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Editorial /245

EDITORIAL
Ron Graham passed away on July 6th as the year 2020 claimed the life of another
mathematical legend.

Richard Guy, John Conway, Ron Graham. I’m lucky to have met each of these
mathematicians in person, even share a glass of wine with John Conway. To me,
this is a short list of candidates for “If you could have dinner with anyone, who
would it be?” But enough is enough 2020. I’d like to have at least a hypothetical
opportunity to still meet some of my favourite mathematicians in person.

Kseniya Garaschuk

The problem with juggling is that the balls go where you throw them. Just as the
problem with programming is that the computer does exactly what you tell it.

Ron Graham with cartoon by John de Pillis.

Copyright © Canadian Mathematical Society, 2020
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MATHEMATTIC
No. 16

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by September 15, 2020.

MA76. The sum of two real numbers is n and the sum of their squares is
n+ 19, for some positive integer n. What is the maximum possible value of n?

MA77. In a regular decagon, all diagonals are drawn. If a diagonal is chosen
at random, what is the probability that it is neither one of the shortest nor one of
the longest?

MA78. Let T (n) be the digit sum of a positive integer n; for example,
T (5081) = 5 + 0 + 8 + 1 = 14. Find the number of three-digit numbers that satisfy
T (n) + 3n = 2020.

MA79. Suppose BD bisects ∠ABC, BD = 3
√

5, AB = 8 and DC = 3
2 . Find

AD +BC.

MA80. Suppose ABCD is a parallelogram. Let E and F be two points on
BC and CD, respectively. If CE = 3BE, CF = DF , DE intersects AF at K and
KF = 6, find AK.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problémes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 septembre 2020.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

MA76. La somme de deux nombres réels est n tandis que la somme de leurs
carrés est n + 19, où n est un entier positif. Déterminer la plus grande valeur
possible pour n.

MA77. On considère toutes les diagonales d’un décagone régulier. Si une
d’entre elles est choisie aléatoirement, quelle est la probabilité qu’elle est ni la plus
courte ni la plus longue?

MA78. Soit T (n) la somme des chiffres d’un entier positif n; par exemple,
T (5081) = 5 + 0 + 8 + 1 = 14. Déterminer le nombre d’entiers à trois chiffres tels
que T (n) + 3n = 2020.

MA79. Supposer que BD bissecte ∠ABC, puis que BD = 3
√

5, AB = 8 et
DC = 3

2 . Déterminer AD +BC.

MA80. Soit ABCD un parallélogramme. Soient aussi E et F deux points, sur
BC et CD respectivement. Supposer que CE = 3BE et CF = DF , puis que DE
intersecte AF en K et que KF = 6. Déterminer AK.

Copyright © Canadian Mathematical Society, 2020
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2020: 46(1), p. 4–7.

MA51. Find all non-negative integers x, y, z satisfying the equation

2x + 3y = 4z.

Proposed by Nguyen Viet Hung.

We received 10 complete and correct and 2 incomplete submissions. We present
the solution by the Sigma Problem Solving Group.

We use 4z = 22z to rewrite the equation from the problem as

3y = 22z − 2x.

Since 3y > 0, we obtain 2z > x and thus z 6= 0. If x 6= 0 as well then the right
hand side of the equation above is even, while the left hand side is odd. Thus
x = 0 and we have

3y = 22z − 1 ⇐⇒ 3y = (2z + 1)(2z − 1).

Since 2z + 1 and 2z − 1 cannot both be multiples of 3 we must have 2z − 1 = 1.
Thus the only solution to the problem is x = 0, y = 1, z = 1.

MA52. The diagram shows part of a tessellation of the plane by a quadrilateral.
Khelen wants to colour each quadrilateral in the pattern.

1. What is the smallest number of colours he needs if no two quadrilaterals that
meet (even at a point) can have the same colour?

2. Suppose that quadrilaterals that meet along an edge must be coloured differ-
ently, but quadrilaterals that meet just at a point may have the same colour.
What is the smallest number of colours that Khelen would need in this case?

Crux Mathematicorum, Vol. 46(6), June 2020
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3. What is the smallest number of colours needed to colour the edges so that
edges that meet at a vertex are coloured differently?

Originally Problem 6 (and its extensions) of the 2019 UK Intermediate Mathemat-
ical Challenge.

We received 3 submissions, one of which was complete. We present the solution
by the Sigma Problem Solving Group, lightly edited.

1. Four quadrilaterals meet at each vertex, so Khelen requires at least four
colours. To show that four colours suffice, we colour each vertical strip by
the colours yellow, red, blue, and green, repeating the colours in this order,
with the colourings of two adjacent vertical strips shifted by two colours. A
sample of a section is shown.

2. Two quadrilaterals share an edge, so Khelen requires at least two colours. A
section of a sample colouring with two colours is shown.

3. Four edges meet at each vertex, so Khelen needs at least four colours. A
section of a sample colouring with four colours is shown.

Copyright © Canadian Mathematical Society, 2020
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MA53. Find all positive integers m and n which satisfy the equation

23 − 1

23 + 1
· 33 − 1

33 + 1
· · · m

3 − 1

m3 + 1
=
n3 − 1

n3 + 2
.

Proposed by John McLoughlin.

We received 4 submissions of which 3 were correct and complete. We present the
solution by Derek Dong.

Checking m = 2, 3, 4 and n = 1, 2, we find of those only (m,n) = (4, 2) works.
Now notice m2 +m+ 1 = (m+ 1)2 − (m+ 1) + 1, so the left side telescopes into

LHS =
(3− 2)(32 − 3 + 1) · · · ((m+ 1)− 2)((m+ 1)2 − (m+ 1) + 1)

(23 + 1)(3 + 1)(32 − 3 + 1) · · · (m+ 1)(m2 −m+ 1)

=
2(m2 +m+ 1)

3(m2 +m)

=
2

3
+

2

3(m2 +m)
.

Now note the right side equals
n3 − 1

n3 + 2
= 1 − 3

n3 + 2
. Subtracting each side from

1,
m2 +m− 2

3(m2 +m)
=

3

n3 + 2
,

or
m2 +m− 2

m2 +m
=

9

n3 + 2
.

Now notice that when m > 4, the left side is greater than 9
10 , and when n > 2,

the right side is less than 9
10 , so there are no solutions when m > 4 and n > 2, so

the only solution is (m,n) = (4, 2).

MA54. How many six-digit numbers are there, with leading 0s allowed, such
that the sum of the first three digits is equal to the sum of the last three digits,
and the sum of the digits in even positions is equal to the sum of the digits in odd
positions?

Originally problem 2 from the 1969 Leningrad Math Olympiad, Grade 9.

We received 6 submissions, out of which 5 were correct and complete. We present
the solution by Derek Dong, slightly modified by the editor.

The answer is 6700. If we write the six digits as abcdef , we are given that

a+ b+ c = d+ e+ f

a+ c+ e = b+ d+ f.

Subtracting the second equation from the first gives

b− e = e− b

Crux Mathematicorum, Vol. 46(6), June 2020
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and thus b = e and a+ c = d+ f . The value of a+ c can be anything between 0
and 18, thus the number of possibilities for a, c, d, f is

12 + 22 + · · ·+ 92 + 102 + 92 + · · ·+ 22 + 12 =
10 · 11 · 21

6
+

9 · 10 · 19

6
= 670.

For b and e there are ten possibilities, yielding 670 ·10 = 6700 possibilities in total.

MA55. The diagram shows three touching semicircles with radius 1 inside
an equilateral triangle, which each semicircle also touches. The diameter of each
semicircle lies along a side of the triangle. What is the length of each side of the
equilateral triangle?

Originally Problem 25 of the 2019 UK Intermediate Mathematical Challenge.

We received 7 submissions, all are correct. We present two solutions.

Solution 1, by Missouri State University Problem Solving Group.

Denote the vertices of the triangle by A,B,C and the centers of the semicircles
by X,Y, Z as shown in the figure. We have XY = XZ = 2. Let T be the foot
of the perpendicular from X to AC. Since XZ = 2 and XT = 1, 4XTZ is a
30◦−60◦−90◦ triangle. Therefore 4AXZ and 4BYX are as well. Consequently

AX

XZ
= cot 60◦ =

√
3

3
and

BX

XY
= csc 60◦ =

2
√

3

3
.

Copyright © Canadian Mathematical Society, 2020
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Therefore

AX =
2
√

3

3
, BX =

4
√

3

3
, and AB = 2

√
3.

Solution 2, by Richard Hess.

In the figure below, the unit circles define the triangle ABC. It is clear the
lengths DA and EC are equal so that the side of triangle ABC is the same length
as DE = 2

√
3.

Crux Mathematicorum, Vol. 46(6), June 2020
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TEACHING PROBLEMS
No. 11

Erick Lee

The Pizza Problem

Alice and Bob are hungry but very polite friends who decide to share
a pizza. The pizza is sliced into any number of pieces of various sizes.
Each slice is a sector of the circle. They agree on the following terms:

(i) They will alternate turns selecting one slice of pizza;

(ii) Alice will start by selecting any slice she wishes;

(iii) After the first slice, only pieces adjacent to the already-eaten
pieces may be selected. This means that on Bobs first turn, he
may only select one of the two slices adjacent to the slice that
Alice just took.

Alice and Bob continue selecting pieces until none remain. What strat-
egy might Alice and Bob use to get the largest share of the pizza?

The problem above comes from Dr. Peter Winkler, a professor of mathematics
at Dartmouth College in New Hampshire, USA. He originally posed this problem
at the Building Bridges mathematics and computer science conference held in
Budapest in 2008.

A simple way to introduce this problem is to
create a pizza using a blank hundredths circle
printed on a sheet of paper. Start by dividing
the hundredths circle into an even number of
pieces of varying sizes (as in the example shown
at right). Using an even number of pieces ap-
peals to students idea of a fair game. Cut the
circle into wedges to create the pizza slices. Ask
one student to put the wedges together and
the other student to be the first player. Stu-
dents alternate taking slices of pizza until all
the slices are gone. Then they can add up the
values of their slices to see who has ended up
with the most pizza. This is a purposeful way for students to practice addition
and logical reasoning skills. To be successful, students will need to use estimation
strategies to predict successful courses of action. This game can be enjoyed by
even elementary school age students.

This game can be played with pencil and paper, with students crossing off sections
of pizza as they are claimed, but cutting up the slices so they can be physically

Copyright © Canadian Mathematical Society, 2020
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selected adds an extra dimension to the game. It also allows you to quickly create
a new pizza with slices in different arrangements.

Students should be encouraged to seek a winning strategy. The first player in this
game, when there are an even number of slices, can always be assured of getting
at least half of the pizza. Think of colouring alternate pieces of the pizza different
colours. Sum the total of each different colour to see which one has the largest

portion of the pizza. In the example on the left, the
grey slices total 61 while the white slices total 39. If
the starting player chooses a grey slice, in this case
the slice with a value of 25, the opposing player will
only be able to select between two different white
slices, either the 16 or the 11. The first player then
continues to select a grey slice from the same side
that the opposing player has picked from. In this
manner, the starting player can be assured to select
all the slices of the same colour.

Students may struggle to come up with a strategy like this on their own. You
might actually play the game with an even number of alternately coloured slices.
Ask students to notice which colour slices each player has available to them on
their turn. They should notice that the second player will always have only white
slices to choose from provided that the starting player always chooses grey slices.
To prompt their thinking, or to start a class discussion once students have had
time to explore this game, you might pose a question like the one below.

Instead of using whole number value slices, older students can be challenged to
play the same game with the entire pizza having a value of 1 and each slice having
a fractional value. Start with an already created pizza for students and later
challenge them to create their own game board. Creating a list of fractions that
sum to one is an open question that can be a challenge in itself for some junior high
students. Pizzas may have an even or an odd number of slices. Once students have
discovered the strategy discussed above for an even number of slices, encourage
them to explore pizzas with an odd number of slices.

Crux Mathematicorum, Vol. 46(6), June 2020
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Kolja Knauer, Piotr Micek and Torsten Ueckerdt collaborated on an article titled
“How to Eat 4/9th of a Pizza” in the journal Discrete Mathematics (Volume 311,
Issue 16, 2011, Pages 1635-1645) and at https://arxiv.org/abs/0812.2870.
The authors describe several strategies for the first player to eat as large a portion
of the pizza as possible. They start with the proposition that the first player can
eat at least 1/2 of a pizza with an even number of slices as was described above.
Using the same strategy, the first player can also eat at least 1/3 of a pizza with
an odd number of slices. Using a modified version of this strategy, they show that
the first player can eat at least 3/7 of any pizza. They further refine this strategy
to show that the first player can eat at least 4/9 of any pizza. The authors prove
that 4/9 of any pizza is the best that the first player can be guaranteed to achieve
in a pizza with an odd number of slices.

Dr. Winkler is a prolific creator of mathematical puzzles. For additional problems,
I highly recommend his book Mathematical Puzzles: A Connoisseur’s Collection
published in 2003. Dr. Peter Winkler is a professor of mathematics at Dartmouth
College in New Hampshire, USA. His puzzle book was reviewed by Peter Hardy
in Crux Mathematicorum, Vol. 30 Number 7.

A Follow Up Problem – The Pizza Race Problem

Keyue Gao, proposed a variation on the Pizza Problem – The Pizza Race Problem
(see https://arxiv.org/abs/1212.2525). In this variation, time is included as
a factor. Players eat pizza at the same rate and can only select their next slice
once they have finished eating their current slice. A player might opt to take a
smaller slice in order to get two selections in a row while the other player is still
finishing their slice. Give this version of the game a try. Do you think this change
helps the starting player or makes it harder for them? Once you have given it a
try, check out Gao’s paper to see the strategy that he describes and how much of
the pizza that the starting player can achieve.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Erick Lee is a Mathematics Support Consultant for the Halifax Regional Centre
for Education in Dartmouth, NS. Erick blogs at https://pbbmath.weebly.com/

and can be reached via email at elee@hrce.ca and on Twitter at @TheErickLee.
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OLYMPIAD CORNER
No. 384

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by September 15, 2020.

OC486. There are 2017 points in the plane such that among any three of
them two can be selected so that their distance is less than 1. Prove that there is
a circle of radius 1 containing at least 1009 of the given points.

OC487. Let a, b, c be real numbers such that 1 < b ≤ c2 ≤ a10 and

loga b+ 2 logb c+ 5 logc a = 12.

Show that
2 loga c+ 5 logc b+ 10 logb a ≥ 21.

OC488. Prove that the equation

(x2 + 2y2)2 − 2(z2 + 2t2)2 = 1

has infinitely many integer solutions.

OC489. The incircle of a triangle ABC touches AB and AC at points D and
E, respectively. Point J is the center of the excircle of triangle ABC tangent to
side BC. Points M and N are midpoints of segments JD and JE, respectively.
Lines BM and CN intersect at point P . Prove that P lies on the circumcircle of
triangle ABC.

OC490. Find the smallest prime number that cannot be written in the form∣∣2a − 3b
∣∣ with nonnegative integers a, b.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 septembre 2020.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

OC486. Il y a 2017 points dans le plan avec la propriété que pour trois
quelconques d’entre eux, on peut en choisir deux qui sont à distance inférieure à 1.
Démontrer qu’il existe un cercle de rayon 1, contenant au moins 1009 des points
donnés.

OC487. Soient a, b, c des nombres réels tels que 1 < b ≤ c2 ≤ a10 et

loga b+ 2 logb c+ 5 logc a = 12.

Démontrer que
2 loga c+ 5 logc b+ 10 logb a ≥ 21.

OC488. Démontrer que l’équation

(x2 + 2y2)2 − 2(z2 + 2t2)2 = 1

possède un nombre infini de solutions entières.

OC489. Le cercle inscrit du triangle ABC touche AB et AC en D et E
respectivement. Le point J est le centre du cercle exinscrit du triangle ABC,
tangent au côté BC. Les points M et N sont les mi points des segments JD et
JE respectivement. Enfin, les lignes BM et CN intersectent en P . Démontrer
que P se trouve sur le cercle circonscrit du triangle ABC.

OC490. Déterminer le plus petit nombre premier ne pouvant pas être
représenté sous la forme

∣∣2a − 3b
∣∣, où a et b sont des entiers non négatifs.

Copyright © Canadian Mathematical Society, 2020
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2020: 46(1), p. 18–19.

OC461. Let A and B be two finite sets. Determine the number of functions
f : A → A with the property that there exist two functions g : A → B and
h : B → A such that g(h(x)) = x ∀x ∈ B and h(g(x)) = f(x) ∀x ∈ A.

Originally from 2017 Romanian Math Olympiad, 4th Problem, Grade 10, Final
Round.

We received 5 correct submissions. We present the solution by Missouri State
University Problem Solving Group.

Let |A| = m and |B| = n. Since g(h(x)) = x, for all x ∈ B, h is injective, so
|B| = |h(B)|. Let h(b) ∈ h(B). Then f(h(b)) = h(g(h(b)) = h(b), i.e., f restricted
to h(B) is the identity function. There are

(
m
n

)
ways of choosing this subset. The

elements of A−h(B) must be mapped to h(B) and there are nm−n such functions.
This gives an upper bound of Ç

m

n

å
nm−n

on the number of such f .

For any C ⊆ A with |C| = |B| and any function φ : A − C → C, define fC,φ as
follows

fC,φ(x) =

ß
x if x ∈ C

φ(x) if x /∈ C .

We will first show that fC,φ satisfies the hypotheses. Without loss of generality,
we may assume that B = {1, 2, . . . ,m} and C = {c1, . . . , cm}. Let

hC(i) = ci, i = 1, . . . ,m

gC,φ(x) = i if x = ci or φ(x) = ci.

It is immediate that gC,φ(hC(i)) = i for all i ∈ B and hC(gC,φ(x)) = fC,φ(x) for
all x ∈ A.

We claim that if (C1, φ1) 6= (C2, φ2), then fC1,φ1 6= fC2,φ2 . If C1 6= C2, then there
is an x ∈ C1 − C2. Therefore fC1,φ1(x) = x ∈ C1 cannot equal fC2,φ2(x) ∈ C2. If
C1 = C2, but φ1 6= φ2, there is an x ∈ A− C1 = A− C2 such that

fC1,φ1
(x) = φ1(x) 6= φ2(x) = fC2,φ2

(x).

This shows that
(
m
n

)
nm−n is a lower bound for the number of f satisfying the

conditions of the problem. Therefore the number of such f is exactlyÇ
m

n

å
nm−n.

Crux Mathematicorum, Vol. 46(6), June 2020
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OC462. The integers a1, a2, . . . , an satisfy

1 < a1 < a2 < . . . < an < 2a1.

If m is the number of distinct prime factors of a1a2 · . . . · an, then prove that

(a1a2 · . . . · an)m−1 ≥ (n!)m.

Originally from 2017 Poland Math Olympiad, 3rd Problem, Final Round.

We received 3 submissions, all correct. We present the solution by Oliver Geupel.

Let p be any prime divisor of a1a2 · . . . · an, let νp(a) denote the exponent of p
in the prime factorisation of the natural number a, and let bk = ak/p

νp(ak) where
1 ≤ k ≤ n. If j and k are indices such that 1 ≤ j < k ≤ n and bj = bk, then we
have pνp(aj) = aj/bj < ak/bk = pνp(ak) and thus

p ≤ pνp(ak)

pνp(aj)
=
bkp

νp(ak)

bjpνp(aj)
=
ak
aj

< 2,

which is impossible. Hence, the numbers b1, b2, . . ., bn are distinct.

We obtain b1b2 · . . . · bn ≥ n!; whence

a1a2 · . . . · an =
n∏
k=1

bkp
νp(ak) =

(
n∏
k=1

bk

)(
n∏
k=1

pνp(ak)

)
≥ n!pνp(a1a2·...·an)

If p1, p2, . . ., pm are the distinct prime divisors of a1a2 · . . . · an, we have

m∏
k=1

p
νpk (a1a2·...·an)
k = a1a2 · . . . · an.

Consequently,

(a1a2 · . . . · an)m ≥ (n!)m ·
m∏
k=1

p
νpk (a1a2·...·an)
k = (n!)m · a1a2 · . . . · an.

Hence the result.

OC463. A 6× 6 table is filled with the integers from 1 to 36.

(a) Give an example of such a fill of the table so that the sum of every two numbers
in the same row or column is greater than 11.

(b) Prove that in some row or column, no matter how you fill the table, you will
always find two numbers whose sum does not exceed 12.

Originally from 2017 Czech-Slovakia Math Olympiad, 2nd Problem, Category C,
Second Round.
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We received 7 correct submissions. We present the solution by Oliver Geupel.

The following table gives an example for part (a):

1 12 13 14 15 16
17 2 18 19 20 21
22 23 3 24 25 26
27 28 29 4 30 31
32 33 34 35 5 36
11 10 9 8 7 6

It is enough to check the pairs of numbers from 1, 2, . . . , 10 that are in the same
row or column, which is straightforward.

Moving on to part (b), let us suppose that we have a table where all sums of pairs
of numbers in the same row or column are at least 13. Then, the six numbers
1, 2, . . . , 6 are in distinct rows and in distinct columns. Hence, every row and
every colum of the table contains exactly one of the numbers 1, 2, . . . , 6. Then,
the number 7 shares a common row with one of these numbers and also a common
column with another one. That is, the number 7 is in a common row or column
with a number from 1, 2, . . . , 5, a contradiction. The result (b) follows.

OC464. Given an acute triangle ABC with orthocenterH. The angle bisector
of ∠BHC intersects side BC at D. Let E and F be the symmetric points of D
with respect to lines AB and AC, respectively. Prove that the circumcircle of
triangle AEF passes through the midpoint G of arc BAC.

Originally from 2017 Czech-Slovakia Math Olympiad, 5th Problem, Category A,
Final Round.

We received 9 submissions. We present 2 solutions.

Solution 1, by Bui Nguyen Huu An.

See the picture on the next page.

Let (O) be the circumcircle of triangle ABC. Let G be the midpoint of arc BAC
of (O). Let AH intersect (O) at K. It is clear that we only need to prove EAGF
is cyclic.

Observe that ∠HBC=∠HAC=∠KBC. Therefore, K is the reflection of H across
BC. It follows that

DB

DC
=
HB

HC
=
KB

KC
.
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A

B C

H

D

E

F

G

K

We conclude that KD is the angle bisector of ∠BKC so KD passes through the
midpoint G of arc BAC of (O). Hence

⇒ ∠DFC = ∠FDC = 900 − ∠DCA = ∠KAC = ∠KGC = ∠DGC.

Therefore, GFCD is cyclic. Analogously, GEBD is cyclic.

We obtain,

∠EGF = ∠EGD + ∠DGF

= 1800 − ∠EBD + 1800 − ∠FCD

= 3600 − 2∠ABC − 2∠ACB

= 3600 − 2(1800 − ∠BAC)

= 2∠BAC

= 2(∠BAD + ∠DAC)

= ∠EAD + ∠FAD

= ∠EAF

⇒ EAGF is cyclic.
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Solution 2, by Oliver Geupel.

Let Γ and Γ′ denote the circumcircles of triangles ABC and BCH, respectively,
and let A′ denote the second point of intersection of Γ and the line AH. The

perpendicular bisector of BC intersects the longer arc B̃C of circle Γ′ at a point
G′ which lies on the line DH. Hence, the point D is the intersection of the chords
BC and G′H of Γ′. Since ∠BHC = 180◦ − Â, the circles Γ and Γ′ are symmetric
with respect to reflection in the axis BC. Thus, the point D is also the intersection
of the chords BC and A′G of Γ.

Consider the problem in the plane of complex numbers such that Γ is the unit
circle. We will denote by the lower-case letter m the affix of any point M . There
is no loss of generality in assuming that g = 1. Then, bc = 1, aa′ = −1, and

d =
a′g(b+ c)− bc(a′ + g)

a′g − bc =
− 1
a (b+ c)−

(
− 1
a + 1

)
− 1
a − 1

=
a+ b+ c− 1

a+ 1
.

If P is the foot of the perpendicular from D to AB, then

p =
(
a+ b+ d− abd

)
/2

and e− d = 2(p− d). Therefore,

e = a+ b− abd

and similarly
f = a+ c− acd.

Hence
f − a
e− a =

c

b
.

A tedious but straightforward calculation gives

c(e− g)

b(f − g)
=
c(a+ b− 1)(a+ 1)− a(ab+ ac+ 1− a)

b(a+ c− 1)(a+ 1)− a(ab+ ac+ 1− a)
=

1 + a2 − a2b− c
1 + a2 − a2c− b ,

and the conjugate of

z = (1 + a2 − a2b− c)/(1 + a2 − a2c− b)

is
1 + 1

a2 − c
a2 − b

1 + 1
a2 − b

a2 − c
=
a2 + 1− c− a2b
a2 + 1− b− a2c = z,

so that z = z. Hence, the complex number

(f − a)(e− g)

(e− a)(f − g)

is real. This proves that the points A, E, F , and G are concyclic.
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OC465. The sequence (an) is defined by

a1 = 1, an = b
√

2an−1 + an−2 + · · ·+ a1c if n > 1.

Find a2017.

Originally from 2017 Bulgaria Math Olympiad, 3rd Problem, Grade 10, Second
Round.

We received 10 submissions. We present the solution by UCLan Cyprus Problem
Solving Group.

We will prove, by induction on n, that a2n = a2n+1 = n for every n > 1. In
particular we get that a2017 = 1008.

There is some ambiguity on whether a2 =
ö√

1
ù

or a2 =
ö√

2
ù

but in both cases

we get a2 = 1 and thus a3 =
⌊√

2 + 1
⌋

= 1. So the claim is true for n = 1.

Assume the claim is true for n = k. Then

a2n+2 =
ö√

2a2n+1 + a2n + · · ·+ a1
ù

=
⌊»

2n+ n+ 2((n− 1) + (n− 2) + · · ·+ 1) + 1
⌋

=
⌊»

n+ n(n+ 1) + 1
⌋

= n+ 1

and therefore

a2n+3 =
ö√

2a2n+2 + a2n+1 + · · ·+ a1
ù

=
⌊»

2(n+ 1) + 2(n+ (n− 1) + · · ·+ 1) + 1
⌋

=
⌊»

(n+ 2)(n+ 1) + 1
⌋

= n+ 1

as (n+ 1)2 = n2 + 2n+ 1 < n2 + 3n+ 3 < n2 + 4n+ 4 = (n+ 2)2.

So the claim is true for every n > 1.
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by September 15, 2020.

4551. Proposed by Michel Bataille.

Let ABC be a triangle with sides BC = a,CA = b and AB = c. Suppose b > c
and let A1, A2 be the two points such that ∆A1BC and ∆A2BC are equilateral.
Express the circumradius of ∆AA1A2 as a function of a, b, c.

4552. Proposed by Anupam Datta.

Given positive integers a, b and n, prove that the following are equivalent:

1. b ≡ ax (mod n) has a solution with gcd(x, n) = 1;

2. b ≡ ax (mod n) and a ≡ by (mod n) have solutions x, y ∈ Z;

3. gcd(a, n) = gcd(b, n).

4553. Proposed by Daniel Sitaru.

Find

lim
n→∞

(∫ 1

0
x2(x+ n)ndx

(n+ 1)n

)

4554. Proposed by George Stoica.

Let ε be a given constant with 0 < ε < 1, and let (an) be a sequence with
0 ≤ an < ε for all n ≥ 1. Prove that (1 − an)n → 1 as n → ∞ if and only if
nan → 0 as n→∞.

4555. Proposed by Michael Rozenberg and Leonard Giugiuc.

Prove that if a, b, c and d are positive numbers that satisfy

ab+ bc+ cd+ da+ ac+ bd = 6,

then

a+ b+ c+ d ≥ 2
»

(a2 + b2 + c2 + d2)abcd.

When does the equality hold?
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4556. Proposed by Marian Cucoanes and Lorean Saceanu.

Let x ≥ 1 be a real number and consider a triangle ABC. Prove that

(x− cosA)(x− cosB)(x− cosC)

(x+ cosA)(x+ cosB)(x+ cosC)
≤
ï

(3x− 1)R− r
(3x+ 1)R+ r

ò3
.

When does the equality hold?

4557. Proposed by George Apostolopoulos.

Let ma, mb and mc be the lengths of the medians of a triangle ABC with circum-
radius R and inradius r. Let a, b and c be the lengths of the sides of ABC. Prove
that

24r2

R
≤ a2

ma
+

b2

mb
+

c2

mc
≤ 4r2 − 2Rr

r
.

4558. Proposed by Thanos Kalogerakis, Leonard Giugiuc and Kadir Altintas.

Consider a diagram below, where triangle SAT is right-angled and tanT > 2. The
point K lies on the segment ST such that SK = 2KT . The circle centered at K
with radius KS intersects the line AT at P and Q. Point D is the projection of S
on AT and E is a point on AT such that D lies on AE and AD = 2DE. Finally,
suppose that SQ and SP intersect the perpendicular at E on AT at B and C
respectively. Prove that S is the incenter of the triangle ABC.
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4559. Proposed by Nho Nguyen Van.

Let xk be positive real numbers. Prove that for every natural number n ≥ 2, we
have (

n∑
k=1

x10k

)3

≥
(

n∑
k=1

x15k

)2

4560. Proposed by Mihaela Berindeanu.

Let E and F be midpoints on the respective sides CA and AB of triangle ABC, and
let P be the second point of intersection of the circles ABE and ACF . Prove that
the circle AEF intersects the line AP again in the point X for which AX = 2XP .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

https://xkcd.com/2322/
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposś dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 septembre 2020.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

4551. Proposé par Michel Bataille.

Soit ABC un triangle où BC = a,CA = b et AB = c. Si b > c et si A1, A2 sont
les deux points tels que 4A1BC et 4A2BC sont équilatéraux, exprimer le rayon
du cercle circonscrit de 4AA1A2 en termes de a, b et c.

4552. Proposé par Anupam Datta.

Soient a, b et n des entiers positifs. Démontrer que les affirmations suivantes sont
équivalentes:

1. b ≡ ax (mod n) a une solution telle que pgcd(x, n) = 1;

2. b ≡ ax (mod n) et a ≡ by (mod n) ont des solutions x, y ∈ Z;

3. pgcd(a, n) = pgcd(b, n).

4553. Proposé par Daniel Sitaru.

Déterminer

lim
n→∞

(∫ 1

0
x2(x+ n)ndx

(n+ 1)n

)

4554. Proposé par George Stoica.

Soit ε une constante telle que 0 < ε < 1, et soit (an) une suite telle que 0 ≤ an < ε
pour tout n ≥ 1. Démontrer que (1− an)n → 1 lorsque n→∞ si et seulement si
nan → 0 lorsque n→∞.

4555. Proposé par Michael Rozenberg et Leonard Giugiuc.

Démontrer que si a, b, c et d des nombres positifs tels que

ab+ bc+ cd+ da+ ac+ bd = 6,

alors
a+ b+ c+ d ≥ 2

»
(a2 + b2 + c2 + d2)abcd.

Quand l’égalité tient-elle?
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4556. Proposé par Marian Cucoanes et Lorean Saceanu.

Considérer le triangle ABC et x ≥ 1 un nombre réel. Démontrer que

(x− cosA)(x− cosB)(x− cosC)

(x+ cosA)(x+ cosB)(x+ cosC)
≤
ï

(3x− 1)R− r
(3x+ 1)R+ r

ò3
.

Quand l’égalité tient-elle?

4557. Proposé par George Apostolopoulos.

Soient ma,mb et mc les longueurs des médianes d’un triangle ABC dont les
longueurs des côtés sont a, b et c, et dont les rayons des cercles circonscrit et
inscrit sont R et r respectivement. Démontrer que

24r2

R
≤ a2

ma
+

b2

mb
+

c2

mc
≤ 4r2 − 2Rr

r
.

4558. Proposé par Thanos Kalogerakis, Leonard Giugiuc et Kadir Altintas.

Le diagramme ci-bas montre un triangle rectangle SAT tel que tanT > 2. Le
point K se trouve sur le segment ST de façon à ce que SK = 2KT . Le cercle
centré à K de rayon KS intersecte la ligne AT en P et Q. Le point D est la
projection de S vers AT et E est un point sur AT tel que D se trouve sur AE et
AD = 2DE. Enfin, supposer que SQ et SP intersectent la perpendiculaire, vers
AT au point E, dans les points B et C respectivement. Démontrer que S est le
centre du cercle inscrit du triangle ABC.
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4559. Proposé par Nho Nguyen Van.

Soient xk des nombres réels positifs. Démontrer, pour chaque nombre naturel
n ≥ 2, que (

n∑
k=1

x10k

)3

≥
(

n∑
k=1

x15k

)2

4560. Proposé par Mihaela Berindeanu.

Soient E et F les mi points des côtés CA et AB du triangle ABC, respectivement,
et soit P le deuxième point d’intersection des cercles ABE et ACF . Démontrer
que le cercle AEF intersecte la ligne AP , de nouveau, dans le point P pour lequel
AX = 2XP .

https://xkcd.com/2302/
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2020: 46(1), p. 32–35.

4501. Proposed by Václav Konec̆ný, modified by the Board.

Given the rectangle whose vertices have Cartesian coordinates A(0, b), B(0, 0),
C(a, 0), D(a, b), find the equation of the locus of points P (x, y) in the third quad-
rant (with x, y < 0) for which ∠BPA = ∠CPD.

Comment from the proposer: this problem was inspired by problem #4301 in Crux
44(1) proposed by Bill Sands.

We received 14 submissions, all complete and correct. Our featured solution is by
Ivko Dimitrić.

Since ∠BPA = ∠CPD, equal-length segments AB and CD subtend equal angles
at P. It follows that the circumcircles of triangles BPA and CPD must have
the same radius. The sides AB and CD of the rectangle are parallel chords of
these two circumcircles, so their respective centers N and M lie on the common
perpendicular bisector of AB and CD (the line y = b/2). Then NB and MC
have the same length, namely the common radius of the two circumcircles. Since
MN ‖ BC, the quadrilateral BCNM is either a parallelogram or an equilateral
trapezoid. Because P is in the third quadrant while the rectangle is in the first,
triangles PBA and PCD are obtuse, so N and B lie on the opposite sides of line
AP ; hence ∠NBC is obtuse. Likewise, M and C are separated by the line PD and
thus ∠MCB is acute. Therefore, BCMN is a parallelogram. Let coordinates of
M be M(t, b/2) for some real number t. Since MN = CB, then N has coordinates
N(t−a, b/2). Point P in the third quadrantQ is one of the two points of intersection
of the two congruent circumcircles, so its distance to M and N is the same as
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the radius of either circle, say NB. Moreover, since PN = PM , P lies on the
perpendicular bisector of MN. Since the midpoint S of MN is S(t− a

2 ,
b
2 ), point

P lies on the line x = t − a
2 (where the circles centered at N and M , both of

squared radius equal to NB2 = (t− a)2 + b2

4 , meet). The intersection of the two
circles and the bisector of MN is obtained by solving

(x− t)2 +
(
y − b

2

)2
= (t− a)2 +

b2

4
, x = t− a

2
. (1)

Eliminating t = x+ a
2 from (1) gives

a2

4
+
(
y − b

2

)2
=
(
x− a

2

)2
+
b2

4
(2)

or (
x− a

2

)2
−
(
y − b

2

)2
=
a2 − b2

4
. (3)

If a = b (so that ABCD is a square), from (3) we get

y − a

2
= ±

(
x− a

2

)
, so that y = x or y = −x+ a.

The line y = −x + a has no points in Q; the locus of P in this case, therefore, is
contained in the portion of the line y = x, x < 0.

If a > b, the equation (3) defines an equilateral hyperbola centered at (a/2, b/2)
with real axis given by y = b

2 ; we take only that portion of the left branch of the
hyperbola given by equation (3) which is in Q.

If a < b, the equation (3) gives the hyperbola (conjugate to the one above) with
real axis x = a

2 ; we take that portion of its lower branch which lies in Q.

In each of the three cases, the indicated portions of the curve (3) contain the locus
of points P.

Conversely, if P is a point in Q that belongs to the curve defined by (3), by
reversing the argument we see that P (x, y) satisfies (2) and (1) with t = x + a

2 .
Thus, P is equidistant from points M(t, b/2) and N(t−a, b/2) (since P belongs to
the perpendicular bisector of MN). Because the right-hand side of (1) is NB2 and
BCMN is a parallelogram, we have MC = NB, so the circle given in (1) centered
at M has radius MC, passes through C and D and is hence the circumcircle of
4PCD. Further, since PN = PM = MC = NB, the circle centered at N with
radius NB is the circumcircle of 4PBA and the two circumcircles have equal
radii. So, equal-length chords AB and CD in these two congruent circles have
equal inscribed angles at their intersection point P so ∠BPA = ∠CPD.

This shows that the locus of points P is that portion which is in Q of the hyperbola
or line defined by equation (3).
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Editor’s comments. Only one reader observed that the featured solution to prob-
lem 4301 [2019: 38-39] included the solution to the current problem (although the
notation was different). The argument there equated the tangents of the relevant
angles, an approach used by all but three solvers of this problem. Our featured
solution above, as well as all but one of the other solutions we received, assumes
tacitly that a and b are positive (so that the rectangle sits in the first quadrant
in agreement with problem 4301). Only Marie-Nicole Gras considered undirected
angles: this allows ∠BPA = ∠APB so that the given angles, namely ∠BPA and
∠CPD, are equal or supplementary. She proved that any point P that satisfied
the angle requirement could lie on the line x = a

2 (the perpendicular bisector of
the horizontal sides of the rectangle) and x2 + y2 − ax− by = 0 (the circumcircle
of the rectangle) as well as on the hyperbola x2− y2−ax+ by = 0 that everybody
else found. When it is assumed that a > 0 (as most readers assumed), neither of
these two further possibilities have points in the third quadrant; however, when
a < 0 (so that the given rectangle sits in the second or third quadrant), the locus
of P consists of those parts of the hyperbola, circle, and line that lie in the third
quadrant.

4502. Proposed by George Apostolopoulos.

Let a, b, c be the side lengths of triangle ABC with inradius r and circumradius
R. Prove that

3

2
· r
R
≤
∑
cyc

a

2a+ b+ c
≤ 3

8
· R
r
.

We received 21 submissions, of which 20 were correct. We present a composite of
solutions by UCLan Cyprus Problem Solving Group (for the right inequality) and
Subhankar Gayen (for the left inequality).

To prove the right inequality, note first that

1

a+ b+ c
− 1

2a+ b+ c
=

a

(2a+ b+ c)(a+ b+ c)
.

So ∑
cyc

a

2a+ b+ c
=
∑
cyc

Å
a

a+ b+ c
− a2

(2a+ b+ c)(a+ b+ c)

ã
= 1− 1

a+ b+ c

∑
cyc

a2

(2a+ b+ c)
. (1)

Now by Titu’s Lemma, a special case of the Cauchy-Schwarz Inequality, we have

∑
cyc

a2

2a+ b+ c
>

(a+ b+ c)2

4(a+ b+ c)
=
a+ b+ c

4
,
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so

1

a+ b+ c

∑
cyc

a2

2a+ b+ c
≥ 1

4
. (2)

From (1) and (2), we obtain

∑
cyc

a

2a+ b+ c
6 1− 1

4
=

3

4
6

3R

8r

since 2r ≤ R by well-known Euler’s Inequality.

To prove the left inequality, let s denote the semiperimeter of 4ABC. By Titu’s
inequality again, we have

∑
cyc

a

2a+ b+ c
=
∑
cyc

a2

2s2 + ab+ ac

≥ (a+ b+ c)2

2(a2 + b2 + c2 + ab+ bc+ ca)
=

2s2

a2 + b2 + c2 + ab+ bc+ ca
. (3)

Next, it is well-known that

2s2 ≥ 27Rr (4)

and

a2 + b2 + c2 ≤ 9R2 (5)

(see Items 5.12 and 5.13 on p.52 of Geometric Inequalities by O. Bottema et al.).
Using (3), (4) and (5) together with the obvious fact that a2+b2+c2 ≥ ab+bc+ca,
we then obtain

∑
cyc

a

2a+ b+ c
≥ s2

a2 + b2 + c2
≥ s2

9R2
≥ 1

9R2
· 27Rr

2
=

3r

2R

completing the proof.

4503. Proposed by Michel Bataille.

Let ABC be a triangle with ∠BAC = 90◦ and let Γ be the circle with centre B
and radius BC. A circle γ passing through B and A intersects Γ at X,Y with
X 6= Y . Let E and F be the orthogonal projections of X and Y onto CY and
CX, respectively. Prove that the line CA bisects EF .

We received 10 submissions, of which 9 were correct and complete. We present
the solution by UCLan Cyprus Problem Solving Group.
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Let Z be the antipodal point of B on the circle γ. Then ∠BAZ = 90◦. Since also
∠BAC = 90◦ then C,A,Z are collinear and it is therefore enough to prove that
CZ bisects EF .

Now BZ is a diameter of γ, so ∠BXZ = ∠BY Z = 90◦; that is, ZX and ZY are
tangents of Γ at X and Y respectively. Since Γ is the circumcircle of 4CXY , it
follows that CZ is the C-symmedian of 4CXY .

Since XE ⊥ CY and Y F ⊥ CX, then X,Y,E, F are concyclic on a circle ω of
diameter XY . By the power of the point C with respect to ω we get (CE)(CY ) =
(CF )(CX) which gives that the triangles CEF and CXY are similar.

We can map4CXY to4CEF by first reflecting on their common bisector of angle
C and then applying a homothety with center C. Under this transformation, the
midpoint M of XY is mapped on the C-symmedian CZ of CXY and then stays
on CZ. Therefore, since XY is mapped to EF , M is mapped on the intersection
of CZ with EF . Thus, this intersection is the midpoint of EF .
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4504. Proposed by Warut Suksompong.

Find all positive integers (a, b, c, x, y, z), a ≤ b ≤ c and x ≤ y ≤ z, for which the
following two equations hold:

a+ b+ c = xy + yz + zx,

x+ y + z = abc.

We received 16 submissions, all of which were correct though some of them so
condensed that it was difficult to justify considering them completely valid. We
present the solution by Vasile Teodorovici, modified and enhanced by the editor.

Note first that from the given conditions, we have

3c ≥ a+ b+ c ≥ x2 + xy + yz = x(x+ y + z) = abcx,

so
ab ≤ 3

x
and x ≤ 3

ab
≤ 3 =⇒ x = 1, 2, 3.

Hence, there are 3 cases to be considered.

Case 1: x = 3. Then ab ≤ 1 =⇒ a = b = 1 =⇒ c + 2 = yz + 3(y + z) and
y + z = c − 3 =⇒ yz = c + 2 − 3(c − 3) = −2c + 11, which is impossible since
yz ≥ 9 =⇒ 2c ≤ 2 =⇒ c = 1 =⇒ y + z = −2. So there are no solutions.

Case 2: x = 2. Then ab ≤ 3
2 =⇒ a = b = 1 =⇒ c + 2 = yz + 2(y + z) and

y+ z = c− 2 =⇒ yz = c+ 2− 2(c− 2) = −c+ 6 < 6. But since c− 2 = y+ z ≥ 4,
then c ≥ 6, a contradiction. So there are no solutions.

Case 3: x = 1. Then ab ≤ 3 =⇒ (a, b) = (1, 1), (1, 2) or (1, 3), so we have 3
subcases to consider.

Case 3i: (a, b) = (1, 1). Then c+ 2 = yz + y + z and y + z = c− 1, hence

yz = c+ 2− (c− 1) = 3 =⇒ (y, z) = (1, 3) =⇒ c+ 2 = 7 =⇒ c = 5,

so we have the solution (a, b, c, x, y, z) = (1, 1, 5, 1, 1, 3).

Case 3ii: (a, b) = (1, 2). Then c+ 3 = yz + y + z and y + z = 2c− 1, hence

yz = c+ 3− (2c− 1) = −c+ 4 =⇒ −c+ 4 ≥ 1 =⇒ c ≤ 3 =⇒ c = 2 or 3.

But c = 3 =⇒ yz = 1 =⇒ y = z = 1 =⇒ c + 3 = 3, a contradiction.
Then c = 2 =⇒ y + z = 3 =⇒ (y, z) = (1, 2) and we get the solution
(a, b, c, x, y, z) = (1, 2, 2, 1, 1, 2).

Case 3ii: (a, b) = (1, 3). Then c+ 4 = yz + y + z and y + z = 3c− 1, hence

yz = c+ 4− (3c− 1) = −2c+ 5 < 0,

since c ≥ b =⇒ c ≥ 3, a contradiction. Hence there are no solutions.

To summarize, there are exactly two solutions given by

(a, b, c, x, y, z) = (1, 1, 5, 1, 1, 3), (1, 2, 2, 1, 1, 2).
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4505. Proposed by Miguel Ochoa Sanchez and Leonard Giugiuc.

Let ABCD be a convex quadrilateral such that AC ⊥ BD and AB = BC. Let I
denote the point of intersection of AC and BD. A straight line l1 passes through
I and intersects BC and AD in R and S, respectively. Similarly, straight line l2
passes through I and intersects AB and CD in M and N , respectively. The lines
MS and RN intersect AC at P and Q, respectively. Prove that IP = IQ.

We received 13 submissions, of which 12 were complete and correct. We present
the solution by the UCLan Cyprus Problem Solving Group.

Consider the self-intersecting hexagon AMNCRS. Note that AM ∩ CR = B,
MN ∩RS = I and NC ∩SA = D. By the converse of Pascal’s Theorem, since B,
I and D are collinear, the points A, M , N , C, R and S lie on a conic Γ. Since I
is the midpoint of the chord AC in Γ, and the chords MN and RS pass through
I, we can apply the Butterfly Theorem for conics to Γ and the degenerate conic
given by the pair of lines MS and RN to conclude that I is also the midpoint of
PQ.

Editor’s Comments. The UCLan Cyprus Problem Solving Group cited A survey
of Geometry by H. Eves (1972) for the Butterfly Theorem (p. 255). One of the
early editions of Crux, Vol. 2 (1) from 1976 (when it was still called Eureka), has
an article The Celebrated Butterfly Problem by Léo Sauvé, which also lists this
theorem; it can be found in the online archive.

4506. Proposed by D. M. Bǎtineţu-Giurgiu and Neculai Stanciu.

Let (an) be a sequence of positive real numbers such that lim
n→∞

an+1

nan
= a, where

a ∈ R∗+. Compute

lim
n→∞

1

n

n∑
k=2

k
k
√
ak
.

We received 15 submissions, of which 14 were complete and correct. We present
the solution by Florentin Visescu.
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Let xn =
n∑
k=2

k
k
√
ak

and yn = n. Note that yn is strictly increasing and yn → ∞.

Moreover,

lim
n→∞

xn+1 − xn
yn+1 − yn

= lim
n→∞

n+ 1
n+1
√
an+1

= lim
n→∞

n
n
√
an

= lim
n→∞

n

…
nn

an
.

By the Cezàro-Stolz Theorem, if this limit exists and is equal to L, then lim
n→∞

xn
yn

is equal to L as well. We will show below that this limit is
e

a
.

Let zn =
nn

an
. By Cauchy-d’Alembert, if lim

n→∞

zn+1

zn
exists, then lim

n→∞
n
√
zn also

exists and is equal to it. We have

lim
n→∞

zn+1

zn
= lim
n→∞

(n+ 1)n+1

an+1
· an
nn

= lim
n→∞

Å
n+ 1

n

ãn
· nan
an+1

· n+ 1

n

= e · lim
n→∞

nan
an+1

=
e

a
.

We conclude that

lim
n→∞

n

…
nn

an
=
e

a

as well; that is, L = e
a . Therefore,

lim
n→∞

1

n

n∑
k=2

k
k
√
ak

=
e

a
.

4507. Proposed by Eduardo Silva.

Suppose that a0 < · · · < ar are integers. If {bi} are distinct integers with ai ≤ bi,
for each i, and σ is a permutation so that bσ(0) < · · · < bσ(r), prove that ai ≤ bσ(i)
for each i. Further, if aj = bσ(j) for some j, then σ(j) = j, so that aj = bj .

We received 6 solutions, all correct. We present the solution by the UCLan Cyprus
Problem Solving Group.

Assume that ai ≥ bσ(i) for some i. We have bj ≥ aj > ai ≥ bσ(i) for each j > i,
therefore σ(i) ≤ i.
Similarly, we have bj ≥ aj ≥ ai ≥ bσ(i) > bσ(k) for each k < i ≤ j. Thus σ(k) 6= j
for each k < i ≤ j. In particular, we must have that

{σ(0), . . . , σ(i− 1)}} ⊆ {0, 1, . . . , i− 1}

and therefore {σ(0), . . . , σ(i− 1)} = {0, 1, . . . , i− 1}.
From the above we get that if ai ≥ bσ(i) for some i, then σ(i) = i and therefore
ai = bi = bσ(i). This proves both results.
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4508. Proposed by Hung Nguyen Viet.

Let x, y, z be nonzero real numbers such that x + y + z = 0. Find the minimum
possible value of

(x2 + y2 + z2)

Å
1

x2
+

1

y2
+

1

z2

ã
.

We received 27 correct solutions and 3 incorrect solutions. There was great varia-
tion in the amount of trouble encountered by the solvers in arriving at the result,
and several resorted to calculus. We present three solutions.

For convenience, let

f(x, y, z) = (x2 + y2 + z2)

Å
1

x2
+

1

y2
+

1

z2

ã
.

Solution 1, by the proposer.

At least two variables have the same sign; suppose them to be x and y. Since

0 < 4xy ≤ z2 = (x+ y)2 ≤ 2(x2 + y2),

we have that

f(x, y, z) ≥ 3z2

2

ï
2

xy
+

1

z2

ò
≥ 3z2

2

ï
8

z2
+

1

z2

ò
=

27

2
,

with equality if and only if (x, y, z) = (t, t,−2t) for some nonzero t.

Solution 2, by Brian Bradie.

Let x and y have the same sign and replace z2 by (x+ y)2. Then

f(x, y, z) = 6 + 2

Å
x2

y2
+
y2

x2

ã
+ 2

Å
x

y
+
y

x

ã
− 2xy

(x+ y)2
≥ 6 + 4 + 4− 1

2
=

27

2

with equality if and only if x = y = t and z = −2t for some nonzero t.

Solution 3, by Oliver Geupel and Joel Schlosberg (independently).

Replacing z2 by (x+ y)2, we find that

f(x, y, z) =
2(x2 + xy + y2)3

x2y2(x+ y)2
=

27

2
+

1

2

ï
(x− y)(2x+ y)(x+ 2y)

xy(x+ y)

ò2
.

Therefore, the minimum value of f(x, y, z) is 27/2, which occurs exactly when
x = y, y = −2x or x = −2y.

Editor’s Comments. Several solvers made the substitution t = x
y + y

x , so that

x2

y2
+
y2

x2
= t2 − 2,

(x+ y)2

xy
= t+ 2,
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and
x2 + y2

(x+ y)2
= 1− 2xy

(x+ y)2
= 1− 2

t+ 2
.

Then

f(x, y, z) = 2

Å
t2 + t+ 1− 1

t+ 2

ã
=

2(t+ 1)3

t+ 2
,

which can be conveniently analyzed. Another way of reducing the problem to a
single variable situation is to take advantage of the homogeneity, assign a numerical
value −c to z (say −1) and let y = c− x.

4509. Proposed by Leonard Giugiuc and Dan Stefan Marinescu.

Let B and C be two distinct fixed points that lie in the plane α and let M
be the midpoint of BC. Find the locus of points A ∈ α, A /∈ BC, for which
4R ·AM = AB2 +AC2, where R is the circumradius of ABC.

We received 15 solutions, 11 of which were correct and complete. We present two
solutions.

Solution 1, by Theo Koupelis.

Because AM is a median, we have

4 ·AM2 = 2(AB2 +AC2)−BC2 = 8R ·AM −BC2.

This is a quadratic in AM with solutions

AM = R±
√
R2 −BM2,

or, if O is the center of the circumcircle,

AM = AO ±OM.

• When O ≡M, then the locus includes all points on the circle (M,R), where
R = BC/2, except the points B and C.

• When O 6≡ M, then by the triangle inequality for triangle AOM we find
that the points A,O,M are colinear, and therefore the locus includes all the
points on the perpendicular bisector to BC, excluding the point M .

Solution 2, by Marie-Nicole Gras.

Let a = BC, b = CA and c = AB be the side lengths of 4ABC. We recall the
well known formulas:

a = 2R sinA, 4AM2 = b2 + c2 + 2bc cosA, BC2 = b2 + c2 − 2bc cosA.

Copyright © Canadian Mathematical Society, 2020



280/ Solutions

We obtain

4R ·AM = AB2 +BC2

⇐⇒ 4R2 · 4(AM)2 = (b2 + c2)2

⇐⇒ a2

sin2A

(
b2 + c2 + 2bc cosA

)
=
(
b2 + c2

)2
⇐⇒ (b2 + c2 − 2bc cosA)(b2 + c2 + 2bc cosA) = (b2 + c2)2 sin2A

⇐⇒ (b2 + c2)2 − 4b2c2cos2A = (b2 + c2)2 sin2A

⇐⇒ (b2 + c2)2 cos2A = 4b2c2 cos2A

⇐⇒ cos2A · (b2 − c2) = 0.

It follows that the locus of points A, A /∈ BC, for which 4R · AM = AB2 + BC2

is the union of two curves:

• the circle of diameter BC minus points B and C;

• the perpendicular bissector of BC, minus point M .

4510. Proposed by Leonard Giugiuc and Daniel Sitaru.

Let ABC be a non-obtuse triangle. Prove that

cosA cosB + cosA cosC + cosB cosC > 2
√

cosA cosB cosC.

We received 14 submissions, all correct. We present the solution by Subhankar
Gayen, modified slightly by the editor.

Note first that if one of A,B or C equals π/2, then cosA cosB cosC = 0 and∑
cyc cosA cosB > 0, so the given inequality is obvious. Hence we may assume

that cosA cosB cosC 6= 0.

Now the given inequality is clearly equivalent to…
cosA cosB

cosC
+

…
cosB cosC

cosA
+

…
cosC cosA

cosB
> 2. (1)

Next, note that

cosB cosC(tanB + tanC) = tanA cosA ⇐⇒
sinB cosC + cosB sinC = sinA ⇐⇒
sin (B + C) = sinA ⇐⇒
sin (π −A) = sinA,

which is true, so we get

cosB cosC

cosA
=

tanA

tanB + tanC
. (2)
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(Note: identity (2) was used in the featured solution to Crux problem 4053, p.273,
Vol. 42(6), 2016.)

Using (2) and two other similar identities, we see by setting α = tanA, β = tanB
and γ = tanC, that it suffices to show that∑

cyc

…
α

β + γ
> 2. (3)

Note that for all x, y, z > 0, we have…
x

y + z
≥ 2x

x+ y + z
⇐⇒ (x+ y + z)2 ≥ 4x(y + z) ⇐⇒ (y + z − x)2 ≥ 0,

which is true and equality holds if and only if x = y + z, y = z + x and z = x+ y.

Therefore, ∑
cyc

…
α

β + γ
≥
∑
cyc

2α

α+ β + γ
=

2(α+ β + γ)

α+ β + γ
= 2

with equality if and only if α = β + γ, β = α + γ, γ = α + β or α = β = γ = 0,
contradiction.

Hence (3) follows, completing the proof.
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