1 and, for any i 6= j, we have

〈(I − P )xi, (I − P )xj〉 = 〈xi, xj〉 − 〈Pxi, Pxj〉.

Since

〈Pxi, Pxj〉 = 〈〈xi, x1〉x1, 〈xj , x1〉x1〉 = 〈xi, x1〉〈xj , x1〉 > 0,

it follows that

〈(I − P )xi, (I − P )xj〉 < 0 for all i 6= j.

By the induction hypothesis we must have m− 1 ≤ n+ 1. So m ≤ n+ 2.

(2) The proof is similar. First observe that for n = 2, the largest set of non-
zero vectors with non-positive inner products is 4, and one such example is (1, 1),
(1,−1), (−1,−1) and (−1, 1). Repeating the proof as in (1) and noting that the
set {(I − P )xi}mi=2 contains at most one zero vector (otherwise there are xi and
xj with 1 < i < j such that x1, xi, xj are all in span{x1}, and the inner product
between two of them would be positive), we get the desired claim.

From the proof we can deduce the following stronger statement: if {xi}2ni=1 is a set
of non-zero vectors in Rn, such that 〈xi, xj〉 ≤ 0 for all i 6= j, then

{xi}2ni=1 = {e1, e2, . . . , en} ∪ {c1e1, c2e2, . . . , cnen},

where {e1, e2, . . . , en} is an orthogonal basis of Rn, and c1, c2, . . . , cn are negative
scalars.
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Solution 2, by Aart Blokhuis, and UCLan Cyprus Problem Solving Group (inde-
pendently), slightly modified by the editor.

We proceed by complete induction on the dimension n of 〈x1, . . . , xm〉 and show
that m 6 n + 1 in (1) and m 6 2n in (2). In fact we will use induction only for
(2) but we will essentially prove both (1) and (2) at the same time.

If n = 1 the result is easy as no two xi’s can have the same sign. Assume now that
n > 1. We may also assume that m > n as otherwise the claim is immediate. Then
x1, . . . , xm is linearly dependent, and we can pick a minimal non-empty subset I
of {1, 2, . . . ,m} such that the set {xi : i ∈ I} is linearly dependent. Note that
|I| > 2 and that dim span{xi : i ∈ I} = |I| − 1.

Since {xi : i ∈ I} is a minimal linearly dependent set, we can find nonzero reals
λi, i ∈ I, such that ∑

i∈I
λixi = 0 . (1)

We claim that all of the λi’s have the same sign. If this is not the case then we
can find disjoint non-empty sets I1, I2 with I1 ∪ I2 = I, λi > 0 for each i ∈ I1, and
λj < 0 for each j ∈ I2.

Let v =
∑
i∈I1 λixi. By the given assumptions and equation (1), we have

0 6 〈v, v〉 =

∞∑
i∈I1

λixi,
∑
j∈I2

(−λj)xj

∫
=
∑
i∈Ii

∑
j∈I2

λi(−λj) 〈xi, xj〉 6 0 .

It follows that v = 0, which contradicts the minimality of the set I.

So we may assume that all the λi’s are positive. For each j /∈ I, we have

0 = 〈xj , 0〉 =

〈
xj ,
∑
i∈I

λixi

〉
=
∑
i∈I

λi〈xj , xi〉 6 0 .

In case (1), this is impossible as actually the last inequality becomes strict. There-
fore I = {1, 2, . . . ,m} and n = |I| − 1 = m− 1 as required.

In case (2), we have that 〈xj , xi〉 = 0 for every j /∈ I. So each such xj belongs to the
orthogonal complement of span{xi : i ∈ I}, which has dimension n−(|I|−1). Since
|I| > 2, then n−(|I|−1) 6 n−1, so by inductive hypothesis, m−|I| 6 2[n−(|I|−1)].
Thus m 6 2n+ 2− |I| 6 2n.

Editor’s Comment. UCLan Cyprus Problem Solving Group pointed out that a
generalization of both (1) and (2) appears as Lemma 1 of Chapter 10 in the book
B. Bollobás, Combinatorics, Cambridge University Press, 1986.
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4606. Proposed by Garcia Antonio.

For a, b, c, n > 0, show that

(a+ b)

 
na+ b

a+ nb
+ (b+ c)

 
nb+ c

b+ nc
+ (c+ a)

…
nc+ a

c+ na
≥ 2(a+ b+ c).

We received 13 submissions, of which 10 were correct and complete. We present
the solution by Theo Koupelis.

Note that (n+1)(a+ b) = (na+ b)+(a+nb) ≥ 2
√

(na+ b)(a+ nb), with equality
when (n− 1)(a− b) = 0. Therefore

(a+ b)

 
na+ b

a+ nb
=

(a+ b)(na+ b)√
(na+ b)(a+ nb)

≥ 2(na+ b)

n+ 1
.

Similarly

(b+ c)

 
nb+ c

b+ nc
≥ 2(nb+ c)

n+ 1
, and (c+ a)

…
nc+ a

c+ na
≥ 2(nc+ a)

n+ 1
.

Adding these three expressions yields the desired result. Equality holds when
n = 1 or a = b = c.

4607. Proposed by Ted Barbeau.

a) Determine all polynomials q(x) that satisfy the functional equation

q(x)q(x+ 1) = q(x2 + x).

b) Determine all polynomials p(x) that satisfy the functional equation

p(x)p(x+ 1) = p(x+ p(x)).

c) ? Prove or disprove the conjecture: Let p(x) be a polynomial solution of the
functional equation in (b). Then, if q(x) satisfies the functional equation

q(x)q(x+ 1) = q(x+ p(x)),

then q(x) = p(x)n for some nonnegative integer n.

We received 13 submissions and 12 of them were complete and correct. There are
a few different approaches to solve the problem.

Solution 1 of (a), by Michel Bataille, Marie-Nicole Gras, and Sergey Sadov (done
independently).

If q(x) is a constant, then clearly it has to be either 0 or 1.
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Next assume that q(x) has degree n ≥ 1. Write q(x) = anx
n + r(x) where an 6= 0

and r(x) is either 0 or a polynomial with degree m < n. The functional equation
becomes

(anx
n + r(x))(an(x+ 1)n + r(x+ 1)) = anx

n(x+ 1)n + r(x(x+ 1)). (1)

On the left, the term with highest degree is a2nx
2n, while on the right it is anx

2n.
It follows that an = 1 and thus equation (1) can be simplified as

xnr(x+ 1) + (x+ 1)nr(x) = r(x(x+ 1))− r(x)r(x+ 1).

If r(x) is the zero polynomial, then it is easy to verify that q(x) = xn is a solution.
If r(x) is not the zero polynomial, then on the left the degree is n+m while it is
at most 2m on the right, contradicting our assumption that m < n.

Therefore, the solutions to the functional equation are 0, 1, and xn, where n is a
positive integer.

Solution 2 of (a), by Roy Barbara, Cal Poly Pomona Problem Solving Group,
Antonio Garcia, and UCLan Cyprus Problem Solving Group (done independently).

It is easy to check that constant solutions are 0 and 1.

Next assume that q(x) has degree n. Let α be a root of q(x) of maximum modulus.
Then q(α2 + α) = q(α)q(α + 1) = 0, so α2 + α is a root of q(x). Similarly,
(α − 1)2 + (α − 1) = α2 − α is also a root of q(x). By the triangle inequality we
have

|α2 + α|+ |α2 − α| > |α+ α2 − α2 + α| = 2|α| .
By the definition of α we also have |α| > |α2 + α| and |α| > |α2 − α|. So we must
have

|α| = |α2 + α| = |α2 − α| .
If α 6= 0 then we get |α + 1| = |α− 1| = 1. This says that the distance of α from
1 and −1 is equal to 1. This can only happen if α = 0.

Therefore all roots of q(x) are equal to 0 and thus q(x) = Cxn for some constant
C 6= 0. Substituting in the original functional equation we get C = 1, and thus
q(x) = xn.

Solution of (b), by the majority of solvers.

If p(x) is a constant, then clearly it has to be either 0 or 1.

Next assume that p(x) has degree n ≥ 1. Similar to the Solution 1 of (a), we
can show that n = 2 and the leading coefficient of p(x) is 1. Moreover, it is easy
to verify that any monic quadratic p(x) is a solution to the required functional
equation. Therefore, the solutions to the functional equation are 0, 1, and monic
quadratic polynomials.

Several solvers pointed out (c) could be easily disproved, for example we can take
p(x) = x2 and q(x) = x. They also pointed out that (c) is true under extra
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assumptions. We feature the solution by Navid Safaei, slightly modified by the
editor.

We first prove the following more general lemma.

Lemma. Let P,Q,R be non-constant polynomials such that the leading coefficients
of P and Q have the same sign. Then, for each positive integer k, there is at most
one monic polynomial f with degree n, such that f(P (x)) · f(Q(x)) = f(R(x)).

Proof of the lemma. Suppose there are distinct monic polynomials f, g with degree
n such that f(P )f(Q) = f(R) and g(P )g(Q) = g(R). Suppose degP = a and
degQ = b. It follows that degR = a+ b.

Note that f − g is a polynomial with degree m < n, and we have

f(R)− g(R) = f(P )f(Q)− g(P )g(Q) = f(P )(f(Q)− g(Q)) + g(Q)(f(P )− g(P )).

The degrees of f(R)− g(R), f(P )(f(Q)− g(Q)), g(Q)(f(P )− g(P )) are m(a+ b),
na + mb, nb + ma, respectively. Since the leading coefficients of P and Q have
the same sign, it follows that the leading coefficients of f(P )(f(Q) − g(Q)) and
g(Q)(f(P )−g(P )) also have the same sign. Thus the right-hand-side of the above
equation has degree max{na + mb, nb + ma} > m(a + b), which is the degree of
f(R)− g(R), a contradiction. 2

Recall the solutions to (b) are 0, 1, and all monic quadratic polynomials. We
consider the case that p(x) = x2 + (a− 1)x+ b, where a, b are constants. Then it
suffices to solve the following functional equation:

q(x)q(x+ 1) = q(x2 + ax+ b). (2)

Suppose q is a non-constant, then it is easy to verify that q(x) is monic. We
can apply the above lemma to show that for each n, there is at most one monic
polynomial q(x) with degree n satisfying the functional equation (2). Recall that
p(x)p(x+1) = p(x+p(x)), then for any positive integer n, if we let q(x) = (p(x))n,
we have

q(x)q(x+ 1) = (p(x)p(x+ 1))n = (p(x+ p(x)))n = q(x+ p(x)) = q(x2 + ax+ b).

This means if q is a non-constant polynomial such that deg q is even, then the
proposed conjecture is true.

Finally, if q satisfies equation (2) such that deg q = k is odd, by a similar reasoning
as above, q2 also satisfies equation (2), and we must have q(x)2 = (p(x))k. This
implies that p(x) is a perfect square, i.e., (a− 1)2 = 4b.

To conclude, if (a−1)2 = 4b, then the non-constant solutions to (2) are (x+ a−1
2 )n,

where n is any positive integer; if (a − 1)2 6= 4b, then the non-constant solutions
to (2) are (x2 + (a− 1)x+ b)n, where n is any positive integer.

Editor’s Comment. Walther Janous pointed out that (a) has appeared a few times
in the literature; see for example Section 4.5 of Christopher G. Small, Functional
equations and how to solve them, Springer, New York, 2007.
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4608. Proposed by Florin Stanescu.

Calculate

lim
n→∞

Hn+1 +Hn+2 + · · ·+H2n

nHn
,

where Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
, n ≥ 1.

We received 29 submissions, of which 24 were complete and correct. We present
the solution by Samuel Gómez Garćıa.

For each pair of natural numbers n, m we have

Hn+m = Hn +
n+m∑
k=n+1

1

k
.

Thus,

lim
n→∞

Hn+1 +Hn+2 + · · ·+H2n

nHn
= lim
n→∞

nHn +
n

n+ 1
+
n− 1

n+ 2
+ · · ·+ 1

2n
nHn

. (1)

Since 0 <
n− k + 1

n+ k
< 1 for all 1 ≤ k ≤ n, we have

1 <
nHn +

n

n+ 1
+
n− 1

n+ 2
+ · · ·+ 1

2n
nHn

< 1 +
n

nHn
= 1 +

1

Hn
.

Using the fact that Hn → ∞, the Squeeze Lemma gives us that the limit in (1)
equals 1, concluding the calculation of the desired limit.

4609. Proposed by George Apostolopoulos.

Triangle ABC has internal angle bisectors AD, BE and CF , where points D, E
and F lie on the sides BC, AC and AB, respectively. Prove that

AB4 +BC4 + CA4

DE4 + EF 4 + FD4
≥ 16.

We received 12 solutions, all of which were correct. We present the solution by
Subhankar Gayen.

Let a = BC, b = CA, c = AB be the side lengths of the triangle ABC. From the
angle bisector theorem in triangle ABC, it follows that
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AF =
bc

a+ b
and AE =

bc

a+ c
.

By the law of cosines in triangle AEF it follows that

EF 2 = AF 2 +AE2 − 2AF ·AE · cosA

=

Å
bc

a+ b

ã2
+

Å
bc

a+ c

ã2
− 2b2c2

(a+ b)(a+ c)
· b

2 + c2 − a2
2bc

=

Å
bc

(a+ b)(a+ c)

ã2
· bc

(
b2 + c2

)
+ 2abc(a+ b+ c)−

(
b2 + c2 − a2

)
[bc+ a(a+ b+ c)]

bc

=

Å
bc

(a+ b)(a+ c)

ã2
· a

2
(
bc+ a2 + ab+ ac

)
+ 2abc(a+ b+ c)− a(a+ b+ c)

(
b2 + c2

)
bc

=

Å
bc

(a+ b)(a+ c)

ã2
· a

2(a+ b)(a+ c)− a(a+ b+ c)(b− c)2
bc

≤ a2bc

(a+ b)(a+ c)
≤ a2bc

2
√
ab · 2√ac

=
a
√
bc

4
,

where we have used the AM-GM inequality in the last step. Thus

EF 4 ≤ a2bc

16
.

Using similar bounds for DE4 and FD4, we obtain

AB4 +BC4 + CA4

DE4 + EF 4 + FD4
≥ 16

(
a4 + b4 + c4

)
abc(a+ b+ c)

.

We now use the AM-GM inequality repeatedly to get

a4 + b4 + c4 =
a4 + b4

2
+
b4 + c4

2
+
c4 + a4

2

≥ a2b2 + b2c2 + c2a2

= a2
Å
b2 + c2

2

ã
+ b2

Å
c2 + a2

2

ã
+ c2

Å
a2 + b2

2

ã
≥ a2bc+ b2ca+ c2ab

= abc(a+ b+ c).

Thus the desired result follows, and equality holds if and only if triangle ABC is
equilateral.
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4610. Proposed by Albert Natian.

Find the smallest positive number x so that the following three quantities a, b and
c are all integers:

a = a(x) =
4
»

72 +
√

3x +
√

16 + 275x +
√

19 + 288x ,

b = b(x) = 5
3

…
9x

20
+
√

16 + 275x ,

c = c(x) = 7
3

…
2x

15
+ 2
√

3x .

We received 11 solutions, one of which was incorrect. We present the solution by
Sergey Sadov.

The dependence of c on x is monotone. Hence, for any c > 0 there is a unique
positive root x = xc of the third equation and x1 < x2 < . . . . If x1 happens to
yield integer values of a and b, then x1 is the required value.

This is indeed the case, since x1 = 3/400 satisfies the third equation with c = 1
and yields

√
3x =

3

20
,

Å
2x

15

ã1/3
=

1

10
,

Å
9x

20

ã1/3
=

3

20
,
√

16 + 275x =
17

4
,

√
19 + 288x =

23

5
,

a = 3, b = 5.
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