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Editorial /3

EDITORIAL
Happy New Year 2022 and welcome to Volume 48 of Crux !

As I write this, the pandemic’s n-th wave is causing the new wave of restrictions
across Canada: only small gatherings are allowed, schools are closed for 2 weeks,
universities are moving online for a month. While we somewhat learned to adapt
to ever-changing conditions, the persistent emotion is wanting to “go back to
normal” despite the fact that said normal no longer exists. So at Crux, we aren’t
looking back, but rather embracing new audiences and moving forward with more
material.

In this Volume, we are introducing a few new features. The new MathemAttic
column From the bookshelf of . . . will highlight new and old books, books we
have had on our shelves for a while as well as new publications, well-loved books
and newly discovered treasures that will interest and inspire our secondary level
student and teacher readers. Readers are encouraged to share personal selections.
On the other end of the spectrum, the column From the lecture notes of . . . will
feature problems from undergraduate classes that instructors find particularly nice
or insightful, with unusual applications of standard techniques. We want to en-
courage all instructors to “steal” these problems, but reciprocate back through
sharing their own in future issues.

Our regular sections of problems, solutions and articles are of course going forward
as well. This year we will also see the publication of the MathemAttic article
writing contest winners.

2022, here we come!

Kseniya Garaschuk

Copyright © Canadian Mathematical Society, 2022
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MATHEMATTIC
No. 31

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by March 30, 2022.

MA151. Proposed by Mihaela Berindeanu.

Solve over real numbers:

√
7 + x+

√
18− x = x2 − 11x+ 25.

MA152. Proposed by Neculai Stanciu.

Prove the following cryptarithm, where each letter represents a different digit:

DEAD ×REAR < READ ×DEAR.

MA153. Proposed by Roy Barbara.

Let a, b, x and y be rational numbers so that x ≥ 0, a > 0 and
√
a is not rational.

Suppose further that 3
√√

a+ b =
√
x+y. Prove that 3

√
a− b2 is a rational number.

MA154. Two bags, Bag A and Bag B, each contain 9 balls. The 9 balls in
each bag are numbered from 1 to 9. Suppose one ball is removed randomly from
Bag A and another ball from Bag B. If X is the sum of the numbers on the balls
left in Bag A and Y is the sum of the numbers of the balls remaining in Bag B,
what is the probability that X and Y differ by a multiple of 4?

MA155. An arbitrary point is selected inside an equilateral triangle. From
this point perpendiculars are dropped to each side of the triangle. Show that the
sum of the lengths of these perpendiculars is equal to the length of the altitude of
the triangle.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 mars 2022.

MA151. Proposeé par Mihaela Berindeanu.

Dans l’ensemble des nombres reels, résoudre

√
7 + x+

√
18− x = x2 − 11x+ 25.

MA152. Proposeé par Neculai Stanciu.

Démontrer le cryptarithme qui suit, où chaque lettre représente un chiffre différent:

SOUS × TOUT < SOUT × TOUS.

MA153. Proposeé par Roy Barbara.

Soient a, b, x et y des nombres rationnels tels que x ≥ 0, a > 0, puis tels que
√
a

n’est pas rationnel. De plus, supposer que 3
√√

a+ b =
√
x + y. Démontrer que

3
√
a− b2 est un nombre rationnel.

MA154. Deux sacs, Sac A et Sac B, contiennent chacun 9 billes, les 9 billes de
chaque sac étant numérotées de 1 à 9. Supposer qu’on enlève, de façon aléatoire,
une bille de chaque sac. Si X dénote la somme des nombres des billes restantes
dans le Sac A et Y dénote la somme des nombres des billes restantes dans le Sac
B, déterminer la probabilité que X et Y diffèrent par un multiple de 4.

MA155. Un point quelconque se trouve à l’intérieur d’un triangle équilatéral.
À partir de ce point, sont tracées les perpendiculaires vers les côtés du triangle.
Démontrer que la somme des longueurs de ces perpendiculaires égale la longueur
de l’altitude du triangle.

Copyright © Canadian Mathematical Society, 2022
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2021: 47(6), p. 275–276.

MA126. Let A,B,C,X, Y represent distinct, non-zero digits. Consider the
following subtraction (and specific example, taking (A,B,C,X, Y ) = (4, 5, 2, 9, 8)):

A B C
− C B A

1 X Y
Example:

4 5 2
− 2 5 4

1 9 8

How many ordered quintuplets (A,B,C,X, Y ) are there that satisfy the subtrac-
tion shown above?

Originally from 2013 Manitoba Mathematical Competition, question 8b (slightly
reworded).

We received 6 submissions, of which 4 were correct and complete. We present the
solution by Alex Bloom.

We can rewrite the given equation to get

100A+ 10B + C − 100C − 10B −A = 100 + 10X + Y.

Simplifying, we get

99A− 99C = 100 + 10X + Y,

so

99(A− C) = 100 + 10X + Y.

We know that A, C, X, and Y are all nonzero digits, so 200 > 100+10X+Y > 100.
Given that (A − C) is an integer, it must be 2, as 198 is the only multiple of 99
between 100 and 200. Thus, 100 + 10X + Y = 198, giving X = 9 and Y = 8. As
we stated earlier, A−C = 2, and since the terms with B cancel out, B can be any
digit not already taken. We will start by setting A, which can be 7, 6, 5, 4, or 3,
as 9 and 8 are taken by X and Y and A = 2 would give C = 0, and the question
specifies that each variable is nonzero. For any of these 5 working cases, C would
be determined, and B could be any of the 9− 4 = 5 unchosen nonzero digits left.
This gives 5 · 5 = 25 working quintuplets.

MA127. If log10 2 = a and log10 3 = b, find log5 12.

Originally from 21st W.J. Blundon Mathematics Contest (2004), problem 8a.

We received 14 submissions, of which 13 were correct and complete. We present
the solution by Morgan Orr, Ashley Herbig and Eli Lutz.

Crux Mathematicorum, Vol. 48(1), January 2022
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Using the change of base formula

logy x =
logc x

logc y
,

we have

log5 12 =
log10 12

log10 5
.

Now,
log10 12 = log10(2 · 2 · 3) = log10 2 + log10 2 + log10 3 = 2a+ b

and

log10 5 = log10

10

2
= log10 10− log10 2 = 1− a,

so

log5 12 =
log10 12

log10 5
=

2a+ b

1− a .

MA128. I invested $100. Each day, including the 1st day, my investment
first increased in value by p%, then decreased in value. The 1st day’s decrease was
one-quarter of the 1st day’s increase. The 2nd day’s decrease was two-quarters of
the 2nd day’s increase. In general, the nth day’s decrease was n-quarters of the
nth day’s increase. (Note that, from day 5 on, the decrease exceeded the increase.)
If my investment first became worthless on the 1000th day, what was the value of
p?

Originally from Canadian National Mathematics League, Contest 3, January 1994,
problem 3-6.

We received four submissions, all of which were correct. We present the solution
by Vishak Srikanth, modified by the editor.

On the kth day, the stock first increases by p% and then decreases by
kp

4
% of the

value at the beginning of the kth day. Therefore, on the 1000th day, the stock

increases p% then decreases
1000p

4
% of the value at the beginning of the 1000th

day. Let the stock value at the end of the 999th day be X. At the end of the
1000th day the stock value is zero. Therefore,

X

Å
1 +

p

100
− 1000p

4× 100

ã
= 0.

Since the stock price has a non-zero value on the 999th day, X 6= 0. Thus

1 +
p

100
− 1000p

4× 100
= 0

and so

p =
100

249
.

Copyright © Canadian Mathematical Society, 2022
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MA129. Five marbles of various sizes are placed in a conical funnel of circular
cross section. Each marble is in contact with the adjacent marble(s) and with the
funnel wall. The smallest marble has a radius of 8 mm. The largest marble has a
radius of 18 mm. Determine the radius, measured in mm, of the middle marble.

Originally from 2012 BC Secondary School Mathematics Contest, Senior Final,
Part B, problem 3.

We received 8 solutions, of which 4 were correct. The solutions that were deemed
incorrect lacked precision or rigour, such as in arguments about polygon similarity.
We present the solution by Miguel Amengual Covas.

Here, and throughout, O (r) refers to the circle with centre O and radius r. Sup-
pose O1 (r1), O2 (r2), O3 (r3) are three circles such that they have common exter-
nal tangents, and O2 (r2) touches O1 (r1) and O3 (r3) externally. We claim that
r2 =

√
r1r3.

O3

O2

O1

T3T2T1

|r1 − r2|

Let the points of contact between one of the external tangent and three circles
be T1, T2, T3 as shown. Using the theorem that the line joining the centres of two
tangent circles passes through the point of contact, and the Pythagorean theorem,
we have

(T1T2)
2

+ (r1 − r2)
2

= (r1 + r2)
2

=⇒ T1T2 = 2
√
r1r2.

Analogously,
T2T3 = 2

√
r2r3.

Therefore,
T1T3 = T1T2 + T2T3 = 2

√
r2 (
√
r1 +

√
r3) .

Again, by the Pythagorean theorem,

(T1T3)
2

+ (r1 − r3)
2

= (r1 + 2r2 + r3)
2
.

Crux Mathematicorum, Vol. 48(1), January 2022
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Substituting for T1T3 from above, and squaring and simplifying repeatedly, we
obtain r2 =

√
r1r3.

Now we apply the lemma to the three triads

O1 (r1)O2 (r2)O3 (r3) , O2 (r2)O3 (r3)O4 (r4) , O3 (r3)O4 (r4)O5 (r5) .

O5 (r5)
O4 (r4)

O3 (r3)

O2 (r2)

O1 (r1)

This yields
r2 =

√
r1r3, r3 =

√
r2r4, r4 =

√
r3r5.

Multiplying the first and third equations gives r2r4 = r3
√
r1r5. Substituting r2

3 for
r2r4 from the second equation yields

r3 (r3 −
√
r1r5) = 0.

Thus,
r3 =

√
r1r5 =

√
8 · 18 = 12 mm.

MA130. Prove that there are infinitely many positive integers k such that
kk can be expressed as the sum of the cubes of two positive integers.

Originally from 2009 Alberta High School Mathematics Competition, Part II, prob-
lem 5.

We received 11 submissions, of which 10 were correct and complete. We present
the solution by Richard Hess, slightly edited.

Suppose that k = a3 + b3 for positive integers a and b and that k ≡ 1 (mod 3). In
this case, write k = 3m+ 1 for m a positive integer, and note that

kk = k3m · k = k3m · (a3 + b3) = (akm)3 + (bkm)3;

that is, kk is a sum of two cubes.

However, any choice of a and b that satisfies either a ≡ 1 (mod 3) and b ≡ 0
(mod 3) or a ≡ b ≡ 2 (mod 3) results in k ≡ 1 (mod 3), so there are infinitely
many choices of a and b that will satisfy the desired conditions.

For the case a ≡ 1 (mod 3) and b ≡ 0 (mod 3) we get the solutions k = 28, 91,
217, 280 and so on. For the case a ≡ b ≡ 2 (mod 3) we get the solutions k = 16,
133, 250, 520 and so on.

Copyright © Canadian Mathematical Society, 2022
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PROBLEM SOLVING
VIGNETTES

No. 20
Shawn Godin

Playing with a Polynomial Problem

In this issue we will look at a problem involving polynomials from the 2021 Cana-
dian Open Mathematics Challenge run by the CMS. Below is the last problem,
part C number 4, from the contest:

We call (F, c) a good pair if the following three conditions are satisfied:

(1) F (x) = a0 +a1x+· · ·+amxm, (m ≥ 1) is a nonconstant polynomial
with integer coefficients.
(2) c is a real number that is not an integer.
(3) F (c) is an integer.

For example, both
(
6x, 1

3

)
and
Ä
1 + x3, 5

1
3

ä
are good pairs, but none

of the following pairs
(
6x, 1

4

)
, (6x, 2),

(
x
6 ,

1
3

)
,
Ä
x2

6 , 6
ä

is good.

(a) Let c = 1
2 . Give an example of F such that (F, c) is a good pair

but (F, c+ 1) is not.
(b) Let c =

√
2. Give an example of F such that both (F, c) and

(F, c+ 1) are good pairs.
(c) Show that for any good pair (F, c), if c is rational then there exists
infinitely many non-zero integers n such that (F, c+ n) is also a good
pair.
(d) Show that if (F, c+ n) is a good pair for every integer n, then c is
rational.

When you are unsure how to attack a problem, it makes sense to dive in and play
around with things. In many cases your investigation will trigger an “aha!” that
will lead to a solution or, at least, a method of attack.

Having said that, let’s start (a) by evaluating F
(

1
2

)
and F

(
3
2

)
= F

(
1
2 + 1

)
.

F

Å
1

2

ã
= a0 +

a1

2
+
a2

4
+
a3

8
+ · · ·+ am

2m

F

Å
3

2

ã
= a0 +

3a1

2
+

9a2

4
+

27a3

8
+ · · ·+ 3mam

2m

Trivially, we see that if we choose the coefficients so that each term in the evalu-
ation of F

(
1
2

)
will be an integer, then F

(
1
2

)
will be an integer as well. However,

the same logic tells us that F
(

3
2

)
will also be an integer, which we do not want

for this problem.

Crux Mathematicorum, Vol. 48(1), January 2022
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Note that since a0 is an integer, it will have no effect on F
(

1
2

)
being an integer

or not, no matter what its value is. As such, to make things easy on ourselves, we
will choose a0 = 0. Keep in mind that if we find any solution F , then adding any
integer to this polynomial gives another polynomial that satisfies the conditions
of the problem.

Again, for simplicity, we will start our investigation with the case m = 1. Since
F
(

1
2

)
= a1

2 , we would need a1 to be even to make F
(

1
2

)
an integer, but that

makes F
(

3
2

)
an integer as well, so we must keep going.

Moving on to m = 2, with a1 an odd integer, we have

F

Å
1

2

ã
=
a1

2
+
a2

4
=

1

2

(
a1 +

a2

2

)
from which we can see if we pick a2 to be 2 times an odd integer, then F

(
1
2

)
will

be an integer. The simplest case being a1 = 1 and a2 = 2. Unfortunately, this
yields

F

Å
1

2

ã
=

1

2

Å
1 +

2

2

ã
= 1

F

Å
3

2

ã
=

3

2

Å
1 +

3

2
(2)

ã
= 6

so we must keep looking.

Continuing with m = 3, we can write

F

Å
1

2

ã
=
a1

2
+
a2

4
+
a3

8

=
1

2

(
a1 +

a2

2
+
a3

4

)
=

1

2

Å
a1 +

1

2

(
a2 +

a3

2

)ã
and similarly, we can write

F

Å
3

2

ã
=

3

2

Å
a1 +

3

2

Å
a2 +

3a3

2

ãã
Using similar logic to our last case we see that the simplest case that makes F

(
1
2

)
an integer is when a3 = 2 with a2 = a1 = 1. This yields

F

Å
1

2

ã
=

1

2

Å
1 +

1

2

Å
1 +

2

2

ãã
= 1

F

Å
3

2

ã
=

3

2

Å
1 +

3

2

Å
1 +

3

2
(2)

ãã
=

21

2

which gives us F (x) = x+ x2 + x3 as one polynomial that satisfies the conditions
of the problem.

Copyright © Canadian Mathematical Society, 2022
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Reflecting on our method, we see that we have started to develop a family of
polynomials:

P1(x) = 2x

P2(x) = x+ 2x2 = x(1 + 2x)

P3(x) = x+ x2 + 2x3 = x(1 + x(1 + 2x))

...

where, from the nested factored form we have chosen, we can see that

Pn(x) = x(1 + Pn−1(x))

Notice that if Pn−1

(
1
2

)
= 1 then

Pn

Å
1

2

ã
=

1

2

Å
1 + Pn−1

Å
1

2

ãã
=

1

2
(1 + 1) = 1

Hence, since P1

(
1
2

)
= 1, all polynomials of the form

Pm(x) = x+ x2 + x3 + · · ·+ xm−1 + 2xm

satisfy Pm
(

1
2

)
= 1, an integer, by induction.

However, since Pn
(

3
2

)
= 3

2

(
1 + Pn−1

(
3
2

))
, then if Pn−1

(
3
2

)
is not an odd integer,

Pn
(

3
2

)
will not be an integer. From our work above, P2

(
3
2

)
= 6, hence Pm

(
3
2

)
will

not be an integer for all m > 2. So by playing around with things a bit, we have
generated not only a solution to the problem but an infinite family of solutions.

Those of you that know something about geometric series might want to show
that

(
Pm,

1
2

)
is a good pair, while

(
Pm,

3
2

)
is not a good pair, for the family of

polynomials described above, with m > 2. As a hint, you may want to write

Pm(x) =
(
x+ x2 + x3 + · · ·+ xm−1 + xm

)
+ xm

I will leave the details to the interested reader.

Moving on to (b), evaluating F
Ä√

2
ä

and F
Ä√

2 + 1
ä
, taking a0 = 0 as in part

(a), yields (after a bit of work)

F
Ä√

2
ä

=
√

2a1 + 2a2 + 2
√

2a3 + · · ·+
Ä√

2
äm

am

F
Ä√

2 + 1
ä

= (
√

2 + 1)a1 + (2
√

2 + 3)a2 + (5
√

2 + 7)a3 + · · ·+
Ä√

2 + 1
äm

am

It is important to realize that since
√

2 is irrational, then k
√

2 will be irrational
for any integer k. Hence, if we want F (

√
2) to be an integer, the only way this is

possible is if

√
2a1 + 2

√
2a3 + 4

√
2a5 + · · · =

√
2(a1 + 2a3 + 4a5 + · · · ) = 0

Crux Mathematicorum, Vol. 48(1), January 2022
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which means that

a1 + 2a3 + 4a5 + · · · = 0

where the sum involves all the coefficients with odd index. As such, we see that
if we pick a2k+1 = 0, then F (

√
2) would be an integer but F (

√
2 + 1) would

not necessarily have to be an integer. As with part (a), let’s try to construct as
simple a polynomial as possible that gives us the desired results without all odd
coefficients being zero. Since a1 6= 0 and F is not constant, we would need the
degree of F to be at least 3 in order to eliminate the

√
2 terms and end up with

an integer. In this case, we need

a0 +
√

2a1 + 2a2 + 2
√

2a3

to be an integer. Since the coefficients are integers and
√

2 is irrational, this is
only possible if

√
2a1 + 2

√
2a3 = 0. In other words a1 + 2a3 = 0, or a1 = −2a3.

Moving on to F
Ä√

2 + 1
ä
, we need

a0 + (
√

2 + 1)a1 + (2
√

2 + 3)a2 + (5
√

2 + 7)a3

to be an integer. Since the ai’s are already integers,
√

2 is irrational and a1 = −2a3

this is equivalent to

√
2a1 + 2

√
2a2 + 5

√
2a3 = 0

−2a3 + 2a2 + 5a3 = 0

a2 = −3a3

2

Hence, if we choose a3 = 2, then choosing F (x) = −4x − 3x2 + 2x3, makes bothÄ
F,
√

2
ä

and
Ä
F,
√

2 + 1
ä

good pairs. You could also notice that if a3 was any

even integer, we could construct a polynomial F that satisfies the conditions of
the problem. That is, there is going to be an infinite family of cubic polynomials
that work. We could use a similar methodology to construct polynomials of higher
degree that satisfy the conditions of part (b).

So we see that we could have solved part (a) and (b) just by playing around
and looking for some patterns. That is, we can solve the problem without using
too many properties of polynomials. However, if we do know some things about
polynomials we may be able to use them to solve the problem more succinctly.

In both part (a) and (b) we are dealing with when a polynomial is an integer or
not. If we focus in on the specific integer 0, and knowing the zeros of a polynomial
are related to the factors of the polynomial, we may be able to construct solutions
from the ground up. For instance in part (a), we want F

(
1
2

)
to be an integer.

Looking at a(x) = 2x − 1 we see that a
(

1
2

)
= 0 and a

(
3
2

)
= 2. Thus if we

can find another polynomial, b, with integer coefficients, so that 2b
(

3
2

)
is not an

integer, then F (x) = a(x)b(x) would be a solution to our problem. It is clear that
b(x) = x2 satisfies these conditions, so F (x) = x2(2x − 1) is an example for part
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(a). A little thinking also shows that Fm(x) = xm(2x− 1) is a family of solutions
with m ≥ 2.

In part (b) we want both
Ä
F,
√

2
ä

and
Ä
F,
√

2 + 1
ä

to be good pairs. Hence if

we can find polynomials a and b such that a
Ä√

2
ä

= 0 and b
Ä√

2 + 1
ä

= 0, then

F (x) = a(x)b(x) will clearly be a solution. Since
Ä√

2
ä2

= 2, then
√

2 is a zero of

the polynomial a(x) = x2 − 2. Similarly, since (
√

2 + 1)− 1 =
√

2, then
√

2 + 1 is
a zero of the polynomial b(x) = a(x− 1) = (x− 1)2 − 2. Thus we get

F (x) = a(x)b(x)

= (x2 − 2)
(
(x− 1)2 − 2

)
= x4 − 2x3 − 3x2 + 4x+ 2

which gives us our result much more quickly. You may be interested to verify that
if we use the method from earlier, we can construct an infinite family of degree 4
polynomials of which the result above is a member.

The following property of integers is also of use to us. Consider the three real
numbers x, y, and x − y. If x is an integer then either both y and x − y are
integers or they are both not integers. Hence we could attack parts (a) and (b)
by considering F (c) and F (c+ 1)− F (c). We will use this idea in our solution to
part (c), but I will leave the details of the solutions to part (a) and (b) using this
method to the interested reader.

To attack part (c), we will need to use the binomial theorem for expanding powers
of a binomial. That is

(x+ y)n =

Ç
n

0

å
xn +

Ç
n

1

å
xn−1y +

Ç
n

2

å
xn−2y2 + · · ·+

Ç
n

n− 1

å
xyn−1 +

Ç
n

n

å
yn

=
n∑
i=0

Ç
n

i

å
xn−iyi,

where Ç
n

r

å
=

n!

(n− r)!r!
are called the binomial coefficients and are always integers.

For the problem at hand, we know we have some nonconstant polynomial F (x) =
a1x+ · · ·+ amx

m with integer coefficients and some rational number c such that
F (c) is an integer. Hence, F (c+n) will be an integer if and only if F (c+n)−F (c)
is an integer. Looking at this difference we get

F (c+ n) = a1(c+ n) + a2(c+ n)2 + · · ·+ am(c+ n)m

− F (c) = a1c + a2c
2 + · · ·+ amc

m

F (c+ n)− F (c) = a1n + a2

(
(c+ n)2 − c2

)
+ · · ·+ am ((c+ n)m − cm)
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Examining a particular term of this expansion, we see

ak

(
(c+ n)k − ck

)
= ak

ÇÇ
ck +

Ç
k

1

å
ck−1n+

Ç
k

2

å
ck−2n2 + · · ·+

Ç
k

k − 1

å
cnk−1 + nk

å
− ck
å

= ak

ÇÇ
k

1

å
ck−1n+

Ç
k

2

å
ck−2n2 + · · ·+

Ç
k

k − 1

å
cnk−1 + nk

å
.

Thus each term in the expansion of F (c + n) − F (c) will be the product of some
integer with a power of c and a power of n. The largest power of c will be cm−1.
If we write c = p

q where p and q are relatively prime, then letting n = αqβ where

α, β ∈ Z and β ≥ m−1, will result in each term in the expansion of F (c+n)−F (c)
being an integer, hence F (c+ n) will be an integer. By construction, we see that
there are infinitely many n’s possible, so the problem is solved.

I will leave part (d) as an exercise to the reader. You can check out the official
solution on the CMS website.

Before we finish, let’s circle back and play with an interesting pattern that arose
from our solution to part (b). You may have noticed that the multipliers of the

coefficients in F
Ä√

2
ä

form a predictable sequence:

1,
√

2, 2, 2
√

2, 4, 4
√

2, 8, 8
√

2, . . .

On the other hand, the multipliers of the coefficients in F
Ä√

2 + 1
ä

may seem a

little more obscure:

1,
√

2 + 1, 2
√

2 + 3, 5
√

2 + 7, 12
√

2 + 17, 29
√

2 + 41, 70
√

2 + 99, 169
√

2 + 239, . . .

However, if we write (
√

2 + 1)n = an
√

2 + bn and look at the sequences an and bn

n an bn
0 0 1
1 1 1
2 2 3
3 5 7
4 12 17
5 29 41
6 70 99
7 169 239

some patterns begin to emerge. For one thing, the two sequences seem to be
intertwined, that is

an = an−1 + bn−1

bn = 2an−1 + bn−1
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This can be verified readily using a little algebra. If (
√

2+1)n−1 = an−1

√
2+bn−1,

then (
√

2 + 1)n = an
√

2 + bn, but

(
√

2 + 1)n = (
√

2 + 1)n−1(
√

2 + 1)

= (an−1

√
2 + bn−1)(

√
2 + 1)

= 2an−1 + an−1

√
2 + bn−1

√
2 + bn−1

= (an−1 + bn−1)
√

2 + (2an−1 + bn−1)

which verifies our conjecture.

Looking closer, both sequences seem to satisfy the same recurrence relationships
with different starting points. That is, it seems that we have

a0 = 0, a1 = 1 and an = 2an−1 + an−2 for n > 1,

b0 = 1, b1 = 1 and bn = 2bn−1 + bn−2 for n > 1.

This can also be verified using the equations linking an and bn to an−1 and bn−1

that we just established. I will leave the details to the readers.

When writing contests, one has to use one’s time wisely. However, if we are not in
a contest situation, I would urge you to go off on tangents. Ask yourself questions
and see if you can answer them. Finally, never be afraid to chase after a pattern.
You never know what fun you will have or what beautiful mathematics you will
discover!

The author would like to thank Crux editor Ed Barbeau for his feedback on this
column. His input greatly improved the final product.
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From the bookshelf of . . .
Shawn Godin

This new feature of MathemAttic brings attention to books of potential interest to
the readers. Some of these will be reviews whereas others will be hearty recommen-
dations from the contributors. If you have a book related to mathematics that would
be of interest to secondary school students and/or teachers, feel welcome to send
along a submission to MathemAttic@cms.math.ca. Publishers are also welcome to
send along books for possible review.

aha! Gotcha: Paradoxes to puzzle and delight
by Martin Gardner
ISBN 0-7167-1361-6, 164 pages
Published by W. H. Freeman and Company, 1982.

I was introduced to the writing of Martin Gardner
early in my teaching career (how his work had es-
caped me to that point, I do not know). I am sure
many MathemAttic readers are aware of his work,
and if you are not, go out and find something of his
to read now! His column in Scientific American has
been cited by many mathematicians as the reason
they took to the subject. All of these articles live
on in his books that are dedicated to collections of
articles.

The book I am going to talk about is not one of
those. aha! Gotcha – Paradoxes to puzzle and de-
light, like its sister book aha! Insight, is derived from The Paradox Box, a set of
filmstrips, cassettes and teacher’s guides published by Scientific American. The
book is divided into six chapters: Logic, Number, Geometry, Probability, Statistics
and Time. Each chapter contains a number of very short essays on the chapter
topic. The essays start with cartoon panels including text that I suspect were
from the filmstrip slides and the accompanying dialogue from the cassettes. The
filmstrip material is then followed by a deeper discussion of the topic. Some topics
may be known to some MathemAttic readers, such as The Barber Paradox (from
the chapter on logic) and The Gambler’s Fallacy (from the chapter on probability).

I managed to work many of the ideas from this book into my classrooms over the
years. Especially fruitful was the chapter on probability. Several of the essays
lead to interesting scenarios for the students to explore. An example would be
the Three-Card Swindle. You are presented with three cards: one has a spade on
both sides, one has a diamond on both sides and one has a spade on one side and
a diamond on the other. You are allowed to pick one of the cards from a hat at
random and place it on the table with one of its faces showing. The person running
the game then guesses what symbol is on the other side. Gardner argues, if a spade
shows, the other side could either be a spade (with the spade/spade card) or a

Copyright © Canadian Mathematical Society, 2022



18/ From the bookshelf of . . .

diamond (with the spade/diamond card), therefore there is a 50% chance that he
will guess it correctly. Is this a fair game? If you are not sure, you can readily
devise an experiment to test it out.

I have also used the essay entitled The Deceptive “Average” in some classes. The
filmstrip material outlines an informative special example where the mean, median
and mode of a data set are quite different. The situation involves a person getting
a job at a company where they are told that the average wage is $600 per week.
They are told during training they would earn $150 per week, but would then get
a raise. The new worker is unhappy when they get a raise to $200 per week and
felt they were misled. The discussion then goes on to show how he wasn’t misled,
the weekly salaries of the workers were: $4800, $2000, six at $500, five at $400,
and ten at $200. Although contrived, it does convey how outliers can skew the
mean. It also leads to a nice discussion of how we can be misled by statistics.

No matter if you are a teacher looking for some interesting ideas to incorporate
into your classroom, or a student (or teacher!) who just loves mathematics, aha!
Gotcha will provide you with hours of fun.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This book is a recommendation from the book-
shelf of Shawn Godin. Shawn, a retired high
school math teacher, is a co-editor of
MathemAttic and has been involved with Crux in one
form or another for over 20 years. Shawn continues to
be involved in mathematical activities in his retirement:
helping with mathematics contest creation and marking,
writing columns and doing the occasional presentation.
He lives in Carleton Place, Ontario with his wife, Julie,
and their dog, Daisy.
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OLYMPIAD CORNER
No. 399

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by March 30, 2022.

OC561. Let 4ABC be an arbitrary triangle with area 1. The edge AB is
extended past B to a point B′ such that |BB′| = |AB|. Similarly, the edge BC is
extended past C to a point C ′ such that |CC ′| = 2|BC|; and CA is extended past
A to a point A′ such that |AA′| = 3|CA|. Find the area of 4A′B′C ′.

OC562. Ruby and Sapphire are celebrating Pi Day by sharing a circular pie.
Ruby has two red birthday cake candles, and Sapphire has two blue candles. Ruby
starting, they will alternately place one candle on the perimeter of the pie. (Of
course, no two candles may be in the same place!) After all the candles are placed,
each girl will get the portion of the pie that is closer to one of her candles than
to any of the others. The goal is to get strictly more pie than one’s opponent; an
equal division is a draw.

Either find a winning strategy for one player and show that it is essentially unique,
or show that the game, rationally played, is a draw.

OC563. Find, with proof,
∫ π/2

0
cos31416(x)dx.

OC564. Define a “Fibonacci-like” sequence as follows: A1 = A2 = 1, and
An = 2An−2 +An−1 for n ≥ 3; so A3 = 2× 1 + 1 = 3, A4 = 2× 1 + 3 = 5, and so
on. Prove that for odd n,

n−1∑
i=1

Ai = An − 1

OC565. Given that sin(xy) = 1, find the least upper bound of sin(x) sin(y),
and show that this is never achieved.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 mars 2022.

OC561. Soit 4ABC un triangle quelconque de surface 1. Le côté AB
est prolongé au-delà de B jusqu’à un point B′ tel que |BB′| = |AB|. De façon
similaire, le côté BC est prolongé au-delà de C jusqu’à un point C ′ tel que |CC ′| =
2|BC| et le côté CA est prolongé au-delà de A jusqu’à un point A′ tel que |AA′| =
3|CA|. Déterminer la surface de 4A′B′C ′.

OC562. Rubis et Saphir célèbrent le Jour Pi en se partageant une tarte
de forme circulaire. Au départ, Rubis a deux chandelles rouges de gâteau de fête,
tandis que Saphir a deux chandelles bleues. Commençant avec Rubis, elles placent
leurs chandelles au périmètre de la tarte, en alternant. (Bien sûr, deux chandelles
ne peuvent pas occuper la même place.) Après que toutes les chandelles sont
placées, chaque fille obtiendra la portion de la tarte qui se trouve plus près d’une
de ses propres chandelles que de toute autre. L’objectif est d’obtenir plus de tarte
que l’autre fille ; une division égale résulte en un ex aequo.

Soit déterminer une stratégie gagnante pour une des filles et démontrer qu’elle est
unique, soit démontrer que le résultat est un ex aequo, prenant pour acquis un jeu
rationnel des deux parts.

OC563. Tout en fournissant la preuve, déterminer la valeur de∫ π/2

0

cos31416(x)dx.

OC564. Déterminer une suite de type Fibonacci de la façon suivante :
A1 = A2 = 1, puis An = 2An−2 +An−1 pour n ≥ 3; ainsi A3 = 2×1+1 = 3, A4 =
2× 1 + 3 = 5 et ainsi de suite. Démontrer que pour n impair on a

n−1∑
i=1

Ai = An − 1.

OC565. Étant donné sin(xy) = 1, déterminer la plus petite borne supérieure
pour sin(x) sin(y), et démontrer que cette borne n’est jamais atteinte.
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2021: 47(6), p. 288–289.

OC536. The triangle ABC has AB = CA and BC is its longest side. The
point N is on the side BC and BN = AB. The line perpendicular to AB which
passes through N meets AB at M . Prove that the line MN divides both the area
and the perimeter of triangle ABC into equal parts.

Originally from the 2017 British Mathematical Olympiad, Round 1, Problem 3.

We received 19 submissions, all of which were correct and complete. We present
two typical solutions.

Geometric Solution.

Let L be the foot of the perpendicular from A on BC. Since 4ABC is isosceles, it
follows that AL divides its area and perimeter into equal parts. However, 4ALB
and 4NMB are congruent as they are right-angled triangles sharing ∠B and
AB = NB. Hence, MN divides the area and perimeter of 4ABC into equal
parts, like AL.

Trigonometric Solution.

Let b = AB = AC = BN , β = ∠CBA = ∠ACB, and let s denote the semiperime-
ter of 4ABC. We obtain

[ABC] =
AB ·AC · sin∠BAC

2
=
b2 sin (180◦ − 2β)

2
=
b2 sin 2β

2
= b sinβ · b cosβ = MN ·BM = 2[BMN ]
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and

s =
AB +AC +BC

2
=
b+ b+ 2b cosβ

2
= b+ b cosβ = BN +BM.

Hence, the line MN divides the area and the perimeter of4ABC into equal parts.

OC537. A, B, C are collinear with B betweeen A and C. K1 is the circle
with diameter AB, and K2 is the circle with diameter BC. Another circle touches
AC at B and meets K1 again at P and K2 again at Q. The line PQ meets K1

again at R and K2 again at S. Show that the lines AR and CS meet on the
perpendicular to AC at B.

Originally from the 2003 Mexican Mathematical Olympiad, problem A2.

We received 8 correct and complete submissions. We present two solutions.

Solution 1, by Oliver Geupel.

Let the lines AR and CS meet at the point T , and let p(Γ) denote the power of T
with respect to some circle Γ. If the points A, C, R, and S lie on a common circle
K, then we have p(K1) = TA · TR = p(K) = TC · TS = p(K2), which implies
that T lies on the radical axis of K1 and K2, that is, on the perpendicular to the
line AC at B. It is therefore enough to prove that A, C, R and S are concyclic.
Considering the relative positions of the collinear points, we distinguish 3 cases:

(1) R and S lie between P and Q;

(2) P and Q lie between R and S;

(3) exactly one of the points R and S lies between P and Q.

Note that the situation of case 3 cannot occur.

Case 1.
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We have

180◦ − ∠ARS = ∠PRA = ∠PBA - inscribed angles in K1

= ∠PQB - since AB is tangent to circle (PBQ)

= ∠SQB

= ∠SCB - inscribed angles in K2

= ∠SCA,

which proves that the points A, C, R and S are concyclic.

Case 2.

Similarly, 180◦ − ∠ARS = ∠PBA = ∠PQB = 180◦ − ∠SQB = ∠SCA. Hence,
A, C, R, and S are concyclic.

Solution 2, by Michel Bataille.

Let K be the given circle touching AC at B and let ` be the perpendicular to AC
at B. We denote by I the inversion in the circle with center B and radius BA.
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The circle K1 inverts into its tangent line t at A and P ′ = I(P ) is the point of
intersection of t and BP . The circle K inverts into the line m orthogonal to `
through P ′. Then Q′ = I(Q) is the point of intersection of m and BQ and I(K2)
is the perpendicular n to AC through Q′. Also, SR intersects t at R′ = I(R) and
BS intersects n at S′ = I(S).

The line AR (resp. CS) inverts into the circle ΓR (resp. ΓS) with diameter BR′

(resp. BS′). It clearly suffices to prove that the point of intersection of ΓR and
ΓS other than B is on `.

As P,Q,R, S are collinear, the points P ′, Q′, R′, S′ are on a circle Γ passing through
B. Since P ′Q′ is orthogonal to Q′S′ and to P ′R′, the segments P ′S′ and Q′R′ are
diameters of Γ. It follows that S′R′ is perpendicular to R′P ′ = t and so R′S′ is
parallel to AC. In consequence, the line IJ through the respective centers I and
J of ΓR and ΓS is parallel to AC. The radical axis of ΓR and ΓS , which passes
through B and is perpendicular to IJ , is the line `. Thus, the second point of
intersection of ΓR and ΓS is on `, as desired.

OC538. Let us consider a polynomial P (x) with integer coefficients satisfying
P (−1) = −4, P (−3) = −40, and P (−5) = −156. What is the largest possible
number of integers x satisfying P (P (x)) = x2?

Originally from the 2019, Baltic Way, Szczecin, Poland, Problem 20.

We received 5 submissions, all of which were correct and complete. We present
the solution by Theo Koupelis.

Start with

P (x) = (x+ 1)(x+ 3)(x+ 5)Q(x) + ax2 + bx+ c,

where a, b, c are integers and Q(x) is a polynomial with integer coefficients. The
given conditions lead to

P (x) = (x+ 1)(x+ 3)(x+ 5)Q(x)− 10x2 − 22x− 16.

Equivalently,

P (x) = (x+ 1)(x+ 3)(x+ 5)Q(x)− 3(3x2 + 7x+ 5)− (x2 + x+ 1).

Because (x+ 1)(x+ 3)(x+ 5) ≡ 0 (mod 3) for all integers x, we have

P (x) ≡ −(x2 + x+ 1) (mod 3).

We distinguish the following cases.

(i) If x ≡ 0 (mod 3), or x ≡ −1 (mod 3), then

P (x) ≡ −1 (mod 3) and P (P (x)) ≡ P (−1) (mod 3) ≡ −1 (mod 3).

Thus the equation P (P (x)) = x2 has no solution.
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(ii) If x ≡ 1 (mod 3), then

P (x) ≡ 0 (mod 3) and P (P (x)) ≡ P (0) (mod 3) ≡ −1 (mod 3).

Thus the equation P (P (x)) = x2 has no solution.

Therefore there are no integers x satisfying P (P (x)) = x2.

OC539. A pair of real numbers (a, b) with a2 + b2 ≤ 1
4 is chosen at random.

If p is the probability that the curves with equations y = ax2 +2bx−a and y = x2

intersect, then identify the integer that is closest to 100p.

Originally from the 2021 Fermat Contest, Grade 11, Problem 24.

We received 9 submissions, of which 7 were correct and complete. We present a
typical solution.

The two curves intersect if and only if the quadratic equation ax2 + 2bx− a = x2

has a real solution. Therefore the discriminant, 4b2 + 4a(a − 1), of this equation
must be non-negative. This is equivalent to

b2 +

Å
a− 1

2

ã2

≥ 1

4
.

The points (a, b) satisfying this inequality correspond to those points on or outside
the circle of radius 1/2 centered at the point (1/2, 0). Combining this with the
fact that the points must satisfy a2 + b2 ≤ 1/4 implies that the points lie in the
shaded region shown below.

We can calculate the area of the shaded region using geometric or analytic argu-
ments as:

π

4
− 4

∫ 1/2

1/4

…
1

4
− x2 dx =

3
√

3 + 2π

24
.

As the area of a circle of radius 1/2 is π/4, it follows that the requested probability
is

p =
3
√

3 + 2π

24
× 4

π
=

1

3
+

√
3

2π
.

Using a calculator we can find that the integer closest to 100p is 61.
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OC540. Let Sr(n) = 1r + 2r + · · · + nr where r is a rational number and n
a positive integer. Find all triplets (a, b, c) ∈ Q+ × Q+ ×N for which there exist
infinitely many positive integers n satisfying Sa(n) = (Sb(n))

c

Originally from the 2012 Turkish IMO Team Selection Test, Day 3, Problem 7.

We received 5 correct and complete submissions. We present a solution submitted
independently by two problem solving groups: UCLan Cyprus and Missouri State
University.

We first observe that

Sr(n)

nr+1
=

1

n

ÅÅ
1

n

ãr
+

Å
2

n

ãr
+ · · ·+

(n
n

)rã
is a Riemann Sum of f(x) = xr over [0, 1] with respect to the partition Pn =
{0, 1

n ,
2
n . . . , 1}. Since the mesh of the partition converges to 0 as n tends to

infinity, we get that
Sr(n)

nr+1
→
∫ 1

0

f(x) dx =
1

r + 1
.

Suppose now that Sa(n) = Sb(n)c for infinitely many values of n. Then

Sa(n)

na+1
=
Sb(n)c

na+1
=
Sb(n)c

nc(b+1)
nc(b+1)−(a+1)

for infinitely many values of n. The left hand side converges to 1/(a+1). However,
the right hand side converges to 0 if a + 1 > c(b + 1), or +∞ if a + 1 < c(b + 1).
So we must have a+ 1 = c(b+ 1). In this case, the right hand side tends to 1

(b+1)c

so we must also have a+ 1 = (b+ 1)c.

Now c(b+ 1) = (b+ 1)c gives (b+ 1)c−1 = c. For c > 1, in order for (b+ 1)c−1 to
be an integer, we must have that b is also an integer. But then b > 1 and so by
Bernoulli’s inequality c = (b+ 1)c−1 > (1 + 1)c−1 > 1 + (c−1) = c. The inequality
is strict if c− 1 > 2 so the only possibilities are c = 1 and c = 2.

For c = 1 we must have a = b and for all such choices we have Sa(n) = Sb(n)c for
all values of n. For c = 2 we must have b + 1 = 2 and therefore b = 1. Then we
must also have a+ 1 = c(b+ 1) = 4 and therefore a = 3. In this case

Sa(n) =

Å
n(n+ 1)

2

ã2

= Sb(n)2

for all values of n.

Therefore the only possible triples are (a, a, 1) for a ∈ Q+ and (3, 1, 2).
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From the lecture notes of . . .
Vanessa Radzimski

In this new feature of Crux, we share some of our favourite problems from first
and second year undergraduate courses. These problems are a bit non-standard,
elegant or unexpected. If you have a problem you would like to share (and it
fits on one page), please send it along with its solution and a description of the
course/audience it is intended for to crux.eic@gmail.com.

This month’s column is brought to you by Vanessa Radz-
imski. Vanessa is an Assistant Professor in Mathemat-
ics at the University of the Fraser Valley, where she re-
searches the role of advanced mathematics coursework for
future secondary math teachers. She lives on the lands
of the Kwantlen First Nation with her husband Paul and
their dog Poppy. In her spare time she enjoys skiing,
macrame, and training with Poppy for competitive dog
agility.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

These problems were developed for a first-year course in Integral Calculus for
students majoring in the sciences. The problems can be given as-is for homework
assignments or extra practice, but can be easily scaffolded for inclusion in tests or
exams.

Problems

1. Let f(t) be a function such that f ′′(t) is continuous and positive for all t.

Prove that

∫ 2π

0

f(t) cos(t) dt ≥ 0.

2. You walk 81 metres in one direction, turn ninety degrees to the right and
walk 27 metres, turn ninety degrees to the right and walk 9 metres, turn
ninety degrees to the right and walk 3 metres, and so on. This pattern
continues indefinitely. As the number of turns you take approaches infinity,
you approach a point T . Find the distance between your original position
and T .
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Solutions

1. Let’s use integration by parts. Taking u = f(t) and dv = cos(t) dt, we have∫ 2π

0

f(t) cos(t) dt = f(t) sin(t)
∣∣∣2π
0
−
∫ 2π

0

f ′(t) sin(t) dt = −
∫ 2π

0

f ′(t) sin(t) dt

We can use integration by parts again on the resulting integral, taking u = f ′(t)
and dv = sin(t) dt, yielding:

−
∫ 2π

0

f ′(t) sin(t) dt = f ′(t) cos(t)
∣∣∣2π
0
−
∫ 2π

0

cos(t)f ′′(t) dt

= f ′(2π)− f ′(0)−
∫ 2π

0

cos(t)f ′′(t) dt.

Now, we know that f ′′(t) is positive for all t and −1 ≤ cos(t) ≤ 1, so∫ 2π

0

cos(t)f ′′(t) dt ≤
∫ 2π

0

f ′′(t) dt = f ′(t)
∣∣∣2π
0

= f ′(2π)− f ′(0).

Bringing this all together, we have∫ 2π

0

f(t) cos(t) dt = f ′(2π)− f ′(0)−
∫ 2π

0

cos(t)f ′′(t) dt ≥ 0

as desired.

2. The distance, D, from our original position to the point T will depend on our
horizontal and vertical displacement. If we call our horizontal displacement H and
vertical displacement V , we have D =

√
H2 + V 2. For finding H, we have that

H = 81− 9 + 1− 1

9
+

1

81
− 1

729
+ · · · =

∑
n≥0

81

Å−1

9

ãn
=

81

1 + 1
9

.

Similarly for V , we have that

V = 27− 3 +
1

3
− 1

27
+

1

243
− · · · =

∑
n≥0

27

Å−1

9

ãn
=

27

1 + 1
9

.

So, we have that

D =
√
H2 + V 2 =

…
(
243

10
)2 + (

729

10
)2 =

1

10

√
590490.
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A Problem in Combinatorial
Geometry

Andy Liu

Here is a problem to which the complete solution is not given. Reader participation
is invited.

A county consists of five villages at the vertices of a regular pentagon.
How should the total population of 2018 villagers be distributed among
the villages so as to maximize the sum of the squares of the pairwise
distances between all pairs of villagers?

Let the regular pentagon be ABCDE with circumradius 1. Let λ =
√

5−1
2 , which

is 1 less than the golden ratio φ =
√

5+1
2 . Then λ2 + λ − 1 = 0. By the Cosine

Law, the square of the length of a side of the pentagon is 2 − λ while the square
of the length of a diagonal of the pentagon is 3 + λ. It follows that the square of
each pairwise distance is one of 0, 2− λ and 3 + λ.

Let a, b, c, d and e be the respective numbers of villagers in A, B, C, D and E
respectively. At least three of these numbers are of the same parity. We may have
all five having the same parity. If only four of them have the same parity, let them
be b, c, d and e. Suppose exactly three of them have the same parity. We may
let them be either e, a and b or a, c and d. In all cases, b has the same parity as
e and c has the same parity as d.

We wish to maximize

S = φ2(ac+ bd+ ce+ da+ eb) + (ab+ bc+ cd+ de+ ea)

with the constraint a+ b+ c+ d+ e = 2018. We replace b and e by b′ = e′ = b+e
2

and simultaneously c and d by c′ = d′ = c+d
2 . Let

S′ = φ2(ac′ + b′d′ + c′e′ + d′a+ e′b′) + (ab′ + b′c′ + c′d′ + d′e′ + e′a).

Then

S′ − S

= (2− λ)

ÇÅ
c+ d

2

ã2

+ 2

Å
b+ e

2

ãÅ
c+ d

2

ãå
+ (3 + λ)

ÇÅ
b+ e

2

ã2

+ 2

Å
b+ e

2

ãÅ
c+ d

2

ãå
− (2− λ)(cd+ bc+ de)− (3 + λ)(be+ bd+ ce)

= (2− λ)

ÇÅ
c− d

2

ã2

+
(b− e)(c− d)

2

å
+ (3 + λ)

ÇÅ
b− e

2

ã2

+
(b− e)(c− d)

2

å
=

Å√
2− λ

Å
c− d

2

ã
+
√

3 + λ

Å
b− e

2

ãã2

+
(

1 + 2λ−
»

(2− λ)(3 + λ)
) (b− e)(c− d)

2

≥ 0.
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This is because (1 + 2λ)2 = 5 = (2−λ)(3 +λ). It follows that we may make b = e
and c = d without diminishing S, thereby reducing the number of variables from
five to three.

More generally, let the total population be n. Since 2018 ≡ 3 (mod 5), we focus
on the numbers of the form n = 5k+ 3. The empirical data leading to the optimal
distribution for n = 2018 are given in the following table.

n k a b c

3 0 F2 = 1 0 F1 = 1
8 1 2F2 = 2 F2 = 1 F3 = 2

0 F4 = 3 F2 = 1
13 2 1 4 2
18 3 F3 = 2 F5 = 5 F4 = 3

F6 = 8 0 F5 = 5
23–53 4–10 9–15 1–7 6–12

58 11 2F6 = 16 F6 = 8 F7 = 13
0 F8 = 21 F6 = 8

63–118 12–23 1–12 22–33 9–20
123 24 F7 = 13 F9 = 34 F8 = 21

F10 = 55 0 F9 = 34
128–343 25–68 56–109 1–54 35–88

348 69 2F10 = 110 F10 = 55 F11 = 89
0 F12 = 144 F10 = 55

353–838 70–167 1–88 145–232 56–143
843 168 F11 = 89 F13 = 233 F12 = 144

F14 = 377 0 F13 = 233
848–2013 169–402 378–611 1–234 234–467
2018 403 612 235 468

For k = 0, 1, 2, 3, the respective distributions (a, b, c) = (1, 0, 1), (0,3,1), (1,4,2) and
(8,0,5) are indeed optimal. Note that apart from (1,4,2), the nonzero numbers so
far are all Fibonacci numbers: F1 = F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, . . . .
That they play an important role in our argument is hardly surprising as they are
also strongly associated with φ. In fact, Fn = 1√

5
(φn − (− 1

φ )n).

In going from one value of k to the next, Operation 1 is to add 1 to each of a, b
and c, as in the case going from k = 1 to 2. Suppose the optimal distribution for
a certain value of k is (a, b, c). For the value k+ 1, if we go to (a+ 1, b+ 1, c+ 1),
the increase in S is

φ2(2(a+ 1)(c+ 1) + 2(b+ 1)(c+ 1) + (b+ 1)2 − 2ac− 2bc− b2)

+ 2(a+ 1)(b+ 1) + 2(b+ 1)(c+ 1) + (c+ 1)2 − 2ab− 2bc− c2.

Since a+2b+2c = n, this simplifies to (φ2 +1)(2n+5), an expression independent
of the distribution.

Suppose we do not use Operation 1 and there are no unoccupied villages in the
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resulting distribution. We can express it as (x+ 1, y+ 1, z+ 1). The total distance
is (φ2 + 1)(2n + 5) more than that of the distribution (x, y, z). Since (x, y, z) is
inferior to (a, b, c), (x + 1, y + 1, z + 1) will be inferior to (a + 1, b + 1, c + 1). In
this case, there is no reason why we should not use the Operation 1.

It follows that when we deviate from using Operation 1 and obtain a distribution
(a, b, c), at least one of a, b and c must be 0. It is easy to see that we cannot have
c = 0 or a = b = 0. Hence we either have a = 0, as in the case going from k = 0 to
k = 1, or b = 0, as in the case going from k = 2 to k = 3. We call these Operation
2 and Operation 3 respectively.

Operation 2.
From the empirical data, Operation 2 occurs in k = 1, 11 and 69. We switch from
(a, b, c) = (2F4t−2, F4t−2, F4t−1) to a distribution of the form (0, b′, c′). Since c′ 6=
0, we take c′ = b = F4t−2. Then b′ = a

2 + c, which is equal to F4t−2 +F4t−1 = F4t.

Before the switch, we have

S = φ2(6F4t−1F4t−2 + F 2
4t−1) + 2F4t−1F4t−2 + 4F 2

4t−2 + F 2
4t−1.

After the switch, we have

S′ = φ2(2F4tF4t−2 + F 2
4t) + 2F4tF4t−2 + F 2

4t−2.

Comparing the terms multiplied by φ2, we have

(2F4tF4t−2 + F 2
4t)− (6F4t−1F4t−2 + F 2

4t−1)

= 2F4t−2(F4t−1 + F4t−2) + (F4t−1 + F4t−2)2 − 6F4t−1F4t−2 − F 2
4t−1

= F 2
4t−1 + 2F 2

4t−2 − 2F4t−1F4t−2

= (F4t−2 + F4t−3)2 + 2F 2
4t−2 − 2F4t−2(F4t−2 + F4t−3)

= F 2
4t−2 + F 2

4t−3

= F8t−5.

Comparing the other terms, we have

(2F4t−1F4t−2 + 4F 2
4t−2 + F 2

4t−1)− (2F4tF4t−2 + F 2
4t−2)

= 2F4t−1F4t−2 + 4F 2
4t−2 + F 2

4t−1 − 2F4t−2(F4t−1 + F4t−2)− F 2
4t−2

= F 2
4t−1 + F 2

4t−2

= F8t−3.

It follows that S′−S = φ2F8t−5−F8t−3 > 0 since
φ2F2m−1

F2m+1
=
φ2m+1 + φ−2m+3

φ2m+1 + φ−2m−1
> 1.

Operation 3.
From the empirical data, Operation 3 occurs in k = 3, 24 and 168. We switch
from (a, b, c) = (F4t−1, F4t+1, F4t) to a distribution of the form (a′, 0, c′). Since
c′ 6= 0, we take c′ = b = F4t+1. This time, we have a′ = a+ 2c, which is equal to
F4t−1 + 2F4t = F4t+1 + F4t = F4t+2.
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Before the switch, we have

S = φ2(2F4tF4t−1 + 2F4t+1F4t−1 + F 2
4t+1) + 2F4t+1F4t−1 + 2F4t+1F4t + F 2

4t.

After the switch, we have

S′ = φ2(2F4t+2F4t+1) + F 2
4t+1.

Comparing the terms multiplied by φ2, we have

2F4t+2F4t+1 − (2F4tF4t−1 + 2F4t+1F4t−1 + F 2
4t+1)

= 2F4t+1(F4t+1 + F4t)− 2F4tF4t−1 − 2F4t+1F4t − F 2
4t+1

= F 2
4t+1 − 2F4tF4t−1

= (F4t + F4t−1)2 − 2F4tF4t−1

= F 2
4t + F 2

4t−1

= F8t−1.

Comparing the other terms, we have

(2F4t+1F4t−1 + 2F4t+1F4t + F 2
4t)− F 2

4t+1

= 2F4t+1(F4t+1 − F4t) + 2F4t+1F4t + F 2
4t − F 2

4t+1

= F 2
4t+1 + F 2

4t

= F8t+1.

It follows that S′ − S = φ2F8t−1 − F8t+1 > 0 as in Operation 2.

We have now come to the crucial point in the argument. The key questions are:

1. When do we deviate from using Operation 1?

2. If we deviate from using Operation 1, when will we use Operation 2 and when
will we use Operation 3?

3. If we use Operation 2 or Operation 3, why is the given modification of the
distribution optimal?

These questions need to be answered with justifications. Please send your ideas by
email to acfliu@gmail.com. We hope to be able to report progress in a follow-up
paper.
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FOCUS ON...
No. 49

Michel Bataille
The Gamma, Beta, and Digamma Functions

Introduction

Among the so-called special functions, the Gamma function and the closely con-
nected Beta and Digamma functions are those most frequently met in problem
corners. The purpose of this number is to illustrate simple results about them.
The reader will find a very clear and accessible exposition of these results in the
delightful, forty-page book [1]. Following this book, we will only consider the case
when the variable is real. To the interested reader, we point out that Chapter 7
of [2] presents the case of a complex variable in detail.

Gamma

The first time a student comes across the Gamma function is likely during a lecture
on integrals: for positive x, the number Γ(x) is

Γ(x) =

∫ ∞
0

tx−1e−t dt.

This defines a function, introduced by Euler in a desire to generalize the factorial,
as shown by Γ(n + 1) = n! and the relation Γ(x + 1) = xΓ(x). Of course, Γ will
appear in the evaluation of integrals. Here are two examples taken out of an
exercise proposed in [2]:

Evaluate I(a) =

∫ ∞
0

e−x
a

dx and J(a, b) =

∫ 1

0

Å
ln

1

x

ãa−1

xb−1, (a, b > 0).

The substitution x = u1/a gives

I(a) =

∫ ∞
0

e−u · u
1
a−1

a
du =

Γ(1/a)

a

while x = e−u yields

J(a, b) =

∫ ∞
0

ua−1e−bu du =

∫ ∞
0

ta−1

ba−1
· e−t · dt

b
=

Γ(a)

ba
.

Note in passing that I(2) =
√
π

2 leads to Γ(1/2) =
√
π.

A natural extension of the Gamma function is given by

Γ(x) = lim
n→∞

n! · nx
x(x+ 1)(x+ 2) · · · (x+ n)

, (1)

Copyright © Canadian Mathematical Society, 2022



34/ Focus On... The Gamma, Beta, and Digamma Functions

a useful formula that makes Gamma a function defined on a larger set, namely
D = R−Z−, where Z− = {0,−1,−2, . . .} denotes the set of nonpositive integers.
As a direct application, we consider the following problem adapted from problem
906 proposed in The College Mathematics Journal in 2009:

For x > 0, find the value of

∞∏
n=1

(
1 +

x

n

)(−1)n−1

.

For N ∈ N, let QN =
N∏
n=1

(
1 + x

n

)(−1)n−1

. Since Q2N−1 = Q2N

(
1 + x

2N

)
∼ Q2N

as N →∞, it suffices to determine lim
N→∞

Q2N . Now,

Q2N =
2 · 4 · · · (2N)

1 · 3 · 5 · · · (2N − 1)
· (x+ 1) · · · (x+ 2N − 1)

(x+ 2) · · · (x+ 2N)

=
(N !)2

(2N)!
· (x+ 1)(x+ 2) · · · (x+ 2N − 1)(x+ 2N)

[(x/2 + 1) · · · (x/2 +N)]2
,

and since from (1)

(x+ 1)(x+ 2) · · · (x+N) ∼ N !Nx

xΓ(x)

as N →∞, we obtain

Q2N ∼
(N !)2

(2N)!
· (2N)!2xNx

xΓ(x)
·
(
x
2 Γ
(
x
2

))2
(N !)2Nx

∼ x2x−2 (Γ(x/2))2

Γ(x)

and the required product is equal to x2x−2 (Γ(x/2))2

Γ(x) .

We conclude this section with two formulas that deserve to be known

Γ(x)Γ(1− x) =
π

sinπx
(x ∈ (0, 1)),

√
π Γ(x) = 2x−1Γ

(x
2

)
Γ

Å
x+ 1

2

ã
(x ∈ D) (2)

and two easy applications:

Evaluate∫ 1

0

ln(Γ(t)) dt and
∞∑
m=1

∞∑
n=1

1

Γ(m+n
2 )Γ(m+n+1

2 )
.

[the double sum is inspired by problem 868 of The College Mathematics Journal
(January 2008).] Clearly, we have∫ 1

0

ln(Γ(1− t)) dt =

∫ 1

0

ln(Γ(t)) dt
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and therefore

2

∫ 1

0

ln Γ(t) dt =

∫ 1

0

ln (Γ(t) · Γ(1− t)) dt

=

∫ 1

0

ln
( π

sinπt

)
dt

= ln(π)− 1

π

∫ π

0

ln(sinu) du

= ln(π)− 1

π
· (−π ln 2) = ln(2π).

Thus,
∫ 1

0
ln(Γ(t)) dt = ln(

√
2π).

As for the double sum, letting u(m,n) = 1

Γ(m+n
2 )Γ(m+n+1

2 )
, we have u(m,n) ≥ 0

for all positive integers m,n, hence we can evaluate S =
∑∞
m=1

∑∞
n=1 u(m,n) as

follows:

S =
∞∑
k=2

∑
m+n=k

u(m,n) =
∞∑
k=2

(k − 1)u(k − 1, 1) =
∞∑
k=1

ku(k, 1).

From (2), we obtain

Γ

Å
k + 1

2

ã
· Γ
Å
k + 2

2

ã
=

√
π Γ(k + 1)

2(k+1)−1
=

√
π k!

2k

so that u(k, 1) = 2k

k!
√
π

for each positive integer k. As a result,

S =
∞∑
k=1

2k

(k − 1)!
√
π

=
2√
π

∞∑
`=0

2`

`!
=

2e2

√
π
.

Beta

The Beta function, denoted by B (or sometimes β), is also defined by an integral:
for positive x, y,

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt.

The following formula links the Beta and Gamma functions

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

and readily shows that

B(y, x) = B(x, y), B(x, n+ 1) =
n!

x(x+ 1) · · · (x+ n)
, B(m,n) =

1

m
(
m+n−1

m

) ,
where m,n are positive integers. Here are two examples in which the Beta function
allows a direct solution. The first one is a recent problem set in Mathematics
Magazine in April 2019:
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Prove that the series

∞∑
n=1

3 · 6 · · · (3n)

7 · 10 · · · (3n+ 4)
· 1

3n+ 7

converges, and find its sum.

Let un =
3 · 6 · · · (3n)

7 · 10 · · · (3n+ 4)
· 1

3n+ 7
. Then

un =
3nn!

3n+1(7/3)(7/3 + 1) · · · (7/3 + n)
=

1

3
· Γn(7/3)

n7/3

where Γn(x) = n!·nx
x(x+1)(x+2)···(x+n) . From (1), we see that un ∼ Γ(7/3)

3 · 1
n7/3 > 0

as n→∞ and, since 7/3 > 1, the series
∑
n≥1 un is convergent.

Now, we have un = 1
3 B(7/3, n + 1) = 1

3

∫ 1

0
tn(1 − t)4/3 dt, hence for any integer

N > 1, we have:

N∑
n=1

un =
1

3

∫ 1

0

(1− t)4/3

(
N∑
n=1

tn

)
dt

=
1

3

∫ 1

0

(1− t)1/3(t− tN+1) dt

=
1

3
(B(4/3, 2)−B(4/3, N + 2)),

that is,

N∑
n=1

un =
1

3
Γ1(4/3)− ΓN+1(4/3)

3(N + 1)4/3
=

1

3
· 1

4/3(4/3 + 1)
− ΓN+1(4/3)

3(N + 1)4/3
=

3

28
− ΓN+1(4/3)

3(N + 1)4/3
.

Since lim
N→∞

ΓN+1(4/3)

(N + 1)4/3
= 0 we can conclude that

∞∑
n=1

un = lim
N→∞

N∑
n=1

un = 3
28 .

Our second example, the evaluation of a combinatorial sum, is provided by problem
11509 posed in The American Mathematical Monthly June-July 2010 issue:

Let m be a positive integer. Prove that

m2−m+1∑
k=m

(
m2−2m+1
k−m

)
k
(
m2

k

) =
1

m
(

2m−1
m

) .
We observe that the right-hand side of the proposed identity is just B(m,m). This
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prompts us to use the Beta function in the computation of the left side L:

L =
m2−m+1∑
k=m

Ç
(m− 1)2

k −m

å
B(k,m2 − k + 1)

=

(m−1)2∑
j=0

Ç
(m− 1)2

j

å
B(m+ j,m2 −m− j + 1)

=

(m−1)2∑
j=0

∫ 1

0

Ç
(m− 1)2

j

å
xm+j−1(1− x)m

2−m−j dx

=

∫ 1

0

xm−1(1− x)m−1

Ñ
(m−1)2∑
j=0

Ç
(m− 1)2

j

å
xj(1− x)(m−1)2−j

é
dx

=

∫ 1

0

xm−1(1− x)m−1(x+ (1− x))(m−1)2 dx

=

∫ 1

0

xm−1(1− x)m−1 dx

so that L = B(m,m), as desired.

Other integral presentations of the Beta function are possible. For example, the
natural change of variables defined by t = (cos θ)2 easily leads to

B(x, y) = 2

∫ π/2

0

(cos θ)2x−1(sin θ)2y−1 dθ.

Less obvious is the substitution t = u
1+u , which leads to

B(x, y) =

∫ ∞
0

ux−1

(1 + u)x+y
du.

The latter can be used in the solution to problem 1879 from the October issue of
Mathematics Magazine:

Let m and n be positive integers such that m < n and let a and b be
positive real numbers. Evaluate∫ ∞

0

x2(n−m)(x2 − 1)2m

ax2n + b(x2 − 1)2n
dx.

The given integral I is equal to∫ 1

0

Å
x− 1

x

ã2m 1

a+ b
(
x− 1

x

)2n dx+

∫ ∞
1

Å
x− 1

x

ã2m 1

a+ b
(
x− 1

x

)2n dx.
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The changes of variable x = e−t in the first integral and x = et in the second
integral yield

I =

∫ ∞
0

(et − e−t)2m(et + e−t)

a+ b(et − e−t)2n
dt =

∫ ∞
0

v2m

a+ bv2n
dv.

Then, the change of variable v =
(
a
b

) 1
2n X

1
2n gives

I =
1

2nbαa1−α

∫ ∞
0

Xα−1

X + 1
dX

where α =
2m+ 1

2n
.

Since ∫ ∞
0

Xα−1

X + 1
dX = B(α, 1− α) = Γ(α)Γ(1− α) = π csc(πα)

we obtain

I =
π csc(πα)

2nbαa1−α .

Digamma

It is also worth giving some results about the Digamma function. This function,

denoted by ψ, is defined as ψ(x) = Γ′(x)
Γ(x) for positive x. Note that a formula seen

in (2) gives
ψ(1− x)− ψ(x) = π cot(πx) (x ∈ (0, 1)).

Using (1), an alternative expression is obtained as

ψ(x) = −γ − 1

x
+
∞∑
n=1

Å
1

n
− 1

x+ n

ã
where γ denotes the Euler constant. A useful consequence is that for p, q > 0

ψ(q)− ψ(p) =
∞∑
n=0

Å
1

n+ p
− 1

n+ q

ã
,

a relation that leads to an immediate solution of 4511 [2020 : 77 ; 2021 : 320]:

Evaluate the following sum in closed form:

∞∑
n=1

Å
1

8n− 7
− 1

8n− 1

ã
.

The given sum equals

1

8

∞∑
n=0

Ç
1

n+ 1
8

− 1

n+ 7
8

å
=

1

8

Å
ψ

Å
1− 1

8

ã
− ψ
Å

1

8

ãã
=
π cot(π/8)

8
=

π

8(
√

2− 1)
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and we conclude
∞∑
n=1

Å
1

8n− 7
− 1

8n− 1

ã
=
π(1 +

√
2)

8
.

Before our last example, let us show that if a and a+ b are positive, then

ψ(a+ b)− ψ(a) =

∫ 1

0

ta−1(1− tb)
1− t dt. (3)

We remark that
ta−1(1− tb)

1− t =
∞∑
n=0

(tn+a−1 − tn+a+b−1)

and that tn+a−1 − tn+a+b−1 has the same sign as b when t ∈ (0, 1). From

∞∑
n=0

∫ 1

0

|tn+a−1 − tn+a+b−1| dt =
∞∑
n=0

∣∣∣∣∣
∫ 1

0

(tn+a−1 − tn+a+b−1) dt

∣∣∣∣∣
=
∞∑
n=0

|b|
(n+ a)(n+ a+ b)

<∞,

we can interchange sum and integral and get∫ 1

0

ta−1(1− tb)
1− t dt =

∞∑
n=0

∫ 1

0

(tn+a−1 − tn+a+b−1) dt

=
∞∑
n=0

Å
1

n+ a
− 1

n+ a+ b

ã
= ψ(a+ b)− ψ(a).

We make use of (3) in the following solution to problem 11564 proposed in the
April 2011 issue of The American Mathematical Monthly :

Prove that

∫ ∞
0

e−x(1− e−6x)

x(1 + e−2x + e−4x + e−6x + e−8x)
dx = ln

Ç
3 +
√

5

2

å
.

First, the substitution e−10x = t shows that the integral is equal to

I =

∫ 1

0

t
1
10−1(1− t 3

5 )(1− t 1
5 )

(1− t)(− ln t)
dt.

Second, suppose that a, a+ b, a+ c, and a+ b+ c are positive. Then, for t ∈ (0, 1)
we have

ta−1(1− tb)
− ln t

=

∫ a+b

a

tu−1 du
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so that∫ 1

0

ta−1(1− tb)(1− tc)
(1− t)(− ln t)

dt =

∫ 1

0

Ç∫ a+b

a

tu−1(1− tc)
1− t du

å
dt

=

∫ a+b

a

Ç∫ 1

0

tu−1(1− tc)
1− t dt

å
du

=

∫ a+b

a

(ψ(u+ c)− ψ(u)) du = [ln(Γ(u+ c)− ln(Γ(u)]a+b
a

= ln

Å
Γ(a+ b+ c)Γ(a)

Γ(a+ b)Γ(a+ c)

ã
.

Taking a = 1
10 , b = 3

5 , c = 1
5 leads to

I = ln

Å
Γ(9/10)Γ(1/10)

Γ(3/10)Γ(7/10)

ã
and the requested result follows since

Γ(9/10)Γ(1/10)

Γ(3/10)Γ(7/10)
=

sin(3π/10)

sin(π/10)
= 3−4 sin2(π/10) = 1+2 cos(π/5) = 1+

1 +
√

5

2
=

3 +
√

5

2
.

Exercises

1. (From problem 91.J posed in The Mathematical Gazette in November 2007).
For α, β > 0, prove that∫ 1

0

(1− xα)
1
β dx =

∫ 1

0

(1− xβ)
1
α dx.

2. Let a ∈ (0, 1). For n ∈ N, let In(a) =

∫ ∞
0

dt

(1 + t1/a)n
. Find lim

n→∞
naIn(a).

[Hint : substitution t = (1− u)au−a]

3. Let a, b, c, d, k be positive real numbers such that k = a+ b = c+ d. Prove that

∞∏
n=0

(kn+ a)(kn+ b)

(kn+ c)(kn+ d)
=

sin(πa/k)

sin(πc/k)
.

4. (Problem 3567 [2010 : 396, 398 ; 2011 : 400]) Prove that∫ ∞
0

e−x(1− e−2x)(1− e−4x)(1− e−6x)

x(1− e−14x)
dx = ln 2.
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by March 30, 2022.

4701. Proposed by Michel Bataille.

Let AD,BE,CF be the internal angle bisectors of ∆ABC (with D on BC, E on
CA, F on AB). Let the perpendicular to BC through D intersect the perpendic-
ular bisector of AD at A′ and let B′, C ′ be similarly constructed. Prove that the
lines AA′, BB′, CC ′ are concurrent and that

AA′ ·BB′ · CC ′ ≤
Å

3R

4

ã3

,

where R is the circumradius of ∆ABC.

4702. Proposed by S. Chandrasekhar.

Let p be a prime which is congruent to 3 (mod 4). Let S denote the set of square
elements in the field of integers modulo p. Then show that∏

a < b
a, b ∈ S

(a+ b) = ±1 (mod p).

4703. Proposed by Jiahao Chen.

Given a triangle ABC with circumcenter O, denote by DEF the triangle formed
by the tangents to the circumcircle at A,B,C with A on EF , B on FD, and
C on DE. If D′, E′, F ′ are the reflections of D,E, F in the lines BC,CA,AB,
respectively, prove that D′E′||OB if and only if D′F ′||OC.

4704. Proposed by Daniel Sitaru.

For a, b, c, d ∈ [0, 1), prove that

1

1− a6
+

1

1− b6 +
1

1− c6 +
1

1− d2
≥ 2

1− (abc)2
+

2

1− abcd .

4705. Proposed by Nguyen Viet Hung.

Find the following limit

lim
n→∞

1
3
√
n2

n∑
k=1

1
3
√
k
.
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4706. Proposed by Thanos Kalogerakis.

In the figure below, find the midpoint of segment PR using the straightedge alone
and prove that your construction works.

4707. Proposed by Michel Bataille.

Let n be an integer with n ≥ 2. Prove that

n−1∑
k=1

csc2

Å
kπ

n

ã
=
n2 − 1

3
and

n−1∑
k=1

csc4

Å
kπ

n

ã
=
n4 + 10n2 − 11

45
.

4708. Proposed by Conar Goran.

Let α, β, γ be angles of an arbitrary triangle. Prove that the following inequality
holds

cotα+ cotβ + cot γ

3
≤ cot

Ç
3

1
α + 1

β + 1
γ

å
.

When does the equality occur?

4709. Proposed by Ion Patrascu.

Let ABC be an acute triangle and O the center of its circumcircle. We denote
by D,E and F the intersections of the lines AO and BC, BO and CA, CO and
AB, respectively. If BD cosA = CE cosB = AF cosC, prove that ABC is an
equilateral triangle.

4710?. Proposed by Omar Sonebi, modified by the Editorial Board.

Show that there exist 2021 consecutive natural numbers none of which is the sum
of a perfect square and a perfect cube.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 mars 2022.

4701. Proposeé par Michel Bataille.

Soient AD,BE et CF les bissectrices internes des angles de ∆ABC, où D se
trouve sur BC, E sur CA et F sur AB. La perpendiculaire vers BC passant par
D rencontre la bissectrice perpendiculaire de AD en A′ ; B′ et C ′ sont définis de
façon similaire. Démontrer que les lignes AA′, BB′ et CC ′ sont concourantes et
que

AA′ ·BB′ · CC ′ ≤
Å

3R

4

ã3

,

où R est le rayon du cercle circonscrit de ∆ABC.

4702. Proposeé par S. Chandrasekhar.

Soit p un nombre premier congru à 3 (mod 4) et soit S l’ensemble des éléments
carrés dans le corps des entiers modulo p. Démontrer que∏

a < b
a, b ∈ S

(a+ b) = ±1 (mod p).

4703. Proposeé par Jiahao Chen.

Soit O le centre du cercle circonscrit de ABC. Les tangentes à ce cercle, en A,
B et C, forment un triangle DEF , où A se trouve sur EF , B sur FD, puis C
sur DE. Soient alors D′, E′ et F ′ les reflexions de D, E et F par rapport aux
lignes BC, CA et AB, respectivement. Démontrer que D′E′||OB si et seulement
si D′F ′||OC.

4704. Proposeé par Daniel Sitaru.

Si a, b, c, d ∈ [0, 1), démontrer que

1

1− a6
+

1

1− b6 +
1

1− c6 +
1

1− d2
≥ 2

1− (abc)2
+

2

1− abcd .

4705. Proposeé par Nguyen Viet Hung.

Déterminer la limite suivante

lim
n→∞

1
3
√
n2

n∑
k=1

1
3
√
k
.
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4706. Proposeé par Thanos Kalogerakis.

Déterminer le point milieux du segment PR au schéma ci-bas, seulement à l’aide
d’une règle non graduée; démontrer que votre construction marche.

4707. Proposeé par Michel Bataille.

Soit n un entier tel que n ≥ 2. Démontrer que

n−1∑
k=1

csc2

Å
kπ

n

ã
=
n2 − 1

3
et

n−1∑
k=1

csc4

Å
kπ

n

ã
=
n4 + 10n2 − 11

45
.

4708. Proposeé par Conar Goran.

Soient α, β, γ les angles d’un triangle quelconque. Démontrer l’inégalité qui suit
et déterminer toute condition pour que l’égalité tienne:

cotα+ cotβ + cot γ

3
≤ cot

Ç
3

1
α + 1

β + 1
γ

å
.

4709. Proposeé par Ion Patrascu.

Soit ABC un triangle acutangle et soit O le centre de son cercle circonscrit.
Dénotons par D, E et F les points d’intersection des lignes AO et BC, puis BO
et AC et enfin, CO et AB, respectivement. Si BD cosA = CE cosB = AF cosC,
démontrer que ABC est équilatéral.

4710?. Proposeé par Omar Sonebi, avec modification venant de l’éditeur.

Démontrer l’existence de 2021 entiers naturels consécutifs, dont aucun est la
somme d’un carré d’un entier naturel et d’un cube d’un entier naturel.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2021: 47(6), p. 300–305.

4651. Proposed by Michel Bataille.

The complex numbers z1 and z2 represent points on or inside the unit circle of the
Euclidean plane such that both Re(z1 + z2) ≥ 1 and Im(z1 + z2) ≥ 1. Find the
extremal values of Re(z1z2) and the pairs (z1, z2) at which they are attained.

We received 10 solutions, 8 of which were correct, 1 was incomplete and 1 was
incorrect.

The minimum value is − 1
2 , attained when

z1 = z2 = cosπ/3 + i sinπ/3 =
1

2
[1 + i

√
3];

the maximum value is 1
2 , attained when

z1 = z2 = cosπ/6 + i sinπ/6 =
1

2
[
√

3 + i].

Solution 1, by Oliver Geupel.

Note that since the real and imaginary parts of z1 and z2 do not exceed 1, while
Re(z1 + z2) ≥ 1 and Im(z1 + z2) ≥ 1, it follows that z1 and z2 lie in the first
quadrant. Therefore z1 = r1e

iφ1 and z2 = r2e
iφ2 where 0 ≤ r1, r2 ≤ 1 and

0 ≤ φ1, φ2 ≤ π/2.

Recall that the sine and cosine are both concave functions on [0, π/2], so that

1 ≤ Re (z1 + z2) = r1 cosφ1 + r2 cosφ2 ≤ cosφ1 + cosφ2 ≤ 2 cos 1
2 [φ1 + φ2],

and

1 ≤ Im (z1 + z2) = r1 sinφ1 + r2 sinφ2 ≤ sinφ1 + sinφ2 ≤ 2 sin 1
2 [φ1 + φ2].

From these two inequalities, we find that π/3 ≤ φ1 + φ2 ≤ 2π/3, whence

− 1
2 = cos 2π

3 ≤ r1r2 cos(φ1 + φ2) = Re (z1z2) ≤ cos π3 = 1
2 .

Equality on the left occurs when r1 = r2 = 1, φ1 = φ2 = π/3, and on the right
when r1 = r2 = 1, φ1 = φ2 = π/6.
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Solution 2, by Borche Joshevski.

Let z1 = x1 + y1i and z2 = x2 + y2i, so that x1 + x2 ≥ 1, y1 + y2 ≥ 1, x2
1 + y2

1 ≤ 1,
and x2

2 + y2
2 ≤ 1. Then 0 ≤ x1, x2, y1, y2 ≤ 1 and

Re(z1z2) = x1x2 − y1y2 ≤
»

(1− y2
1)(1− y2

2)− y1y2

≤ 1
2 (1− y2

1 + 1− y2
2)− y1y2 = 1− 1

2 (y1 + y2)2 ≤ 1
2 ,

with equality if and only if x2
1 + y2

1 = x2
2 + y2

2 = 1 and y1 = y2 = 1
2 (y1 + y2) = 1

2 ,

i.e. when x1 = x2 =
√

3/2 and y1 = y2 = 1/2.

Similarly

−Re(z1z2) = y1y2 − x1x2 ≤
»

(1− x2
1)(1− x2

2)− x1x2

≤ 1
2 (1− x2

1 + 1− x2
2)− x1x2 = 1− 1

2 (x1 + x2)2 ≤ 1
2 ,

with equality if and only if x1 = x2 = 1/2 and y1 = y2 =
√

3/2.

Solution 3, by Theo Koupelis.

Let z1 = x1 + y1i and z2 = x2 + y2i, so that x1 + x2 ≥ 1, y1 + y2 ≥ 1, x2
1 + y2

1 ≤ 1,
and x2

2 + y2
2 ≤ 1. Since 2x1x2 ≤ x2

1 + x2
2 and 2y1y2 ≤ y2

1 + y2
2 , we have that

Re (z1z2) = x1x2 − y1y2 ≥ 1
2 [(x1 + x2)2 − (x2

1 + x2
2)− (y2

1 + y2
2)]

≥ 1
2 [1− (x2

1 + y2
1)− (x2

2 + y2
2)] ≥ − 1

2 ,

and

Re (z1z2) = x1x2 − y1y2 ≤ 1
2 [(x2

1 + x2
2)− (y1 + y2)2 + (y2

1 + y2)2]

≤ 1
2 [(x2

1 + y2
1) + (x2

2 + y2
2)− 1] ≤ 1

2 .

Equality occurs in the first instance when we have y1 = y2, x1 + x2 = 1 and
x2

1 + y2
1 = x2

2 + y2
2 = 1. Since 0 ≤ y1, y2 ≤ 1, then we get y1 = y2 = 1/2 and

x1 = x2 =
√

3/2.

Equality occurs in the second instance when x1 = x2, y1 + y2 = 1, which leads to
y1 = y2 = 1/2 and x1 = x2 =

√
3/2.

4652. Proposed by Nguyen Viet Hung.

Let ABC be an equilateral triangle with centroid O and let M be any point inside
of the triangle. D,E, F are feet of altitudes from M onto the sides BC,CA,AB
respectively. Prove that

(MD −ME)4 + (ME −MF )4 + (MF −MD)4 =
81

8
MO4.

We received 15 submissions, all of which were correct, and present a composite of
the similar solutions submitted independently by Kee-Wai Lau, Didier Pinchon,
and Sorin Rubinescu.
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We fix a coordinate system so that the given equilateral triangle has its centroid
at the origin, and its vertices are A = (2, 0), B = (−1,

√
3), and C = (−1,−

√
3).

The equations of BC,CA, and AB are respectively x + 1 = 0, x −
√

3y − 2 = 0,
and x +

√
3y − 2 = 0. We set M = (s, t); because we assume that M is in the

interior of ∆ABC, we have s + 1 > 0, s −
√

3t − 2 < 0, and s +
√

3t − 2 < 0. It
follows that the distance from M to the sides (using the formula for distance from
a point to a line) are

MD = s+ 1, ME =
−s+

√
3t+ 2

2
, MF =

−s−
√

3t+ 2

2
,

whence

MD −ME =
3s−

√
3t

2
, ME −MF =

√
3t, MF −MD =

−3s−
√

3t

2
. (1)

Finally, by direct expansion of the expressions in (1), we conclude that

(MD −ME)4 + (ME −MF )4 + (MF −MD)4 =
81

8
(s2 + t2)2 =

81

8
MO4 ,

as required.

Editor’s comments. Several readers observed that the analogous result with the
exponent “4” replaced by “2” also has an attractive form, namely

(MD −ME)2 + (ME −MF )2 + (MF −MD)2 =
9

2
MO2 ;

this result also follows immediately from the equations in (1). Giuseppe Fera went
a step further and proved the lovely generalization,

For the points defined in the original statement of the problem together with a fixed
positive integer n, there exists a constant Kn for which

(MD −ME)n + (ME −MF )n + (MF −MD)n = Kn ·MOn

if and only if n equals 1, 2, or 4.

It is easily seen that K1 = 0, while we already know that K2 = 9
2 and K4 = 81

8 .
For his proof that no other value of n will lead to a constant, he considered the
following function of the variable point M = (s, t):

f(M) =
(MD −ME)n + (ME −MF )n + (MF −MD)n

MOn
.

He then found two explicit points M that produced different values of f(M),
and thereby concluded that f(M) could not be constant. He used barycentric
coordinates for his calculations, but you might wish to try it for yourselves using
the points M = (s, 0) and M = (0, t) in the above equations in (1), and observe
that you get different results for all n except, miraculously, for n = 1, n = 2, and
n = 4.
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4653. Proposed by George Apostolopoulos.

Let ABC be a triangle with inradius r and circumradius R. It is known (e.g. Item
2.48 on page 31 of “Geometric Inequalities” by Bottema et al.) that

sec2 A

2
+ sec2 B

2
+ sec2 C

2
≥ 4.

Prove that

sec2 A

2
+ sec2 B

2
+ sec2 C

2
≤ 2R

r
.

We received 41 solutions, all of which were correct. This included 22 solutions by
Mehra Vivek. We present the solution by C. R. Pranesachar.

Let a = BC, b = CA, c = AB be the side lengths of triangle ABC; let s be its
semiperimeter; and F its area. We have

sec2 A

2
=

1

cos2 A
2

=
bc

s(s− a)
,

with similar expressions for sec2 B
2 and sec2 C

2 . Also

R =
abc

4F
, r =

F

s
, F 2 = s(s− a)(s− b(s− c),

so
2R

r
=

2 · abc4F
F
s

=
abcs

2F 2
.

Hence in the given inequality

rhs−lhs =
abcs

2F 2
−
Å

bc

s(s− a)
+

ca

s(s− b) +
ab

s(s− c)

ã
=
abcs

2F 2
− bc(s− b)(s− c) + ca(s− c)(s− a) + ab(s− a)(s− b)

s(s− a)(s− b)(s− c)

=
1

4F 2

(
abc(a+ b+ c)− bc(c+ a− b)(a+ b− c)

− ca(a+ b− c)(b+ c− a)− ab(b+ c− a)(c+ a− b)
)

=
1

4F 2

(
abc(a+ b+ c)− bc(a2 − (b− c)2)

− ca(b2 − (c− a)2)− ab(c2 − (a− b)2)
)

=
1

4F 2
(bc(b− c)2 + ca(c− a)2 + ab(a− b)2) ≥ 0.

This proves the inequality. Also we see that equality holds good if and only if
a = b = c, that is, if and only if triangle ABC is equilateral. This completes the
proof.
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4654. Proposed by Andrei Eckstein and Leonard Giugiuc.

Consider positive real numbers a1, a2, . . . , an such that

a1 + a2 + · · ·+ an =
1

a1
+

1

a2
+ · · ·+ 1

an
,

where n ≥ 3. Prove that ∑
i<j

aiaj ≥
n(n− 1)

2
.

We received 13 solutions, all correct. Many of the submitted solutions used Maclau-
rin’s inequality or Newton’s inequalities, but we have chosen to include a solution
that uses no heavy machinery. We present the solution by Mehra Vivek.

Let

S =
n∑
i=1

ai =
n∑
i=1

1

ai
.

For each index i, we find that

(S − ai)
Å
S − 1

ai

ã
≥ (n− 1)2

by the AM-HM inequality because each of the two multiplicands have n−1 terms,
and the terms of the left one are the reciprocals of the terms of the right one. We
can manipulate this to get

(S − ai)(aiS − 1) ≥ ai(n− 1)2

aiS
2 − a2

iS + ai − S ≥ ai(n− 1)2.

Adding copies of this inequality for i = 1, 2, . . . , n, we find that

S3 − S ·
n∑
i=1

a2
i + S − nS ≥ (n− 1)2S

S2 −
n∑
i=1

a2
i + 1− n ≥ (n− 1)2

S2 −
n∑
i=1

a2
i ≥ (n− 1)2 + (n− 1) = n(n− 1)

1

2
·
(
S2 −

n∑
i=1

a2
i

)
≥ n(n− 1)

2
.

But this is what we wanted to prove because, by multinomial expansion,

1

2
·
(
S2 −

n∑
i=1

a2
i

)
=

∑
1≤i<j≤n

aiaj .
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4655. Proposed by Daniel Brin.

Let A = (aij) be a matrix of order n where n > 1 is odd. Let C = (−1)i+jMij

denote the cofactor matrix of A where Mij are the minors of A. If X is an n× n
matrix such that XMX = C, find the sum of all the entries of X.

The problem turned out to be ill posed, and attracted one submission from UC Lan
Cyprus Problem Solving Group, upon which the following comments are based.

The matrix X that satisfies XMX = C is not unique; replacing X by −X will do
the trick as well. The proposer had in mind the solution

X = diag (−1, 1,−1, 1, . . . ,−1, 1,−1),

for which the entry sum is −1; but X = diag (1,−1, 1,−1, . . . , 1) with entry sum
1 will work as well.

In certain situations, the set of matrix solutions is infinite. For example, when
A = I, then M = C = I and all we require is X2 = I. This is satisfied, for
example, by the matrix X whose diagonal entries are all 1 except for the last entry
which is −1, all of whose other entries vanish except possibly for the offdiagonal
entry r in position (n− 1, n); this has entry sum n− 2 + r for any number r.

If the rank of A does not exceed n−2, then M = C = O and there is no restriction
on X at all. This leaves open the question as to whether anything interesting or
useful can be said for the number of solutions for other matrices A. A related
investigation can treat the solutions of the equation X−1MX = C.

4656. Proposed by Abdollah Zohrabi.

If a, b, c and d are positive real numbers such that abcd = 1, prove that

(1 + a4)(1 + b4)(1 + c4)(1 + d4) ≥ 2(ab+ cd)(bd+ ac)(cb+ da).

We received 22 submissions of which 19 were correct and complete. We present
two solutions.

Solution 1, by Brian Bradie.

By Hölder’s inequality,

(1 + a4)(1 + b4)(1 + c4)(1 + d4) ≥ (1 + abcd)4 = 24.

Also by Hölder’s inequality,

(1 + a4)(1 + b4)(1 + c4)(1 + d4) ≥ (ab+ cd)4,

(1 + a4)(1 + b4)(1 + c4)(1 + d4) ≥ (bd+ ac)4, and

(1 + a4)(1 + b4)(1 + c4)(1 + d4) ≥ (cb+ da)4.

Multiplying these four inequalities together and then taking the fourth root yields

(1 + a4)(1 + b4)(1 + c4)(1 + d4) ≥ 2(ab+ cd)(bd+ ac)(cb+ da).
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Solution 2, by Emil Khalilov.

Let x, y, z, t be permutation of a, b, c, d such that xy + zt is maximum. We have:

xy + zt ≥ 2
√
xyzt = 2

√
abcd = 2.

So,

P = (1 + a4)(1 + b4)(1 + c4)(1 + d4) = (1 + x4)(z4 + 1)(1 + y4)(t4 + 1)

(by Cauchy-Schwarz) ≥ ((x2 + z2)(y2 + t2))2 ≥ (xy + zt)4

= (xy + yz)(xy + yz)(xy + yz)(xy + yz)

≥ 2(ab+ cd)(ac+ bd)(ad+ bc).

Equality occurs when a = b = c = d = 1.

4657. Proposed by George Stoica.

Let us consider the equation f(x) + f(2x) = 0, x ∈ R.

(i) Prove that, if f is continuous at 0, then f(x) = 0 for all x ∈ R.

(ii) Construct a function f , discontinuous at every x ∈ R, that solves the given
equation.

We received 14 submissions, 13 of them were complete and correct. We present
the solution by the majority of solvers.

(i) Let x ∈ R. Using induction and the given functional equation, we deduce that

f(2−nx) = (−1)nf(x), ∀n ∈ N.

Letting n→∞ and using the continuity of f at 0, the left hand side converges to
f(0) = 0. Hence the right hand side must converge to 0 as well, that is, f(x) = 0.

(ii) Given a nonzero integer n, write v2(n) for the maximum power of 2 dividing
n. Given a nonzero rational number x, we can write x = m/n for some relatively
prime integers m,n, and define v2(x) = v2(m)− v2(n). Then,

f(x) =

ß
(−1)v2(x), if x ∈ Q \ {0},
0, otherwise.

It is easy to check that f(x) + f(2x) = 0 holds for each x ∈ R, and that f is
discontinuous everywhere since both rational numbers and irrational numbers are
dense in R.

Editor’s Comment. Raymond Mortini, C. R. Pranesachar, and Rudolf Rupp
pointed out such a function f is uniquely determined by its restriction to [−2,−1)∪
{0}∪ [1, 2): for an arbitrary function g defined on [−2,−1)∪ [1, 2), we may extend
g to R by setting

f(x) = (−1)ng(x/2n)
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for each x 6= 0, where n is the unique integer such that |x| ∈ [2n, 2n+1); and setting
f(0) arbitrarily. In particular, to find a nowhere continuous f , it suffices to find
an arbitrary nowhere continuous function g defined on [−2, 1) ∪ [1, 2) and use the
above extension of g to R.

4658. Proposed by Mihaela Berindeanu.

In the right triangle ABC, let D be the foot of the altitude on the hypotenuse
BC, and let I1 and I2 be the incenters of triangles ABD and ADC, respectively.
Prove that the line I1I2 meets AB at a point on the circle BDI1.

We received 13 solutions. We present the solution by the UCLan Cyprus Problem
Solving Group, modified by the editor.

Denote by E the point of intersection of I1I2 with AB. Since AD is the height
of the right-angled 4ABC, we have 4ADC ∼ 4BDA, and we can conclude that
DI2
DI1

=
AC

BA
. Note moreover that ∠ADI1 = ∠ADI2 = 45◦, and so ∠I1DI2 = 90◦.

It follows that 4I1DI2 ∼ 4BAC; in particular, ∠DI1I2 = ∠ABC. We have
shown that for the quadrilateral I1DBE the exterior angle ∠DI1I2 is equal to its
opposite interior angle ∠DBA, so the quadrilateral is cyclic. Therefore, E belongs
to the circumcircle of BDI1, as required.

4659. Proposed by Tien Nguyen.

For each positive integer n, find gcd(an, bn) such that

(4 +
√

5)n = an + bn
√

5,

where an and bn are positive integers.

We received 21 submissions, 20 of which were correct and complete. Presented is
the solution by the UCLan Cyprus Problem Solving Group, slightly edited.
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We have (an+bn
√

5)(4+
√

5) = (4an+5bn)+(an+4bn)
√

5. So we get the recurrence
relations an+1 = 4an + 5bn and bn+1 = 4bn + an with initial conditions a1 = 4,
b1 = 1.

We will show by induction that gcd(an, bn) = 1 for every integer n. For the
inductive step assume that a prime p divides both an+1 and bn+1. Then p divides
4an+1−5bn+1 = 11an and 4bn+1−an+1 = 11bn. Since by the induction hypothesis
gcd(an, bn) = 1, then p = 11. We will obtain a contradiction by showing that
11 - an for every n ∈ N. To this end, oberve that

an+2 = 4an+1 + 5bn+1 = 4an+1 + 20bn + 5an

= 4an+1 + 4(an+1 − 4an) + 5an

= 8an+1 − 11an.

Thus an+2 ≡ 8an+1 (mod 11) for each n ∈ N and since a1 = 4, a2 = 21, then
an 6≡ 0 (mod 11) for every n ∈ N as required.

4660. Proposed by Thanh Tung Vu, modified by the Editorial Board.

a) Given a triangle ABC with its orthocenter H, define the three circles

α = (HBC), β = (HCA), and γ = (HAB).

For a fixed line ` through H let
A1 and A2 be the points where α again meets ` and AH,
B1 and B2 be the points where β again meets ` and BH,
C1 and C2 be the points where γ again meets ` and CH.

Finally, define A′ = BC ∩ A1A2, B′ = CA ∩ B1B2, C ′ = AB ∩ C1C2. Prove that
the cevians AA′, BB′, CC ′ are concurrent at some point X of the circumcircle of
∆ABC.
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b)∗ Establish the corresponding result with the orthocenter H replaced by an
arbitrary point P not on a side of ∆ABC; prove that the locus of resulting point
X as ` turns about P is an ellipse that circumscribes ∆ABC.

We received three submissions. All were correct, but the calculations in two of
them required a computer. We present the solution by the UCLan Cyprus Problem
Solving Group, with one detail expanded by the editor.

We work with a typical arrangement of the configuration as depicted in the given
diagram, except that we replace the orthocenter H there with an arbitrary point
P . In particular, we will not use directed angles; later on we shall add a few
comments together with a simpler, alternative argument for part (a) (where P is
the orthocenter). In triangles A′A2B and A′A2C we have

A′B

BA2
=

sin (∠A′A2B)

sin (∠A2A′B)
and

A′C

CA2
=

sin (∠A′A2C)

sin (∠A2A′C)
=

sin (∠A′A2C)

sin (∠A2A′B)
.

Since B,P,C,A1, A2 are concyclic, then

∠A′A2B = 180◦ − ∠BA2A1 = ∠BPA1 = 180◦ − ∠APB,

and
∠A′A2C = 180◦ − ∠A1A2C = ∠180◦ − ∠A1PC = ∠APC.

Therefore
A′B

A′C
=
BA2

CA2
· sin (∠A′A2B)

sin (∠A′A2C)
=
BA2

CA2
· sin (∠APB)

sin (∠APC)
.

Furthermore, in ∆BA2C

BA2

CA2
=

sin (∠BCA2)

sin (∠CBA2)
=

sin (∠BPA2)

sin (∠CPA2)
.

Thus
A′B

A′C
=

sin (∠BPA2)

sin (∠CPA2)
· sin (∠APB)

sin (∠APC)
.

We also have the analogous expressions

B′C

B′A
=

sin (∠CPB2)

sin (∠APB2)
· sin (∠BPC)

sin (∠BPA)
and

C ′A

C ′B
=

sin (∠APC2)

sin (∠BPC2)
· sin (∠CPA)

sin (∠CPB)
.

Since

∠APB2 = ∠APC2, ∠BPA2 + ∠BPC2 = 180◦, ∠CPA2 + ∠CPB2 = 180◦,

then we get
A′B

A′C
· B
′C

B′A
· C
′A

C ′B
= 1 .

This equality will imply that the cevians AA′, BB′, CC ′ are concurrent (as re-
quired) if we can show further that exactly one of A′, B′, or C ′ lies in the interior
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of a side of the triangle while the other two lie on extensions of the sides. We note,
for example, that C ′ belongs on the segment AB if and only if C1 and C2 are
in opposite arcs of BC on the circle γ. Let us first examine the situation where
the line ` intersects the sides CA and CB (and the extension of AB) as in the
accompanying figure. When P (on ` by definition) is inside the triangle, so is C2

(where ` again meets γ), while A2 and B2 are necessarily outside. But A1, B1, C1

(where the lines joining P to the vertices again meet the circles) are all outside the
triangle. Thus C ′ is the only primed point on the interior of a side, as claimed.
Now fix ` and slide P along it. Note that as P crosses a side such as AC, the points
A1 and C1 switch their status (with A1, A2 on opposite arcs BC of α, and C1, C2

on the same arc AB of γ); consequently, A′ and C ′ likewise exchange their status.
Similarly, whenever P crosses the extension of a side, one primed point jumps out
across a vertex while another jumps in, so that there is always exactly one of the
sides of ∆ABC that contains a primed point. A similar analysis applies to the
situation when the line ` contains no points inside the triangle. This argument
concludes the proof that the cevians AA′, BB′, CC ′ are concurrent.

We use barycentric coordinates to show that the locus of these points of concur-
rence is an ellipse. Take A = (1, 0, 0), B = (0, 1, 0) and C = (0, 0, 1), and let

λ =
A′B

A′C
, µ =

B′C

B′A
, and ν =

C ′A

C ′B
.

Then in the given diagram we get A′ = (0 : 1 : −λ) and B′ = (−µ : 0 : 1). Write
X = (x, y, z). Since X lies on AA′, then∣∣∣∣∣∣

1 0 0
0 1 −λ
x y 0

∣∣∣∣∣∣ = 0

giving z = −λy. Similarly, since X lies on BB′ we get x = −µz. Thus X = (λµ :
1 : −λ). Then xy, yz, zx are in a ratio of λµ : −λ : −λ2µ. Equivalently they are
in a ratio of (−µ) : 1 : 1/ν.

Let ϑA = ∠BPC, ϑB = ∠CPA and ϑC = ∠APB. These angles depend only on
P and not on `. Let also ϑ = ∠APB2. So

µ =
sin(ϑB − ϑ)

sinϑ
· sinϑA

sinϑC
= (sinϑB cotϑ− cosϑB)

sinϑA
sinϑC

and
1

ν
=

sin(ϑC + ϑ)

sinϑ
· sinϑA

sinϑB
= (sinϑC cotϑ+ cosϑC)

sinϑA
sinϑB

.

Now

sin2 ϑA+
sin2 ϑB
ν

+sin2 ϑC ·(−µ) = sinϑA (sinϑA + sinϑB cosϑC + sinϑC cosϑB) = 0

because

sinϑB cosϑC + sinϑC cosϑB = sin(ϑB + ϑC) = sin(2π − ϑA) = − sinϑA .
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This gives that (sin2 ϑA)yz + (sin2 ϑB)zx + (sin2 ϑC)xy = 0 which represents a
conic passing through the vertices A,B,C.

To check that the conic is an ellipse we work as follows: We vary the line `
continuously, rotating it about P . We observe that A2 varies continously around
the circle α. The line A1A2 therefore also varies continuously. The point A′ with
one exception varies continuously — the only discontinuity being where it jumps
from one ‘end’ of the line BC to the other. However the line AA′ does vary
continuously. (The discontinuity of A′ does not affect it because at the point of
discontinuity AA′ is parallel to BC, and close to the discontinuity the line is close
to being parallel to BC). So the lines AA′, BB′, CC ′ vary continuously with the
line ` and, therefore, so does the point X. So the image set of X is a closed and
bounded subset of the plane. Furthermore, all maps are injective (distinct lines `,
give distinct points A2 on α etc.). This can happen only if the conic is an ellipse
and, moreover, only when the locus is the whole ellipse rather than just a part.
(Of course we need to fill in some ‘gaps’. For example when A1A2 is parallel to
BC then A′ and therefore X are undefined. The right way to define A′ is the point
at infinity on BC, which makes AA′ parallel to BC.)

To show that the ellipse is the circumcircle of ABC when P is the orthocenter
H, observe that in that case ϑA = 180◦ − ∠A and therefore sinϑA = sin∠A. So
writing a, b, c for the side lengths of the triangle, by the Sine Law the equation of
the conic becomes a2yz + b2zx+ c2xy = 0, which is known to be the equation of
the circumcircle.

We proceed to give a second proof that the locus of X is the circumcircle of ∆ABC
when P is the orthocenter:

Let D be the foot of the perpendicular from A onto BC. Then

∠BA1D = ∠BA1H = ∠BCH = 90◦ − ∠B = ∠BAD .

So BAA1 is isosceles, and since BD ⊥ AA1 then AD = DA1. Letting D′ be the
point of intersection of HA2 with BC we get

∠CA′A = ∠CA′A2 = 180◦ − ∠A′A2H − ∠BD′A2

= ∠A1A2H − ∠BD′A2

= ∠A1BH − ∠HD′C.

But ∠A1BH = ∠A1BD + ∠DBH = ∠B + 90◦ − ∠C. Therefore

∠CA′A = 90◦ + ∠B − ∠C − ∠HD′C .

Similarly, if E′ is the point of intersection of HB2 with AC, then

∠CB′B = 90◦ + ∠A− ∠C − ∠HE′C .

Therefore

∠CA′A+ ∠CB′B = 180◦ + ∠A+ ∠B − 2∠C − ∠HD′C − ∠HE′C

= ∠A+ ∠B − ∠C

= 180◦ − 2∠C.
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But
∠CA′B′ + ∠CB′A′ = 180◦ − ∠C

and therefore ∠XA′B′ + ∠XB′A′ = ∠C. Thus ∠AXB = 180◦ − ∠C and so X
belongs on the circumcircle of triangle ABC.
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