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Editorial /3

EDITORIAL
Happy New Year 2021! It’s the year of the Ox and it’s charging ahead. Strong
and spirited: that’s how I see Crux entering Volume 47.

The new feature we are adding this year is a column titled “Explorations in In-
digenous Mathematics” that will reside within the MathemAttic portion of the
journal. In the past four years, I have been very lucky to live and work in a
community with close ties to its local First Nations people: my home is Fraser
Valley, the land of the Sto:lo people. The various resources and opportunities
available have allowed me to explore the meaning behind reconciliation and indi-
genization. So naturally, I’m very excited about this new Crux column that will
allow readers to explore cultural mathematics, experience the discipline through
a broader humanizing approach, and engage in mathematics with societal context
and history.

Welcome to the new volume!

Kseniya Garaschuk

Copyright © Canadian Mathematical Society, 2021
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MATHEMATTIC
No. 21

The problems in this section are intended for students at the secondary school level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by March 30, 2021.

MA101. Standard six-sided dice have their dots arranged so that the opposite
faces add up to 7. If 27 standard dice are arranged in a 3× 3× 3 cube on a solid
table what is the maximum number of dots that can be seen from one position?

MA102. As shown in the diagram, you can create a grid of squares 3 units
high and 4 units wide using 31 matches. I would like to make a grid of squares
a units high and b units wide, where a < b are positive integers. Determine the
sum of the areas of all such rectangles that can be made, each using exactly 337
matches.

MA103. What is the largest three-digit number with the property that the
number is equal to the sum of its hundreds digit, the square of its tens digit and
the cube of its units digit?

MA104. The sequence

2, 22, 22
2

, 22
22

, . . .

is defined by a1 = 2 and an+1 = 2an for all n ≥ 1. What is the first term in the
sequence greater than 10001000?

MA105. Eighteen points are equally spaced on a circle, from which you
will choose a certain number at random. How many do you need to choose to
guarantee that you will have the four corners of at least one rectangle?

Crux Mathematicorum, Vol. 47(1), January 2021
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Les problèmes dans cette section sont appropriés aux étudiants de l’école secondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 mars 2021.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

MA101. Des dés ordinaires à six côtés sont tels que les nombres de points sur
les faces opposées ont une somme de 7. Si 27 tels dés sont disposés dans un cube
3×3×3, quel est le nombre maximum de points visibles d’un endroit quelconque?

MA102. Comme indiqué ci-bas, il est possible de créer un grillage de taille
3 unités de haut par 4 unités de large à l’aide de 31 allumettes. On va alors créer
des grillages de a unités de haut par b unités de large, où a et b sont des entiers
positifs quelconques tels que a < b. Si exactement 337 allumettes sont utilisées,
déterminer la somme des surfaces de tous les grillages possibles.

MA103. Quel est le plus gros entier à trois chiffres tels que ce nombre égale
la somme de son chiffre en position de centaines, du carré de son chiffre en position
de dizaines et du cube de son chiffre en position d’unités?

MA104. La suite

2, 22, 22
2

, 22
22

, . . .

est définie par a1 = 2 et an+1 = 2an pour tout n ≥ 1. Déterminer le premier terme
dans la suite, plus grand que 10001000.

MA105. Parmi dix-huit points équidistants sur un cercle, on en choisit un
certain nombre n. Déterminer le plus petit n qui assure qu’on y retrouvera les
quatre coins d’au moins un rectangle, quels que soient les points choisis.

Copyright © Canadian Mathematical Society, 2021
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2020: 46(6), p. 246–248.

MA76. The sum of two real numbers is n and the sum of their squares is
n+ 19, for some positive integer n. What is the maximum possible value of n?

Originally 2018 Mathcon Finals, Grade 11, Part D, Question 43.

We received 21 submissions, of which 20 were correct. We present 3 solutions, one
with a generalization.

Solution 1, by Lorenzo Benedetti.

Let x, y be the two real numbers. The relations that we are given are the following:{
x+ y = n

x2 + y2 = n+ 19

Notice that we may represent graphically the solutions to the system of equations
as between the line x + y − n = 0 and the circle x2 + y2 = n + 19 centered at
the origin and of radius

√
n+ 19. Clearly, the line and the circle have intersection

points if and only if the radius of the circle is greater than or equal to the distance

from its center to the line, given by |0+0−n|√
1+1

= n√
2
.

Therefore, we have solutions if and only if

n√
2
≤
√
n+ 19⇔ n2 − 2n− 38 ≤ 0⇔ 1 ≤ n ≤ 7

(because n is a positive integer). Hence the maximum possible value of n is 7.

Solution 2, by Manescu-Avram Corneliu.

We have that x+ y = n and x2 + y2 = n+ 19 for two real number x and y. Since
(x + y)2 ≤ 2(x2 + y2), it follows that n2 ≤ 2(n + 19), whence (n − 1)2 ≤ 39. We
deduce that

n ≤ 1 + b
√

39c = 7.

the maximum value n = 7 is then attained for x = 7+
√
3

2 and y = 7−
√
3

2 since
x+ y = 7 and x2 + y2 = 7 + 19 = 26.

Solution 3, by Vincent Blevins.

Consider a generalization of the problem. Suppose the sum of m real numbers is
n and the sum of their squares is n + k where n, m, and k are positive integers;
we find the maximum possible value of n by first finding the largest real value t
replacing n and satisfying these conditions.

Crux Mathematicorum, Vol. 47(1), January 2021
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Let a1, a2, · · · , am and t be real numbers satisfying

m∑
j=1

aj = t

m∑
j=1

a2j = t+ k.

(1)

Then, after subtracting and completing the square,

(
m∑
j=1

a2j )− k =
m∑
j=1

aj

m∑
j=1

(aj −
1

2
)2 = k +

m

4
=

4k +m

4
.

For a given t, consider the hyperplane Pt in Rm with equation
∑m

j=1 xj = t.
Then the components of any point on the intersection of Pt and the sphere with
equation

∑m
j=1(xj − 1

2 )2 = 4k+m
4 will satisfy (1). Note that Pt is normal to the

line passing through the origin and the center of the sphere as the parallel vector
of the latter is parallel to the normal vector of the former. Hence, Pt is parallel to
the hyperplanes tangent to the points of the sphere lying on the line, and so the
largest t satisfying the given conditions is the coordinate intercepts of one of the
tangent planes.

To compute the points of the sphere lying on the line, we substitute in s for each
xj in the equation of the sphere and solve for s. We have,

m∑
j=1

(s− 1

2
)2 =

m∑
j=1

1

4
(2s− 1)2 =

m

4
(2s− 1)2 =

4k +m

4

Thus, s =
1±
√

4k+m
m

2 . So the equations of the two tangent hyperplanes are

m∑
j=1

xj =
m+m

√
4k+m

m

2
and

m∑
j=1

xj =
m−m

√
4k+m

m

2
.

As the right-hand side of the first equation is larger than the right-hand side of
the second, it follows that the largest t satisfying the conditions of the problem is
m+m

√
4k+m

m

2 . Thus, the largest integer n satisfying the conditions is

⌊
m+m

√
4k+m

m

2

⌋
.

In particular, for m = 2 and k = 19:

n =

2 + 2
√

76+2
2

2

 = 7.

Copyright © Canadian Mathematical Society, 2021
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MA77. In a regular decagon, all diagonals are drawn. If a diagonal is chosen
at random, what is the probability that it is neither one of the shortest nor one of
the longest?

Originally 2018 Mathcon Finals, Grade 9, Part C, Question 32.

We received 13 submissions, of which 11 solutions were correct. We present the
solution with generalization provided by Lorenzo Benedetti.

We will compute the probability of choosing at random one of the shortest diagonal
or one of the longest, then we will take the complement of it.

First, notice that the numbers of diagonals in a regular n-gon is given by n(n−3)
2 ,

in our case (n = 10) is 10·7
2 = 35.

Now we will compute the number of shortest diagonals + the number of longest
diagonals. The longest diagonals are those that connect two diametrally oppposite
vertices, so they are just diameters of the circle in which the decagon is inscribed.
It is easy to see that there are 5 such diagonals. The shortest diagonals are those
that connect two vertices with just a vertex in between. It is easy to see that there
are 10 such diagonals.

Hence, the required probability is given by

1− 5 + 10

35
=

20

35
=

4

7
.

MA78. Let T (n) be the digit sum of a positive integer n; for example,
T (5081) = 5 + 0 + 8 + 1 = 14. Find the number of three-digit numbers that satisfy
T (n) + 3n = 2020.

Originally 2018 Mathcon Finals, Grade 12, Part D, Question 43.

We received 15 submissions, all correct. We present the solution by Jaimin Patel.

We have T (n) + 3n = 2020 =⇒ T (n) = 2020 − 3n. Since n is a three-digit
number,

1 ≤ T (n) ≤ 27,

1 ≤ 2020− 3n ≤ 27,

−2019 ≤ −3n ≤ −1993,

1993 ≤ 3n ≤ 2019,

665 ≤ n ≤ 673.

Crux Mathematicorum, Vol. 47(1), January 2021
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Now, we know that n ≡ T (n) (mod 3), so

T (n) + 3n = 2020

=⇒ T (n) ≡ 2020 (mod 3)

=⇒ T (n) ≡ 1 (mod 3)

=⇒ n ≡ 1 (mod 3)

=⇒ (n− 1) ≡ 0 (mod 3)

=⇒ 3 | (n− 1)

From the above two observations, we know that if such n is possible then it must
be either 667, 670 or 673. By checking each possibility we can see that only 667
satisfies our condition. Hence there exists only one such three-digit number.

MA79. Suppose BD bisects ∠ABC, BD = 3
√

5, AB = 8 and DC = 3
2 . Find

AD +BC.

Originally 2019 Mathcon Finals, Grade 12, Part C, Question 10.

We received 8 submissions of which 6 were correct and complete. We present the
solution by Thinh Nguyen, modified by the editor.

Let the line extension of BD intersect the circumcircle of 4ABC at E.

By the circle theorem,

∠BCA = ∠BEA ⇒ ∠BCD = ∠BEA. (1)

Given (1), and since ∠DBC = ∠ABE, we have that 4BCD and 4BEA are
similar. Thus

BD

BA
=
BC

BE
⇒ BD ×BE = BC ×BA. (2)

Copyright © Canadian Mathematical Society, 2021
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As ∠DBC = ∠DAE and, by (1), ∠BCD = ∠BEA, 4BCD and 4ADE are
similar. Thus

DA

DB
=
DE

DC
⇒ DE ×DB = DA×DC. (3)

Subtracting (3) from (2), we have that

BD (BE −DE) = BC ×BA−DA×DC.

Given BD = BE −DE, the above becomes

BD2 = BC ×BA−DA×DC ⇒
(

3
√

5
)2

= 8BC − 3

2
DA

⇒ 16BC − 3DA = 90.
(4)

By the angle bisector theorem,

AB

BC
=
AD

DC
⇒ 8

BC

(
3

2

)
= AD ⇒ 12

BC
= AD.

When substituted into 4,

16BC − 3

(
12

BC

)
= 90 ⇒ 16BC2 − 90BC − 36 = 0

⇒ 2 (BC − 6) (8BC + 3) = 0.

As BC > 0, BC = 6⇒ AD = 2. Thus AD +BC = 8.

Editor’s comment. Many of the other submissions were able to prove similar results
with the law of cosines and Stewart’s Theorem. This proof was selected because
of its use of elementary tools.

MA80. Suppose ABCD is a parallelogram. Let E and F be two points on
BC and CD, respectively. If CE = 3BE, CF = DF , DE intersects AF at K and
KF = 6, find AK.

Originally 2019 Mathcon Finals, Grade 11, Part C, Question 8.

We received 6 submissions, of which 5 were correct and complete. We present the
solution by Ronald Martins, modified by the editor.

Let n,m, and x denote the lengths BE, CF , and AK, respectively. Additionally,
let J be the point of intersection of the line extensions of AF and BC, as shown
in the figure. As 4FDA and 4FCJ are congruent,

FD = FC = m, FA = FJ = x+ 6, DA = CJ = 4n.

Crux Mathematicorum, Vol. 47(1), January 2021
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As 4KAD and 4KEJ are similar triangles,

KA

KJ
=
AD

EJ
⇒ x

x+ 12
=

4n

7n
⇒ 7x = 4x+ 48 ⇒ x = 16.

Thus, AK = 16.

Copyright © Canadian Mathematical Society, 2021
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PROBLEM SOLVING
VIGNETTES

No. 14

Shawn Godin

Playing with Probability

Probability problems can be easily stated, but their solutions may seem elusive
or counterintuitive. Careful attention has to be placed on counting the number
of outcomes for each event and recognizing if the outcomes we are counting are
equally likely or not. As a simple example, when we roll two dice the possible
sums range from 2 to 12, inclusive, but they are not all equally likely. We also
have to understand when events are independent or not. For example, if I flip
a coin then roll a die, the outcome of the die does not depend on the outcome
of the flip because the outcomes are independent of each other. On the other
hand, if I draw a card from a deck of cards and then draw a second card, these
actions are dependent. That is, if I am interested in the second card being a heart,
the probability depends on whether the first card was a heart or not. It seems
our intuition about probability is sometimes flawed, probably because we overlook
these subtle properties of probability.

We will begin with a problem from the first Canadian Mathematical Gray Jay
Competition (CMGC). The CMGC is a new, multiple choice competition from
the CMS for elementary school students . The first competition was written on
Thursday October 8, 2020 by just under 2000 students world-wide.

6. Alice and Bill play a game. They go to separate rooms, flip a coin
and try to predict what the other person flipped. They win if at least
one of them predicts correctly. They decide that Alice will always guess
the same thing that she flips and Bill will always predict the opposite
of what he flips. What percentage of the time should they win?

(A) 0% (B) 25% (C) 50% (D) 75% (E) 100%

First, we should determine all possible outcomes to the process of Alice and Bill
flipping their coins. We will use H and T for heads and tails, and we will list the
results from Alice first them Bill, so TH means Alice flipped tails and Bill flipped
heads. Thus all possible outcomes are {HH,HT, TH, TT}. We will assume that
we have fair coins, so heads and tails are equally likely for each person. Also note
that the result of Alice’s flip will in no way influence Bill’s flip, so we can see that
our outcomes are all equally likely, with probability of 1

4 each.

The key to solving this problem is deciding which of the events constitute a “win”.
To do that, let us look at the information in a bit more detail:

Crux Mathematicorum, Vol. 47(1), January 2021



Shawn Godin /13

A’s Flip A’s Guess Correct? B’s Flip B’s Guess Correct? Win?
H H 3 H T 7 3
H H 7 T H 3 3
T T 7 H T 3 3
T T 3 T H 7 3

We see that Alice and Bill’s strategy yields a win every time! It is interesting
that we are dealing with a totally random process but we set up a situation where
we can guarantee at least one person guesses correctly. Can you find a strategy
that guarantees at least one of three people guesses correctly if A guesses B’s who
guesses C’s who guesses A’s?

Next, we will examine problem B2 from another CMS competition, the 2020 Cana-
dian Open Mathematics Challenge.

B2. Alice places a coin, heads up, on a table then turns off the light
and leaves the room. Bill enters the room with 2 coins and flips them
onto the table and leaves. Carl enters the room, in the dark, and
removes a coin at random. Alice reenters the room, turns on the light
and notices that both coins are heads. What is the probability that
the coin Carl removed was also heads?

We know that before Carl went in there were three coins and after he left there
were two coins, both heads. Since Carl could have removed either a head or a
tail, before he went in there was either three heads (and he removed a head), or
two heads and a tail (and he removed a tail). At this point, since there were
two possible “starting” states, we may be fooled into thinking that our desired
probability is 1

2 . Unfortunately, this is not the case since, counter-intuitively, the
starting points are not equally likely in a couple of ways!

Looking closer, since Alice placed a coin heads up in the room, we already have a
head (HA, for Alice’s head). When Bill goes in, he flips two coins yielding

HB1
HB2

, HB1
TB2

, TB1
HB2

or TB1
TB2

(where the subscripts B1 and B2 indicate Bill’s first and second flip). At this point
we see that it was impossible for Bill to have flipped two tails, because Carl could
never have left behind two heads. Thus, when Carl enters the room there are three
possible, equally likely, configurations:

HAHB1
HB2

, HAHB1
TB2

, and HATB1
HB2

.

If Carl went in and there were three heads, he could remove any of them and
satisfy the conditions of the problem. However, if there were two heads and a tail,
he could only remove the tail. Hence, as shown in the table below, the probability
that Carl removed a head was 3

5 .

Copyright © Canadian Mathematical Society, 2021
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Start Remove Left Conditions?
HAHB1

HB2
HA HB1

HB2
3

HAHB1
HB2

HB1
HAHB2

3
HAHB1

HB2
HB2

HAHB1
3

HAHB1
TB2

HA HB1
TB2

7
HAHB1

TB2
HB1

HATB2
7

HAHB1
TB2

TB2
HAHB1

3

HATB1
HB2

HA TB1
HB2

7
HATB1

HB2
TB1

HAHB2
3

HATB1
HB2

HB2
HATB1

7

The next few problems will come from the problem solving course I took with Pro-
fessor Honsberger. Problems from the three assignments and problems 1 through
25 have been featured in earlier columns. Below is the next set of problems from
the course.

#26. A normal die bearing the numbers 1, 2, 3, 4, 5, 6 on its faces is thrown
repeatedly until the running total first exceeds 12. What is the most likely
total that will be obtained?

#27. Find all natural numbers, not ending in zero, which have the property
that if the final digit is deleted, the integer obtained divides into the original.

#28. Let n denote an odd natural number greater than one. Let A denote an
n × n symmetric matrix such that each row and each column consists of
some permutation of the numbers 1, 2, 3, . . . , n. Show that each of the
numbers 1, 2, 3, . . . , n must occur in the main diagonal of A.

#29. A,B, and C are to fight a 3-cornered duel. All of them know that A’s chance
of hitting his target is 0.3, that C’s chance is 0.5, and that B never misses.
They are to fire at their choice of target in succession A,B,C,A,B, . . . etc.
until only one man is left unhit (once a man is hit, he drops out of the
duel). What is the best strategy for A?

#30. What are the final two digits of
(
· · ·
(
77
)7 · · ·)7, containing 1001 7’s?

We will consider problem 26 next. To get a feel for what is happening, you may
want to do an experiment. I rolled a die a number of times to perform the process
four times and came up with the following:

Rolls Total
3, 4, 2, 1, 4 14

2, 3, 4, 1, 1, 3 14
5, 5, 4 14
4, 5, 6 15

Crux Mathematicorum, Vol. 47(1), January 2021
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The first thing that we should notice is even though a single roll of the die does
not have any effect on future rolls of the die, since our outcomes must sum to a
number greater than 12, they will have different probabilities. The first entry took
5 rolls, the second 6 and the last two took 3. The probability of rolling the last
two results are the same, but different from the first two which are also different
from each other.

Other strange things happen as well. For the last roll 4, 5, 6, we could have also
gotten 4, 6, 5, or any other permutation of those three numbers and we would have
gotten the same result. This is useful for counting our results. On the other hand,
looking at the first roll 3, 4, 2, 1, 4, we could have also gotten 4, 1, 2, 4, 3 for the
same total of 14, but 4, 2, 4, 3, 1 would not occur! Since 4 + 2 + 4 + 3 = 13, we
would have stopped before we reached 14. So, some of the strategies that we might
have considered have to be discarded. Instead, let us look at how things could end.
We will use the notation (11, 3) to represent any roll whose last sum, before being
greater than 12, was 11 and the last roll is 3. Hence, the second roll 2, 3, 4, 1, 1, 3
would fall under this category. Listing all possible outcomes and their final result
we get:

Final Sum

13 14 15 16 17 18
(7, 6)
(8, 5) (8, 6)
(9, 4) (9, 5) (9, 6)
(10, 3) (10, 4) (10, 5) (10, 6)
(11, 2) (11, 3) (11, 4) (11, 5) (11, 6)
(12, 1) (12, 2) (12, 3) (12, 4) (12, 5) (12, 6)

Looking at a total of 15 as an example we see that all the events that give us our
desired sum; (9, 6), (10, 5), (11, 4), and (12, 3); all have different probabilities. On
the bright side, all events that start with the same number; such as (9, 4), (9, 5),
and (9, 6); have the same probability. Hence we can easily see that

P (18) < P (17) < P (16) < P (15) < P (14) < P (13)

so 13 is the most likely sum. In this case we were able to answer the question,
without actually having to calculate the probabilities involved.

Next on the list is question 4 from the third assignment from professor Honsberger’s
class, featured in an earlier column [2017 : 43(10), p. 441-443].

4. A circle of radius 1
2 is tossed at random onto a coordinate plane.

What is the probability that it covers a lattice point?

This is a geometric probability problem, where we are looking at areas rather than
counting cases, since there are infinitely many! If we focus on a particular lattice
point, we see that it will be covered by the circle if and only if the centre of the
circle is a distance of at most 1

2 away. Thus, the centre of the circle must land

Copyright © Canadian Mathematical Society, 2021
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within a circle of radius 1
2 centred on a lattice point to contain the lattice point.

If we colour the possible locations of the centre of the circle green, the coordinate
plane will look something like the diagram below.

...

...

· · ·· · ·

Because of the symmetry, we can focus on a unit square formed by four lattice
points, shown in the figure below.

Thus, for whichever unit square the centre lands in, if it lands in the green area
the circle will contain a lattice point, otherwise it won’t. Hence

P =
Green area

Total area
=
π
(
1
2

)2
1

=
π

4

or about 78.5%.

In many cases where you are dealing with continuous data, a geometric argument
will work. Consider the following problem from the second assignment [2017: 43(8)
344-346].

3. Two people agree to meet for lunch at their favourite restaurant,
Each agrees to wait 15 minutes for the other, after which time he will
leave. If each chooses his time of arrival at random between noon and
l o’clock, what is the probability of a meeting taking place ?

Again, there are infinitely many possibilities to consider. Let’s look at a graph
where we indicate the number of minutes after noon that each person arrives on
the axes. We can then colour the points in the plane either red (no meeting) or
green (they meet). For example, if the first person arrives at 12 : 10 and the
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second at 12 : 20, they would meet, indicated by the green point at (10, 20). On
the other hand, if the first person arrives at 12 : 50 and the second at 12 : 15, they
would not meet, indicated by a red point at (50, 15).
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Colouring the rest of the grid accordingly, we can find the desired probability as
the ratio of the green area to the total area which is 7

16 .
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You may want to consider a similar problem with three friends and calculate the
probability that they all meet.

Probability problems can be interesting, because their solutions can require tools
from different areas of mathematics. Enjoy the rest of the problems from Professor
Honsberger’s class. We will revisit probability in a future column.
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Explorations in Indigenous
Mathematics

No. 1

Edward Doolittle

The Starblanket Design

The starblanket design is popular among the Indigenous peoples of the Plains
region, particularly in quilted blanket designs, but also in other crafts. In the
Plains Cree language, the word for star is atāhk and the word for blanket is
akohp, so starblanket is atāhkakohp. Chief Ahtahkakoop, so named because “the
stars blanketed the sky, more numerous and brighter than usual” the night he was
born, was one of the first signatories of Treaty Six. Ahtahkakoop Cree Nation is
named after the chief.

In Figure 1, you can see an example of a starblanket quilt. The quilt was given to
me by First Nations University Elder Kohkom Bea Lavalley when I first started
to work at the university. Figure 2 shows another starblanket quilt, from the
collection of First Nations University, with an additional design superimposed on
the centre, made for the 2014 North American Indigenous Games.

Figure 1: A Traditional Starblanket Quilt
The regularity and precision of the starblanket design makes it a potential source
of mathematics for us to explore. One question I ask my mathematics students at
First Nations University is, “How many tiles are there in the starblanket design
in our atrium?” The ceramic tile starblanket, shown in Figure 3, was designed by
Douglas Cardinal, the architect of the building. Figure 4 contains a drawing of
the starblanket tiling (in which the colours are not accurately represented).
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Figure 2: The NAIG Starblanket Quilt

Figure 3: The First Nations University Atrium

Figure 4: Drawing of the First Nations University Atrium Starblanket
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There are numerous ways to solve that problem. One way that I didn’t anticipate,
but that some of my students have used, is to simply count all the tiles. We are
going to explore another interesting way of solving the problem.

First let us consider a simpler problem, or rather a sequence of simpler problems.
The Douglas Cardinal starblanket is large, but let us try to quantify its size, and
then make adjustments. We define the radius of the design to be the number of
edges from the centre of the design to its outside. A careful count of the Douglas
Cardinal design gives a radius of 11. Let us look at designs with smaller radii to
see if we can more easily determine the number of tiles in those designs.

One other thing to consider before we proceed: What is the simplest starblanket
design? A starblanket of radius 1 might be the simplest; a mathematician would be
more likely to think that a starblanket of radius 0 is really the simplest (Figure 5).
How many tiles does a starblanket of radius 0 have? Clearly it has 0 tiles. Next,
we see that a starblanket with radius 1 has 8 tiles (Figure 6).

Figure 5: Starblanket of Radius 0 Figure 6: Starblanket of Radius 1

We can assemble the information in a “difference scheme” as in Figure 7, where
the starblanket area numbers are on the first (top) row and their difference is on
the second (bottom).

0 8

8

Figure 7: First Differences, Two Steps

If the differences remain constant, we continue the second row with another 8
(Figure 8), which means that next starblanket, of radius 2, should have 16 tiles
(Figure 9), but it doesn’t. It has 32 tiles (Figure 10).
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0 8

8 8

Figure 8: Continuing with Constant First Differences

0 8 16

8 8

Figure 9: Constant First Differences, Next Value Predicted

Figure 10: Starblanket of Radius 2

Our simple theory didn’t work. Let’s enter the information that we have into a
new table and try again (Figure 11).

0 8 32

8 24

16

Figure 11: Three Data Points, Second Differences

Here we have taken differences of the first differences to make a third row of
“second differences”. Assuming that the second differences are constant, we obtain
the following two predictions for the next two numbers in the series:
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0 8 32 72 128

8 24 40 56

16 16 16

Figure 12: Predicting Fourth and Fifth Starblanket Area Numbers

Comparing with the number of tiles in a starblanket of radius 3 (72, as in Figure 13)
and a starblanket of radius 4 (128, as in Figure 14), we see that our method has
given correct predictions for those two numbers.

Figure 13: Starblanket of Radius 3 Figure 14: Starblanket of Radius 4

Of course, those predictions are not proven, but the method we have been using
could form the foundation of a proof by induction. I will leave details up to you.
I will also leave it up to you to continue the starblanket series up to a starblanket
of radius 11; the answer you should get is 968 tiles.

The technique we have been using is known as the “calculus of finite differences”.
It is a powerful way to analyze sequences of numbers, and (as you may have
guessed by the name) is a precursor to and a discrete analog of calculus, the kind
of mathematics which is studied in many university programs such as science,
engineering, and even business.

You could use the calculus of finite differences to analyze other “figurate numbers”
such as the square numbers (0, 1, 4, 9, 16, . . . ) and triangular numbers (0, 1, 3,
6, 10, . . . ). An online search for “figurate numbers” will turn up many more
examples, including pentagonal numbers, hexagonal numbers, and so on. There
are also three-dimensional figurate numbers, the most familiar of which are the
cubes (0, 1, 8, 27, 64, . . . ), among many other examples.
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The calculus of finite differences can be used not only to predict the next value of
a series, but also to find explicit formulas for series. Here are some problems to
get you started.

1. Continue the difference scheme in Figure 15, and find a general formula for
the nth term in the top row.

2. Continue the difference scheme in Figure 16, and find a general formula for
the nth term in the top row.

3. Continue the difference scheme in Figure 17, and find a general formula for
the nth term in the top row. (Hint: Pascal’s Triangle might be helpful.)

4. Combine the previous three results to find a general formula for a difference
scheme with any given first diagonal.

5. Use the previous result to find a formula for the nth starblanket number as
a function of n. Simplify the formula as much as possible.

6. Try a similar investigation with the cube numbers. Pascal’s triangle may
continue to be useful.

1 1 1 1 1

0 0 0 0

0 0 0

Figure 15: Difference Scheme with First Diagonal 1, 0, 0

0 1 2 3 4

1 1 1 1

0 0 0

Figure 16: Difference Scheme with First Diagonal 0, 1, 0

0 0 1 3 6

0 1 2 3

1 1 1

Figure 17: Difference Scheme with First Diagonal 0, 0, 1
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In the end, you should find that the formula for the starblanket numbers is actually
quite simple. We will explore a method for obtaining that simple formula, and
other geometric aspects of the starblanket design, in a future article.

The meaning of the starblanket design

The choice of colours, and the shape of the starblanket design, are meaningful to
some Indigenous communities, but the details vary from one tradition to another.
If you want to know more about the cultural meanings behind the design, I suggest
you seek out a local elder and invite them to speak by offering them a traditional
gift such as tobacco and cloth.

One thing I can say is that, in my experience, starblankets are given as gifts to
commemorate transitions in a person’s life. For example, when babies are born
they are often given small starblankets; Indigenous graduates from high school
or degree programs are given starblankets, sometimes as part of their graduation
ceremonies; and when I began work at First Nations University, I was given a
starblanket, the one shown in the first illustration of this article. In that spirit, I
hope that my contribution of this article, as small and as inexpertly crafted as it is,
may commemorate the start of a new and better relationship between Indigenous
people and the mathematics community.
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OLYMPIAD CORNER
No. 389

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by March 30, 2021.

OC511. All the proper divisors of some composite natural number n, in-
creased by 1, are written out on a blackboard. Find all composite natural num-
bers n for which the numbers on the blackboard are all the proper divisors of some
natural number m. (Note: here 1 is not considered a proper divisor.)

OC512. A convex quadrilateral ABCD is given. We denote by IA, IB , IC and
ID the centers of the inscribed circles ωA, ωB , ωC and ωD of the triangles DAB,
ABC, BCD and CDA, respectively. It is known that ∠BIAA+∠ICIAID = 180◦.
Prove that ∠BIBA+ ∠ICIBID = 180◦.

OC513. In an acute triangle ABC the angle bisector of ∠BAC intersects
BC at point D. Points P and Q are orthogonal projections of D on lines AB and
AC. Prove that Area(APQ) = Area(BCQP ) if and only if the circumcenter of
ABC lies on line PQ.

OC514. Consider the set M =

{(
a b
c d

)
∈M2(C) | ab = cd

}
.

(a) Give an example of a matrix A ∈ M such that A2017 ∈ M and A2019 ∈ M ,
but A2018 /∈M .

(b) Prove that if A ∈ M and there exists an integer k ≥ 1 such that Ak ∈ M ,
Ak+1 ∈M and Ak+2 ∈M , then An ∈M for all integers n ≥ 1.

OC515. Let a, b, c, d be natural numbers such that a+ b+ c+d = 2018. Find
the minimum value of the expression:

E = (a− b)2 + 2(a− c)2 + 3(a− d)2 + 4(b− c)2 + 5(b− d)2 + 6(c− d)2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 mars 2021.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

OC511. Tous les diviseurs propres d’un nombre naturel composé n sont
inscrits à un babillard, mais auparavant augmentés par 1, où les diviseurs propres
n’incluent pas 1. Déterminer tous les nombres naturels n tels que les nombres au
babillard sont tous les diviseurs propres d’un nombre naturel m.

OC512. Soit un quadrilatère convexe ABCD. Soient alors IA, IB , IC et ID
les centres des cercles inscrits ωA, ωB , ωC et ωD des triangles DAB, ABC, BCD
et CDA, respectivement. De plus, ∠BIAA + ∠ICIAID = 180◦. Démontrer que
∠BIBA+ ∠ICIBID = 180◦.

OC513. Dans un triangle acutangle ABC, la bissectrice de l’angle ∠BAC
intersecte BC en D. Dénotons par P et Q les projections orthogonales de D vers
les lignes AB et AC. Démontrer que Aire(APQ) = Aire(BCQP ) si et seulement
si le centre du cercle circonscrit de ABC se trouve sur la ligne PQ.

OC514. Soit l’ensemble M =

{(
a b
c d

)
∈M2(C) | ab = cd

}
.

(a) Fournir un exemple de matrice A ∈ M telle que A2017 ∈ M et A2019 ∈ M ,
mais A2018 /∈M .

(b) Démontrer que si A ∈ M et s’il existe un entier k ≥ 1 tel que Ak ∈ M ,
Ak+1 ∈M et Ak+2 ∈M , alors An ∈M pour tout entier n ≥ 1.

OC515. Soient a, b, c, d des nombres naturels tels que a + b + c + d = 2018.
Déterminer la valeur minimale de l’expression suivante:

E = (a− b)2 + 2(a− c)2 + 3(a− d)2 + 4(b− c)2 + 5(b− d)2 + 6(c− d)2.
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2020: 46(6), p. 256–257.

OC486. There are 2017 points in the plane such that among any three of
them two can be selected so that their distance is less than 1. Prove that there is
a circle of radius 1 containing at least 1009 of the given points.

Originally 2017 Czech-Slovakia Math Olympiad, 2nd Problem, Category B, Re-
gional Round.

We received 11 correct submissions. We present two solutions.

Solution 1, by Dmitry Fleischman.

Let A1 be one of the points. By the pigeonhole principle one of the next two
situations occurs.

First, there exists 1008 points, A2, A3, . . . , A1009, such that

A1A2 ≤ 1, A1A3 ≤ 1, . . . , A1A1009 < 1.

Then the circle with centre A1 and radius 1 contains 1009 points: A1, A2, . . . ,
A1009.

Second, there exists 1009 points, B1, B2, . . . , B1009, such that

A1B1 ≥ 1, A1B2 ≥ 1, . . . , A1B1009 ≥ 1.

Since among the points A1, B1, B2 we can select two so that their distance is less
than 1, A1B1 ≥ 1, and A1B2 ≥ 1 we must have B1B2 < 1. Similarly,

B1B3 < 1, . . . , B1B1009 < 1.

Then B1, B2, . . . , B1009 are 1009 points included in the circle with centre B1 and
radius 1. The statement is proved.

Solution 2 by Oliver Geupel.

We can show that the statement holds in the following generalized form. ”There
are N points, P1, P2, . . . , PN , in the plane such that among any three of them two
can be selected so that their distance is less than 1. Prove that there is a circle of
radius 1 containing at least dN/2e of the given points.”

Let d denote the maximum of distances, PiPj , between any two points. If d < 1,
then P1P2 < 1, P1P3 < 1, . . . , P1PN < 1. Hence, the circle with centre P1 and
radius 1 contains all given points. It remains to consider the case where d ≥ 1.
There is no loss of generality in assuming that P1P2 ≥ 1. By hypothesis, for
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3 ≤ i ≤ N , at least one of the distances P1Pi and P2Pi is less than 1; hence Pi

belongs to at least one of the unit circles, Γ1 with centre P1 or Γ2 with centre at
P2. By the pigeonhole principle, one of the circles Γ1 and Γ2 must contain at least
dN/2e of the N points. Hence, the statement holds.

OC487. Let a, b, c be real numbers such that 1 < b ≤ c2 ≤ a10 and

loga b+ 2 logb c+ 5 logc a = 12.

Show that
2 loga c+ 5 logc b+ 10 logb a ≥ 21.

Originally 2018 Romania Math Olympiad, 3rd Problem, Grade 10, District Round.

We received 11 correct submissions. We present the solution by Roy Barbara.

Set x = 5 logc a, y = 2 logb c, and z = loga b. Then clearly, xyz = 10, and by
hypothesis x + y + z = 12. Now 1 < b ≤ c2 ≤ a10 yields x ≥ 1, y ≥ 1, and
z = 12− x− y ≤ 10.

The conclusion becomes 10
x + 10

y + 10
z ≥ 21, or 10(xy+yz+zx)

xyz ≥ 21, which is equiv-
alent to xy + yz + zx ≥ 21, since xyz = 10.

We write

xy + yz + zx− 21 = xy + z(x+ y)− 21 =
10

z
+ z(12− z)− 21

=
−z3 + 12z2 − 21z + 10

z
=
−(z − 1)2(z − 10)

z
≥ 0.

The last inequality is true because z ≤ 10. The conclusion follows.

OC488. Prove that the equation

(x2 + 2y2)2 − 2(z2 + 2t2)2 = 1

has infinitely many integer solutions.

Originally 2017 Poland Math Olympiad 9th Problem, First Round.

We received 11 submissions of which 10 were correct and complete. We present
two solutions.

Solution 1, by Sergey Sadov.

Let S be the set of all integer numbers of the form p2 + 2q2 for some integers p
and q. Let

u1 = 3, v1 = 2

be two numbers from S, as u1 = 12 + 2 · 12 and v1 = 02 + 2 · 12. Moreover,
u21 − 2v21 = 9− 8 = 1.

Crux Mathematicorum, Vol. 47(1), January 2021



OLYMPIAD CORNER /29

We define recurrently two strictly increasing sequences {un} and {vn} by

un = u2n−1 + 2v2n−1, vn = 2un−1vn−1.

We prove that the numbers un, vn: (1) satisfy the equation u2n− 2v2n = 1, and (2)
belong to S for any n ≥ 1. These imply that the statement equation has infinitely
many integer solutions.

(1) A simple computation shows that

u2n − 2v2n = (u2n−1 + 2v2n−1)2 − 2(2un−1vn−1)2 = (u2n−1 − 2v2n−1)2.

Since u21 − 2v21 = 1, an induction proof shows that u2n − 2v2n = 1 for any n ≥ 1.

(2) For n ≥ 2 we have un ∈ S by definition. To prove that vn ∈ S, it suffices to
show that if a, b ∈ S, then 2a ∈ S and ab ∈ S.

First, if a = p2 + 2q2, then we write 2a = (2q)2 + 2p2 ∈ S.

Second, given a = p2 + 2q2 and b = p̃2 + 2q̃2, then a computation shows that

ab = (pp̃− 2qq̃)2 + 2(pq̃ + p̃q)2 = (pp̃+ 2qq̃)2 + 2(pq̃ − p̃q)2,

and so ab ∈ S.

We can explain the computation above by the following fact involving complex
numbers. Note a = |p± i

√
2q|2 and b = |p̃± i

√
2q̃|2. Then

ab = |(p± i
√

2q)(p̃± i
√

2q̃)|2.

The product of two complex numbers of the form p + i
√

2q is also a number of
that form. There are four possible combinations of signs in the above formula and
they produce two, in general different, decompositions:

ab = |(p+ i
√

2q)(p̃+ i
√

2q̃)|2 = (pp̃− 2qq̃)2 + 2(pq̃ + p̃q)2

= |(p+ i
√

2q)(p̃− i
√

2q̃)|2 = (pp̃+ 2qq̃)2 + 2(pq̃ − p̃q)2.

We evaluated the first few terms of our sequences:

u1 = 3 = 12 + 2 · 12 v1 = 2 = 02 + 2 · 12
u2 = 17 = 32 + 2 · 22 v2 = 12 = 22 + 2 · 22
u3 = 577 = 172 + 2 · 122 v3 = 408 = 202 + 2 · 22 = 42 + 2 · 142

u4 = 665857 = 5772 + 2 · 4082 v4 = 470832 = 5722 + 2 · 2682

u5 = 886731088897 v5 = 627013566048

v4 has other representations: v4 = 5482+2 ·2922 = 4122+2 ·3882 = 3802+2 ·4042.
v5 has 8 representations given by the following pairs (p, q):

(784136, 77924), (783944, 78884), (776296, 110404), (776024, 111356),
(157480, 548732), (156136, 548924), (111560, 554332), (110200, 554468).
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Solution 2, by UCLan Cyprus Problem Solving Group and Roy Barbara, done
independently.

The equation a2− 2b2 = 1 has fundamental solution a = 3, b = 2, so by the theory
of Pell’s equation the solutions of a2 − 2b2 = 1 in non-negative integers are given
by the pairs (an, bn) where

an =
(3 + 2

√
2)n + (3− 2

√
2)n

2
, and bn =

(3 + 2
√

2)n − (3− 2
√

2)n

2
√

2
.

Let S be the set of all numbers which can be written in the form c2 + 2d2 with
c, d ∈ Z. It is enough to show that an ∈ S for every n ∈ N and bn ∈ S for every
n ∈ N of the form 2m, where m ∈ N.

Let

xn =
(1 +

√
2)n + (1−

√
2)n

2
, and yn =

(1 +
√

2)n − (1−
√

2)n

2
√

2
.

Expanding using the Binomial Theorem and cancelling terms, we see that xn, yn ∈
N for every n ∈ N. Furthermore, it is a matter of simple algebra to check that
x2n + 2y2n = a2n. So an ∈ S.

It remains to show that bn ∈ S whenever n = 2m with m ∈ N. We proceed
by induction on m. For m = 0, we have n = 1, so bn = 2 and we can write
2 = 02 + 2 · 12. So the case m = 0 is true.

Assume the result is true for m = k and note that b2k+1 = 2a2kb2k . By the
induction hypothesis (and earlier results) b2k+1 is a product of three elements of
S. So to complete the inductive step it is enough to prove that the product of any
two elements of S is also an element of S. This is a consequence of the identity

(a2 + 2b2)(c2 + 2d2) = (ac+ 2bd)2 + 2(ad− bc)2 .

This completes the induction and the proof that the original equation has infinitely
many solutions in integers.

OC489. The incircle of a triangle ABC touches AB and AC at points D and
E, respectively. Point J is the center of the excircle of triangle ABC tangent to
side BC. Points M and N are midpoints of segments JD and JE, respectively.
Lines BM and CN intersect at point P . Prove that P lies on the circumcircle of
triangle ABC.

Originally 2017 Poland Math Olympiad, 4rd Problem, Second Round.

We received 8 submissions. We present 2 solutions.

Solution 1, by UCLan Cyprus Problem Solving Group.

Let B1 and C1 be the points where the A-excircle meets (the extensions of) AB
and AC respectively.
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It is well-known that

BD = CC1 = (a+ c− b)/2 and CE = BB1 = (a+ b− c)/2.

Therefore DB1 = EC1.

Since JB1 = JC1, DB1 = EC1, and ∠JB1D = ∠JC1E = 90◦ then the triangles
4DB1J and 4EC1J are equal. In particular DJ = EJ and so DM = EN .

Since N is the midpoint of EJ , which is the hypotenuse of 4EC1J , we have that
C1N = EN = DM and ∠CC1N = ∠CEN = ∠MDB.

The above show that the triangles 4CC1N and 4BDM are equal. Therefore

∠PBA = ∠MBD = ∠NCC1 = 180◦ − ∠PCA .

Therefore P lies on the circumcircle of ABC, as required.
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Solution 2, by Sergey Sadov.

We will prove the following generalization, where M and N are relabeled as F and
F ′ and become (dependently) movable.

Let Q be the midpoint of the segment IJ , where I the incenter of 4ABC and J
is the center of the excircle of triangle ABC tangent to side BC. Denote by q the
line through Q perpendicular to AB. Let F be any point on that line and F ′ be
the point symmetrical to F about the bisector k = AJ of ∠BAC. Then the point
P = BF ∩ CF ′ lies on the circumcircle of 4ABC. Moreover, P also lies on the
circle QFF ′.

Note two interesting cases in addition to the one proposed in the Problem.

I. The roles of the incircle and the excircle in the Problem can be interchanged.
Thus, the lines connecting B to the midpoint of IT and C to the midpoint of IS
meet at the circumcircle. (See Figure for notation.)

II. If F ∈ q is such that BF ⊥ k, then F ′ = P (since BF is invariant under
symmetry about k), so F ′ lies on the circle ABC.

Denote by σq the reflection about the line q and by σk the reflection about the
line k.

The composite transformation ρ = σk ◦ σq (performed from right to left) is a
rotation about the intersection point of the reflection axes, which is Q. Consider
the action of ρ on some objects in our figure.

(1) σq(F ) = F and σk(F ) = F ′, hence ρ(F ) = F ′.

(2) ρ(q) = q′ (the line symmetric to q under σk). Therefore ρ is a rotation by π−α
clockwise, where α = ∠BAC.

(3) The line AB as a whole is mapped by σq to itself and by σk to the line AC.
Hence ρ(AB) = AC. (This is not to say that ρ({A,B}) = {A,C}.)
(4) Yet, ρ(B) = C. This fact is not immediately obvious. First, we show that the
angle between the rays QB and QC equals π − α.

Q lies on the circumcircle ABC. Indeed, the angles IBJ and ICJ , being formed
by the inner and outer bisectors of the angles B and C of the triangle, are right.
Therefore the points I,B, J, C lie on the circle with diameter IJ whose centre is Q.
In this circle, the central angle BQC subtends the same arc as the inscribed angle
BJC. In 4BJC the angles B and C are, respectively, (π − β)/2 and (π − γ)/2.
Hence ∠BJC = (β + γ)/2 = (π − α)/2 and ∠BQC = π − α.

It follows that ρ(QB) = QC. Therefore, taking (3) into account, ρ(B) = ρ(AB ∩
QB) = AC ∩QC = C.

The preparatory work is complete. By (1) and (4) we see that ρ(BP ) = CP . By
(2), ρ(F ) = ρ(q ∩ BP ) = q′ ∩ CP = F ′. Using (4) again, we get ρ(BF ) = CF ′.
Therefore the angles formed by the lines BF and CF ′ are π−α and α. This leaves
two logical possibilities: ∠BPC = π−α (which, in the arrangement where P and
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A are separated by the line BC as in our Figure, implies that P lies on the circle
ABC) or ∠BPC = α (which would imply the same if A and P were on the same
side from BC).

The statement that P lies on the circle QFF ′ follows similarly from the fact that
∠FPF ′ = π − α = ∠FQF ′ (in the arrangement as in our Figure).

Let us show that for F near Q the case ∠BPA = π − α is realized. As F starts
moving continuously away from Q along the line q, the angle BPA evolves con-
tinuously. Therefore it is constant, the same as ∠BQP = π − α, at least as long
as neither F nor F ′ goes to infinity.

Thus, for F sufficiently close to Q our claim is proved. To complete the proof for
the general case, one can either consider different positions of P relative to the
sides of 4ABC with help of a picture, or use some suitable formal approach.

We propose the following argument. Suppose the coordinates of the points A, B,
C are fixed and the coordinates of the variable point F ∈ q depend linearly on the
parameter t. By construction, the coordinates of P are rational functions x = ξ(t),
y = η(t). If f(x, y) = 0 is the equation of the circle ABC, then g(t) = f(ξ(t), η(t))
is a rational function of t. We know that g(t) = 0 when t runs through some
interval of values (corresponding to F near Q). Therefore g(t) = 0 identically, so
P remains on the circle ABC for any position of F on the line q.
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Remark. The last argument can be expanded into a full alternative proof in
the style of the 19th century analytical (algebraic) geometry. It is compact, but
assumes familiarity with projective coordinates.

Let the triangle ABC be fixed and F be a variable point on the line q. Suppose its
projective coordinates depend linearly on the parameter t. Then the (projective)
coordinates of the point F ′ depend linearly on t; the same is true for the coordinates
(coefficients) of the lines BF and CF ′ . The coordinates of the point P are
quadratic in t. (The projective coordinates of the intersection of lines can be
found as cross-product of the coefficient vectors of the lines.)

A curve parametrized (projectively) by quadratic functions is a quadric. (There
exists a linear combination of two coordinates of degree 1 in parameter; express the
parameter linearly via those two coordinates and substitute into the parametric
expression of the third coordinate.) A quadric is uniquely determined by five
points. Let us indicate the five points to show that in our case the quadric coincides
with the circle ABC.

1) F = q ∩AB yields P = A. (Because F ′ ∈ AC.)

2) F = q ∩BC yields P = C.

3) F = q ∩ σk(BC) yields P = B.

4) F = q ∩ ∞ (point at infinity on the line q) corresponds to the intersection of
perpendiculars to AB at B and to AC and C. Since they meet at the angle π−α,
the point of intersection lies on the circle ABC.

5) F = Q yields P = Q. (One needs to know in advance that Q lies on the
circumcircle, i.e. the theorem: the bisector of angle A meets the circumcircle at
the midpoint of the arc BC (not containing A).)

OC490. Find the smallest prime number that cannot be written in the form∣∣2a − 3b
∣∣ with nonnegative integers a, b.

Originally 2017 Germany Math Olympiad, 3rd Problem, Grade 11-12, Day 1, State
Round.

We received 9 submissions. We present the solution by Oliver Geupel.

We show that the desired prime is 41.

For all the smaller primes we have the following equalities:

2 = 31 − 20, 7 = 23 − 30, 17 = 34 − 26, 29 = 25 − 31,

3 = 22 − 30, 11 = 33 − 24, 19 = 33 − 23, 31 = 25 − 30,

5 = 23 − 31, 13 = 24 − 31, 23 = 25 − 32, 37 = 26 − 33.

It remains to show that 41 cannot be written in the required form.
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Assume the contrary. Then there are nonnegative integers a and b such that
2a − 3b = 41 or 3b − 2a = 41.

First suppose that 2a − 3b = 41. By inspection, it holds a > 2. Hence

3b ≡ 2a − 41 ≡ 7 (mod 8) .

But 3b is congruent to either 1 or 3 modulo 8, a contradiction.

Therefore, we have 3b − 2a = 41. By inspection, it holds a > 1 and b > 0. We
obtain

2a ≡ 3b − 41 ≡ 1 (mod 3) and 3b ≡ 2a + 41 ≡ 1 (mod 4) .

Thus, a and b are even numbers, say a = 2m and b = 2n. It follows that
41 = 3b − 2a = (3n − 2m)(3n + 2m); whence 3n − 2m = 1 and 3n + 2m = 41.
Then, 3n = 21, which is impossible.

This completes the proof that 41 cannot be written in the desired form.
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FOCUS ON...
No. 44

Michel Bataille

Quadratics (I)

Introduction

The last problem of the 1988 IMO has been considered as one of the most difficult
problems ever posed in an IMO. Its statement is short and attractive:

Let a, b, be positive integers such that ab + 1 divides a2 + b2. Show

that
a2 + b2

ab+ 1
is a perfect square.

Not surprisingly, the solution calls for a lot of ingenuity, but surprisingly, it rests
upon very simple results about the quadratic equation. [For the details, we refer
the reader to [1].]

Prompted by this famous example, the intent of this number is to show through
various, simpler examples how elementary properties of the quadratic polynomial
(those everybody learns as a 15-year-old student!) can intervene, sometimes un-
expectedly, in the solutions to problems. In a second part, our next number will
more specifically address applications to the polynomials of degree three or four.

Ending up at a quadratic equation

We start with a selection of examples that directly lead to solving a quadratic
equation. The first one is from [2]:

Find all real numbers x such that x > 1 and {x}+
{

1
x

}
= 1.

Here the notation {x} refers to the fractional part of x, that is, {x} = x− bxc.
Suppose that the conditions on x hold. Since x > 1, we have

⌊
1
x

⌋
= 0, hence{

1
x

}
= 1

x . It follows that x + 1
x = bxc + 1. If m denotes the integer bxc + 1, we

have x2 −mx+ 1 = 0 and m ≥ 2; even m > 2 since x = 1 if x2 − 2x+ 1 = 0.

Conversely, consider the equation x2−mx+1 = 0 where m is an integer satisfying
m ≥ 3. This equation has two positive solutions

x1 =
m−

√
m2 − 4

2
and x2 =

m+
√
m2 − 4

2

and x1 < 1 < x2 (note that x1x2 = 1). Then, we have x2 = m − x1 = m − 1
x2

,
hence m− 1 < x2 < m. We deduce that bx2c = m− 1 and so

{x2}+

{
1

x2

}
= x2 − bx2c+

1

x2
= 1.
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Thus, the desired x’s are the numbers
m+

√
m2 − 4

2
where m is an integer with

m ≥ 3.

Our second example offers a variant of solution to problem 3732 [2012 : 149, 151 ;
2013 : 190]:

A circle of radius 1 is rolling on the x-axis in the first quadrant towards
the parabola with equation y = x2. Find the coordinates of the point
of contact when the circle hits the parabola.

Let Γ be the circle and U(a, 1) its centre (where a > 1). Let T be the point of
contact when the circle hits the parabola. We have T (w,w2) for some positive real
number w. Since the equation of Γ is x2 + y2 − 2ax − 2y + a2 = 0, the following
relation holds:

w2 + w4 − 2aw − 2w2 + a2 = 0. (1)

Since UT is perpendicular to the tangent to the parabola at T , we also have

(w − a) + 2w(w2 − 1) = 0. (2)

Note that w > 1 because 2w3 − w = a > 1 and 2w3 − w − 1 ≤ 0 for w ≤ 1, as
showed by a quick study of x 7→ 2x3 − x− 1.

The elimination of a between (1) and (2) gives 4w4 − 7w2 + 2 = 0 and hence

w2 = 7+
√
17

8 . We conclude that

T

√7 +
√

17

8
,

7 +
√

17

8

 .

Another example of problem leading to a biquadratic equation is problem 3298
[2007 : 486, 489 ; 2008 : 500]:

Let ABC be a triangle of area 1
2 in which a is the side opposite vertex

A. Prove that a2 + cscA ≥
√

5.

Let F = 1
2 be the area of ∆ABC and let b = CA, c = AB. Since

a

sinA
=
abc

2F
, we

have bc = cscA ≥ 1 and the required inequality rewrites as

a2 + bc ≥
√

5.

The well-known relation 16F 2 = 2(a2b2 + b2c2 + c2a2)− (a4 + b4 + c4) yields

a4 − 2(b2 + c2)a2 + 4 + (b2 − c2)2 = 0.

Solving for a2, we obtain

a2 = b2 + c2 + 2
√
b2c2 − 1 or a2 = b2 + c2 − 2

√
b2c2 − 1.
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In any event, we have

a2 + bc ≥ b2 + c2 + bc− 2
√
b2c2 − 1 ≥ 3bc− 2

√
b2c2 − 1.

Now, the inequality 3bc − 2
√

(bc)2 − 1 ≥
√

5 holds since it is equivalent to in-

equality (bc
√

5 − 3)2 ≥ 0 (easily checked) and we deduce that a2 + bc ≥
√

5, as
desired.

We conclude this section with problem 841 of The College Mathematics Journal
(Vol. 38 No 1):

Assume that the quadratic polynomial f(x) = ax2 + bx+ c, a 6= 0, has
two fixed points x1 and x2, x1 6= x2. If 1 and −1 are two fixed points
of the function f(f(x)), but not of f(x), then find the exact values of
x1 and x2.

Since 1 is a fixed point of f(f(x)), the quadratic polynomial

f(x)− 1 = ax2 + bx+ c− 1

vanishes for x = f(1). Its other root must be − b
a − f(1) and so

f(x)− 1 = (x− f(1))(ax+ b+ af(1)).

With x = 1, the latter yields

a+ b+ af(1) = −1 (1)

(note that f(1)− 1 6= 0 because 1 is not a fixed point of f(x)). Reasoning in the
same way with the quadratic polynomial f(x) + 1 one of whose root is f(−1), we
obtain

−a+ b+ af(−1) = −1. (2)

By difference and addition, (1) and (2) lead to

a(f(1)− f(−1)) = −2a and a(f(1) + f(−1)) = −2(b+ 1).

Now, recalling that f(1) = a + b + c and f(−1) = a − b + c, we easily deduce
b = −1 and a+ c = 0, which shows that f(x) must be the polynomial ax2−x− a.

Conversely, taking f(x) = ax2 − x− a, we have f(1) 6= 1, f(−1) 6= −1,

f(f(x)) = a(ax2 − x− a)2 − ax2 + x

and it is readily checked that f(f(1)) = 1, f(f(−1)) = −1.

As a result, x1, x2 are the roots of f(x)− x = ax2 − 2x− a that is,

1 +
√

1 + a2

a
and

1−
√

1 + a2

a
.
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Two numbers from their sum and product

In the examples that follow, we illustrate the fact that the knowledge of the sum
and the product of two numbers allows one to find the numbers by solving a
quadratic equation.

First, an easy exercise:

Evaluate w + w2 + w4 where w = exp(2πi/7).

With S = w + w2 + w4 we associate T = w3 + w5 + w6 (the key idea!). Since
w 6= 1 and

0 = w7 − 1 = (w − 1)(w6 + w5 + w4 + w3 + w2 + w + 1),

we have S + T = −1. Using w7 = 1, we find the product

ST = 3 + (w6 + w5 + w4 + w3 + w2 + w) = 3− 1 = 2.

Therefore S, T are the solutions of the quadratic equation z2 + z + 2 = 0, namely
−1 + i

√
7

2
and

−1− i
√

7

2
.

Next, we observe that

Im(S) = sin
2π

7
+ sin

4π

7
+ sin

8π

7
= (sin

2π

7
− sin

π

7
) + sin

4π

7

is a positive real number and we conclude that S = −1+i
√
7

2 .

We continue with problem 5501 proposed by School Science and Mathematics
Association in May 2018:

Determine all real numbers a, b, x, y that simultaneously satisfy the
following relations: 

(1) ax+ by = 5
(2) ax2 + by2 = 9
(3) ax3 + by3 = 17
(4) ax4 + by4 = 33

It is readily checked that (2, 1, 2, 1) and (1, 2, 1, 2) are solutions for (a, b, x, y). We
show that there are no other solutions. To this aim, let a, b, x, y be real numbers
satisfying the four equations. The reader will easily check that we must have
xy(y − x) 6= 0.

From equations (1) and (2), we obtain

a =
1

xy(y − x)

∣∣∣∣5 y
9 y2

∣∣∣∣ =
5y − 9

x(y − x)
.
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In the same way, (2) and (3) give a =
9y − 17

x2(y − x)
and it follows that

9y − 17 = x(5y − 9)(= ax2(y − x)).

In consequence,

5xy = 9(x+ y)− 17. (*)

With equations (3) and (4), we get a =
17y − 33

x3(y − x)
and so

17y − 33 = x(9y − 17)(= ax3(y − x)),

which gives

9xy = 17(x+ y)− 33. (**)

From (∗) and (∗∗), we obtain x + y = 3 and xy = 2. The quadratic equation
X2 − 3X + 2 = 0 then shows that (x, y) = (2, 1) or (1, 2). In the former case, we
easily find a = 2, b = 1 and in the latter case a = 1, b = 2 and so

(a, b, x, y) = (2, 1, 2, 1) or (1, 2, 1, 2).

The sign of mx2 + nx+ p

In this section we suppose that the coefficients of the quadratic polynomial p(x) are
real. The discussion about the sign of p(x) when x describes R is well-known and
of frequent use. Take for example the classical inequality a2+b2+c2 ≥ ab+bc+ca
for real a, b, c.

Young students can find a bit far-fetched the usual proof using a2 + b2 ≥ 2ab,
etc. (this was once the case of my students who responded by: ”We would never
have thought of that...”). The following might sound more direct and familiar:
Consider the difference between the left and the right sides:

a2 − a(b+ c) + b2 + c2 − bc = p(a),

where

p(x) = x2 − x(b+ c) + b2 + c2 − bc.

The discriminant of p(x) is

∆ = (b+ c)2 − 4(b2 + c2 − bc) = 6bc− 3b2 − 3c2 = −3(b− c)2

and is not positive, hence p(x) is nonnegative for all x and therefore p(a) ≥ 0,
the desired inequality. [Alternatively, one can “complete the square” to obtain:

p(a) =
(
a− b+c

2

)2
+ 3(b−c)2

4 .]

A similar, more elaborate example is the following geometric inequality from [2]:

Crux Mathematicorum, Vol. 47(1), January 2021



Michel Bataille /41

Let ABC be a triangle with sides BC = a,CA = b, AB = c and
semiperimeter s. If r and R are the inradius and circumradius, respec-
tively, prove that

(b+ c)2

4bc
≤ s2

3r(4R+ r)
.

Let X =
s2

r(4R+ r)
. Using a2 + b2 + c2 = 2s2−2r2−8rR, it is easily checked that

X =
(a+ b+ c)2

(a+ b+ c)2 − 2(a2 + b2 + c2)
=

a2 + 2a(b+ c) + (b+ c)2

−a2 + 2a(b+ c)− (b− c)2 .

Note that −a2 + 2a(b + c) − (b − c)2 = 4r2 + 16rR > 0, hence the inequality is
equivalent to

4bc(a2 + 2a(b+ c) + (b+ c)2) ≥ 3(b+ c)2(−a2 + 2a(b+ c)− (b− c)2),

which rewrites as p(a) ≥ 0 where

p(x) = x2(3b2 + 3c2 + 10bc)− 2x(b+ c)(3b2 + 3c2 + 2bc) + (b+ c)2(3b2 + 3c2− 2bc).

Now, the discriminant is 4δ where

δ = (b+ c)2(3b2 + 3c2 + 2bc)2 − (b+ c)2(3b2 + 3c2 − 2bc)(3b2 + 3c2 + 10bc).

A simple calculation shows that δ = −12bc(b− c)2(b + c)2, hence δ ≤ 0. Since in
addition 3b2 + 3c2 + 10bc > 0, we have p(x) ≥ 0 for all real x and in particular
p(a) ≥ 0, as desired.

In our final illustration, slightly adapted from a problem of the 23rd Russian
Olympiad for Secondary Schools [2000 : 388 ; 2002 : 493], the sign of the quadratic
polynomial plays an incidental but important role.

Solve in positive integers the equation (x2 − y2)2 = 1 + 16y.

Let (x, y) be a solution. Clearly, we have x 6= y. We distinguish two mutually
exclusive cases:

• if 1 ≤ x < y, then y ≥ 2 and with k = y−x, the equation becomes k2(2y−k)2 =
1 + 16y. Since k ≤ y − 1, the assumption k ≥ 2 leads to 1 + 16y ≥ 4(y + 1)2, that
is, 4y2 − 8y+ 3 ≤ 0. The roots of the polynomial 4y2 − 8y+ 3 being 1

2 and 3
2 , the

latter inequality does not hold for y ≥ 2. We deduce that we must have k = 1 and
so (2y − 1)2 = 1 + 16y. Therefore y = 5 and x = y − k = 5− 1 = 4.

• if 1 ≤ y < x, similarly we set ` = x−y so that 1 ≤ ` ≤ x and `2(2y+`)2 = 1+16y.
Again, ` ≥ 2 would imply that 1 + 16y ≥ 4(2y + 2)2, that is 16y2 + 16y + 15 ≤ 0,
which does not hold. Hence ` = 1 and so y = 3 and x = 4.

Conversely, we check that (4, 3) and (4, 5) are indeed solutions and so are the
solutions.
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Exercises

1. Let u be a complex number with |u| = 1. Show that the solutions to the
equation

z2 − 2z(1− u)− u = 0

are unimodular if and only if |1− u| ≤ 1.

2. (Problem E.386 proposed in the French journal Quadrature No 101, 2016). Let
x, y, z, a, b be positive real numbers satisfying x2 + xy + y2 = a2

y2 + yz + z2 = b2

z2 + zx+ x2 = a2 + b2.

Express s = x+y+z as a function of a and b (hint: obtain a biquadratic equation
of which s is a solution).

References
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by March 30, 2021.

4601. Proposed by Bill Sands.

One or more pieces of clothing are hanging on a clothesline. Each piece of clothing
is held up by either 1, 2 or 3 clothespins. Clothes do not overlap and each clothespin
holds up one piece of clothing. You want to remove all the clothing from the line,
obeying the following rules:

(i) you must remove the clothing in the order that they are hanging on the line;

(ii) all the pins holding up a piece of clothing must be removed at the same time;

(iii) the number of clothespins you remove each time must belong to the set
{n+ 1, n+ 2, . . . , n+ c}, where n and c are given positive integers.

Find the smallest positive integer c so that, for any positive integer n, all suffi-
ciently long lines of clothing can be removed.

4602. Proposed by Nguyen Viet Hung.

Let ABC be an acute triangle. Let ha be the length of the altitude from vertex
A to side BC and let wa be the length of the internal bisector of ∠A to side
BC. Define hb, hc, wb and wc similarly. Also let r be the inradius and R the
circumradius of ABC. Prove that

hbhc
a2

+
hcha
b2

+
hahb
c2

=
r

2R
+

2hahbhc
wawbwc

.

4603. Proposed by Michel Bataille.

Let ABC be a triangle. The perpendiculars to AB through A and to AC through
C intersect at D. The perpendiculars to AC through A and to AB through B
intersect at E. Prove that the altitude from A in ∆DAE is a symmedian of
∆ABC.

4604. Proposed by Nguyen Viet Hung.

Prove that the triangle ABC is equilateral if and only if

a sin(A− π

3
) + b sin(B − π

3
) + c sin(C − π

3
) = 0.
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4605. Proposed by George Stoica.

Let {xi}mi=1 be any set of non-zero vectors in Rn. Prove the following:

(1) If 〈xi, xj〉 < 0 for all i 6= j, then m ≤ n+ 1.

(2) If 〈xi, xj〉 ≤ 0 for all i 6= j, then m ≤ 2n.

4606. Proposed by Garcia Antonio.

For a, b, c, n > 0, show that

(a+ b)

√
na+ b

a+ nb
+ (b+ c)

√
nb+ c

b+ nc
+ (c+ a)

√
nc+ a

c+ na
≥ 2(a+ b+ c).

4607. Proposed by Ted Barbeau.

a) Determine all polynomials q(x) that satisfy the functional equation

q(x)q(x+ 1) = q(x2 + x).

b) Determine all polynomials p(x) that satisfy the functional equation

p(x)p(x+ 1) = p(x+ p(x)).

c) ? Prove or disprove the conjecture: Let p(x) be a polynomial solution of the
functional equation in (b). Then, if q(x) satisfies the functional equation

q(x)q(x+ 1) = q(x+ p(x)),

then q(x) = p(x)n for some nonnegative integer n.

4608. Proposed by Florin Stanescu.

Calculate

lim
n→∞

Hn+1 +Hn+2 + · · ·+H2n

nHn
,

where Hn = 1 + 1
2 + 1

3 + · · ·+ 1
n , n ≥ 1.

4609. Proposed by George Apostolopoulos.

Triangle ABC has internal angle bisectors AD, BE and CF , where points D, E
and F lie on the sides BC, AC and AB, respectively. Prove that

AB4 +BC4 + CA4

DE4 + EF 4 + FD4
≥ 16.
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4610. Proposed by Albert Natian.

Find the smallest positive number x so that the following three quantities a, b and
c are all integers:

a =
4

√
72 +

√
3x +

√
16 + 275x +

√
19 + 288x ,

b = 5
3

√
9x

20
+
√

16 + 275x ,

c = 7
3

√
2x

15
+ 2
√

3x .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 30 mars 2021.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

4601. Proposée par Bill Sands.

Au moins une pièce de linge est suspendue sur une corde à linge, chaque pièce
de linge y étant retenue par 1, 2 ou 3 épingles à linge. Les pièces de linge ne se
chevauchent pas et une épingle à linge retient une seule pièce de linge. Maintenant,
on voudrait enlever le linge de la corde, en respectant les règles suivantes :

(i) on doit enlever les pièces de linge dans le même ordre auquel ils se trouvent
sur la corde;

(ii) toutes les épingles retenant une pièce de linge doivent être enlevées au même
moment;

(iii) le nombre d’épingles à linge enlevées en un même moment doit se trouver
dans l’ensemble {n+ 1, n+ 2, . . . , n+ c}, où n et c sont des entiers.

Déterminer la valeur du plus petit entier positif c tel que, pour tout entier positif
n, tout linge sur une corde à linge suffisamment longue puisse être enlevé.
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4602. Proposée par Nguyen Viet Hung.

Soit ABC un triangle acutangle. Soit ha la longueur de l’altitude du sommet A
au côté BC et wa la longueur de la bissectrice de l’angle A jusqu’au côté BC.
Les longueurs hb, hc, wb et wc sont définies de la même façon. Si r est le rayon du
cercle inscrit et R est le rayon du cercle circonscrit au triangle ABC, démontrer
que

hbhc
a2

+
hcha
b2

+
hahb
c2

=
r

2R
+

2hahbhc
wawbwc

.

4603. Proposée par Michel Bataille.

Soit ABC un triangle. Les perpendiculaires vers AB passant par A, puis vers AC
passant par C, intersectent en D. De façon similaire, les perpendiculaires vers AC
passant par A, puis vers AB passant par B, intersectent en E. Démontrer que
l’altitude émanant de A dans ∆DAE est sym-médiane dans ∆ABC.

4604. Proposée par Nguyen Viet Hung.

Démontrer que le triangle ABC est équilatéral si et seulement si

a sin(A− π

3
) + b sin(B − π

3
) + c sin(C − π

3
) = 0.

4605. Proposée par George Stoica.

Soit {xi}mi=1 un ensemble de vecteurs non nuls dans Rn. Démontrer les suivantes.

(1) Si 〈xi, xj〉 < 0 pour tout i 6= j, alors m ≤ n+ 1.

(2) Si 〈xi, xj〉 ≤ 0 pour tout i 6= j, alors m ≤ 2n.

4606. Proposée par Garcia Antonio.

Pour a, b, c, n > 0, démontrer que

(a+ b)

√
na+ b

a+ nb
+ (b+ c)

√
nb+ c

b+ nc
+ (c+ a)

√
nc+ a

c+ na
≥ 2(a+ b+ c).

4607. Proposée par Ted Barbeau.

a) Déterminer tout polynôme q(x) satisfaisant à l’équation fonctionnelle

q(x)q(x+ 1) = q(x2 + x).

b) Déterminer tout polynôme p(x) satisfaisant à l’équation fonctionnelle

p(x)p(x+ 1) = p(x+ p(x)).
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c) ? Démontrer la conjecture suivante ou présenter un contre exemple: Soit p(x)
une solution polynomiale à l’équation fonctionnelle en (b) ; si q(x) satisfait
à l’équation fonctionnelle

q(x)q(x+ 1) = q(x+ p(x)),

alors q(x) = p(x)n pour un certain entier non négatif n.

4608. Proposée par Florin Stanescu.

Calculer

lim
n→∞

Hn+1 +Hn+2 + · · ·+H2n

nHn
,

où Hn = 1 + 1
2 + 1

3 + · · ·+ 1
n , n ≥ 1.

4609. Proposée par George Apostolopoulos.

Les bissectrices internes du triangle ABC sont AD, BE et CF , où les points D,
E et F se trouvent sur les côtés BC, AC et AB, respectivement. Démontrer que

AB4 +BC4 + CA4

DE4 + EF 4 + FD4
≥ 16.

4610. Proposée par Albert Natian.

Déterminer le plus petit nombre positif x tel que les trois valeurs a, b et c suivantes
sont entières:

a =
4

√
72 +

√
3x +

√
16 + 275x +

√
19 + 288x ,

b = 5
3

√
9x

20
+
√

16 + 275x ,

c = 7
3

√
2x

15
+ 2
√

3x .
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2020: 46(6), p. 264–269.

4551. Proposed by Michel Bataille.

Let ABC be a triangle with sides BC = a,CA = b and AB = c. Suppose b > c
and let A1, A2 be the two points such that ∆A1BC and ∆A2BC are equilateral.
Express the circumradius of ∆AA1A2 as a function of a, b, c.

There were 12 correct solutions. Two other submissions provided a process for
getting the solution, but did not work out the final answer. We present 4 solutions.

The circumradius of triangle AA1A2 is equal to

a

b2 − c2
[
a4 + b4 + c4 − a2b2 − b2c2 − c2a2

] 1
2

=
a
√

2

2(b2 − c2)

[
(a2 − b2)2 + (b2 − c2)2 + (c2 − a2)

] 1
2 .

Solution 1, by UCLan Cyprus Problem Solving Group.

Note that B and A lie on the same side of A1A2. Let O be the circumcentre of
triangle AA1A2 and let R, the length of OA and OA1, be the circumradius. Since
BC is the right bisector of the chord A1A2 of the circumcircle, then O lies on BC
produced.

First, suppose that O lies between B and C, x and y are the respective lengths of
OC and BO, and a, b, c have their conventional meaning. By Stewart’s theorem
applied to triangles ABC and A1BC,

c2x+ b2y = a(R2 + xy) = a2x+ a2y,

whence (c2 − a2)x = (a2 − b2)y = (a2 − b2)(a− x) and

x =
a(b2 − a2)

b2 − c2 .

Therefore

R2 = ax+ ay − xy = ax+ (a− x)2 = a2 − ax+ x2

=
a2

(b2 − c2)2
[
(b2 − c2)2 − (b2 − c2)(b2 − a2) + (b2 − a2)2

]
=

a2

2(b2 − c2)2
[
(b2 − c2)2 + ((b2 − c2)− (b2 − a2))2 + (b2 − a2)2

]
.

Crux Mathematicorum, Vol. 47(1), January 2021



Solutions /49

Secondly, suppose that B lies between O and C and z is the length of BO. Then

R2a+ b2z = (a+ z)(c2 + za) and R2a+ a2z = (a+ z)(a2 + za),

whence (b2 − a2)z = (a+ z)(c2 − a2) and

z =
a(c2 − a2)

b2 − c2 .

Then

R2 = a2 + az + z2 =
a2

b2 − c2
[
(b2 − c2)2 + (c2 − a2)(b2 − c2) + (c2 − a2)2

]
.

Finally, suppose that C lies between B and O and w is the length of CO. Then

R2a+ c2w = (a+ w)(b2 + aw) and R2a+ a2w = (a+ w)(a2 + aw),

whence (c2 − a2)w = (a+ w)(b2 − a2), and

w =
a(a2 − b2)

b2 − c2 .

Then

R2 = a2 + aw + w2 =
a2

(b2 − c2)2
[
(b2 − c2)2 + (a2 − b2)(b2 − c2) + (a2 − b2)2

]
.

These all give the desired expression.

Solution 2, by Eugen Ionascu, Walther Janous, C.R. Pranesachar, and Joel Schlos-
berg (independently).

Let a1 and a2 be the respective lengths of AA1 and AA2, with a1 < a2. From the
Law of Cosines, we have that 2ab cosC = a2 + b2 − c2, 2ac cosB = a2 + c2 − b2
and

a21 = a2 + b2 − 2ab cos |C − 60◦|
= a2 + b2 − ab cosC −

√
3ab sinC

=
a2 + b2 + c2

2
−
√

3ab sinC,

and

a22 = a2 + b2 − 2ab cos(C + 60◦)

= a2 + b2 − ab cosC +
√

3ab sinC

=
a2 + b2 + c2

2
+
√

3ab sinC,
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whence a21 + a22 = a2 + b2 + c2 and

a21 · a22 =

(
a2 + b2 + c2

2

)2

− 3a2b2(1− cos2 C)

=

(
a2 + b2 + c2

2

)2

− 3a2b2 +
3

4
(a2 + b2 − c2)2

= a4 + b4 + c4 − a2b2 − b2c2 − c2a2.

(Alternatively, a21 = (b cosC − a/2)2 + (b sinC −
√

3a/2)2 and a22 = (b cosC −
a/2)2 + (b sinC +

√
3a/2)2.)

Using the formula for the area of the triangle in terms of the sides of the triangle
and noting that the length of A1A2 is a

√
3, we find that

[AA1A2] =
1

4

√
4a21a

2
2 − (a21 + a22 − 3a2)2

=
1

4

√
4(a4 + b4 + c4 − a2b2 − b2c2 − c2a2)− (b2 + c2 − 2a2)2

=
1

4

√
3b4 + 3c4 − 6b2c2 =

√
3

4
(b2 − c2).

Alternatively, with the ± sign allowing for different configurations,

[AA1A2] = [BA1A2] + [BAA1]± [BAA2]

=
1

2
a2 sin 120◦ +

1

2
ac sin(B − 60◦)− 1

2
ac sin(B + 60◦)

=

√
3

4
[a2 − 2ac cosB] =

√
3

4
[b2 − c2].

Using the determination of the circumradius as (
√

3aa1a2)/(4[AA1A2]), we obtain
the desired result.

Solution 3, by Oliver Geupel.

Let D be the midpoint of BC, m be the length of the median AD, and let
a, b, c, a1, a2 have the foregoing meanings. Applying the Law of Sines in trian-
gle ACD, we find that

cos∠A1DA = sin∠CDA =
b

m
sinC,

whence

[ABC] =
1

2
ab sinC =

1

2
am cos∠A1DA.
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By the Law of Cosines,

a21 = |AA1|2 = |A1D|2 + |AD|2 − 2|A1D| · |AD| · cos∠A1DA

=
3a2

4
+m2 − 2

(
a
√

3

2

)(
2[ABC]

a

)
=

3a2

4
+

2b2 + 2c2 − a2
4

− 2
√

3[ABC]

=
a2 + b2 + c2

2
− 2
√

3[ABC].

Similarly,

a22 =
a2 + b2 + c2

2
+ 2
√

3[ABC].

a21a
2
2 =

1

4
((a2 + b2 + c2)2)− 12[ABC]2

=
1

4
[(a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2)

− 3(2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4)]

= a4 + b4 + c4 − a2b2 − b2c2 − c2a2.

Let h and d be the respective distances of A from A1A2 and BC. Then

[AA1A2] =
ah
√

3

2
=

√
3

4

[(a
2

+ h
)2

+ d2
)
−
[(a

2
− h
)2

+ d2
)

=
(b2 − c2)

√
3

4
.

The formula for the circumradius of triangle AA1A2 yields the desired result.

Solution 4, by Marie-Nicole Gras.

Assign coordinates

A ∼ (c cos θ, c sin θ), B ∼ (0, 0), C ∼ (a, 0), and A1 ∼ (a/2, a
√

3/2).

The right bisector of AA1 contains the circumcentre of triangle AA1A2 and has
equation (

c cos θ − a

2

)
x+

(
c sin θ − a

√
3

2

)
y =

c2 − a2
2

.

The circumcentre is located at the intersection of this line and BC produced:(
a(a2 − c2)

b2 − c2 , 0

)
.

The distance from this point to A1 yields the desired expression for the circumra-
dius.
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4552. Proposed by Anupam Datta.

Given positive integers a, b and n, prove that the following are equivalent:

1. b ≡ ax (mod n) has a solution with gcd(x, n) = 1;

2. b ≡ ax (mod n) and a ≡ by (mod n) have solutions x, y ∈ Z;

3. gcd(a, n) = gcd(b, n).

We received 15 submissions, out of which 7 were correct and complete. We present
the solution by Eugen Ionascu, modified by the editor.

(1)⇒ (2)

We need to show that a ≡ by (mod n) has a solution y ∈ Z. Since gcd(x, n) = 1
we know that x is in the multiplicative group of integers modulo n. Using its
inverse in this group gives us y ∈ Z with xy ≡ 1 (mod n). Thus, since b ≡ ax
(mod n) by assumption,

by ≡ axy ≡ a (mod n) .

(2)⇒ (3)

By assumption we can write b = ax + rn for some r ∈ Z. Since gcd(a, n) di-
vides both ax and rn, we have gcd(a, n)|b. Together with gcd(a, n)|n we ob-
tain gcd(a, n)| gcd(b, n). By symmetry we also have gcd(b, n)| gcd(a, n) and thus
gcd(a, n) = gcd(b, n).

(3)⇒ (1)

Let d be the greatest common divisor of a and n. Then

a = da′ b = db′ n = dn′

for some positive integers a′, b′, n′ with gcd(a′, n′) = gcd(b′, n′) = 1. Then a′ has
an inverse in the multiplicative group of integers modulo n′, say z. Hence a′z ≡ 1
(mod n′). Let

x = b′z + n′t

for any integer t. Then

a′x ≡ a′(b′z + n′t) ≡ b′ (mod n′) .

Multiplying everything by d, we obtain

ax ≡ b (mod n) .

It remains to show that there exists a t such that gcd(x, n) = 1. Since b′z and n′

are coprime, by Dirichlet’s Theorem the set of integers b′z + n′t (t ∈ N) contains
infinitely many primes. In particular, there exists a t such that x = b′z + n′t is a
prime greater than n, which implies gcd(x, n) = 1.
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4553. Proposed by Daniel Sitaru.

Find

lim
n→∞

(∫ 1

0
x2(x+ n)ndx

(n+ 1)n

)

We received 33 submissions, of which 29 were complete and correct. We present
the solution by Devis Alvarado, lightly edited.

The limit is equivalent to

lim
n→∞

∫ 1

0
x2(x+ n)n dx

(n+ 1)n
= lim

n→∞

∫ 1

0

x2(x+ n)n

(n+ 1)n
dx

= lim
n→∞

∫ 1

0

x2
(
1 + x

n

)n(
1 + 1

n

)n dx.

For n ≥ 1 define fn : [0, 1]→ R by fn(x) = x2
(
1 + x

n

)n(
1 + 1

n

)n . We have

|fn(x)| = fn(x) = x2
(
1 + x

n

)n(
1 + 1

n

)n ≤ x2 (1 +
x

n

)n
.

It is well known that
{(

1 +
x

n

)n}
n≥1

converges to ex. Since x ∈ [0, 1] it is also

an increasing sequence. We conclude that |fn(x)| ≤ x2ex ≤ e.
Apply the Bounded Convergence Theorem to get

lim
n→∞

∫ 1

0

x2
(
1 + x

n

)n(
1 + 1

n

)n dx =

∫ 1

0

lim
n→∞

(
x2
(
1 + x

n

)n(
1 + 1

n

)n
)
dx

=

∫ 1

0

x2
limn→∞

(
1 + x

n

)n
limn→∞

(
1 + 1

n

)n dx
=

∫ 1

0

x2 · e
x

e
dx

=
1

e

[
x2ex − 2xex + 2ex

] ∣∣1
0

= 1− 2

e
.

Therefore limn→∞

(∫ 1

0
x2(x+ n)ndx

(n+ 1)n

)
= 1− 2

e
.
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4554. Proposed by George Stoica.

Let ε be a given constant with 0 < ε < 1, and let (an) be a sequence with
0 ≤ an < ε for all n ≥ 1. Prove that (1 − an)n → 1 as n → ∞ if and only if
nan → 0 as n→∞.
There were 19 correct solutions. Several solvers noted that it was sufficient that
each an be less than 1. We present 4 solutions.

Solution 1, by Vincent Blevins.

Applying the Bernoulli inequality 1 + nx ≤ (1 + x)n for n ≥ 1 and x > −1 and
using (1− an)2n ≤ 1, we have that

1 ≤ 1 + nan ≤ (1 + an)n ≤ 1

(1− an)n
≤ 1

1− nan
.

The desired result follows from the squeeze principle.

Solution 2, by Zoltan Retkes.

The result follows from

ln(1− an)−n = −n ln(1− an) = n

(
an +

a2n
2

+
a3n
3

+ · · ·
)

≥ nan = an(1 + 1 + · · ·+ 1)

≥ an[1 + (1− an) + · · ·+ (1− an)n−1]

= 1− (1− an)n ≥ 0.

Solution 3, by Dmitry Fleischman and Walther Janous (independently).

The function f(t) = ln(1−t)/t is decreasing on (0, ε) with limt→0 f(t) = −1. Since
f(ε) < f(an) < −1, and

nanf(ε) ≤ nanf(an) = nan

(
ln(1− an)

an

)
= ln(1− an)n ≤ −nan < 0,

the desired result follows.

Solution 4, by Michel Bataille and Eugen Ionascu (independently).

Recall that lnx ≤ x−1 for x > 0. Replacing x by 1/x yields lnx ≥ x− 1

x
. Setting

x = 1− an leads to

− nan
1− ε ≤

−nan
1− an

≤ ln(1− an)n ≤ −nan ≤ 0.

Applying the squeeze principle yields the result.
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4555. Proposed by Michael Rozenberg and Leonard Giugiuc.

Prove that if a, b, c and d are positive numbers that satisfy

ab+ bc+ cd+ da+ ac+ bd = 6,

then
a+ b+ c+ d ≥ 2

√
(a2 + b2 + c2 + d2)abcd.

When does the equality hold?

We received 11 submissions of which 6 were correct and complete. We present the
solution by the proposer Leonard Giugiuc.

By MacLaurin’s inequality,(
a+ b+ c+ d

4

)2

>
ab+ bc+ cd+ da+ ac+ bd

6
= 1.

So, a + b + c + d > 4 and there exists a unique t for which 0 < t 6 1 and

a+ b+ c+ d = 2(t+ 1
t ). Let s = t2+1

2t so that s > 1 and a+ b+ c+ d = 4s.

Next, define q = abc+ abd+ acd+ bcd, and r = abcd. We will prove that

(a+ b+ c+ d)2 > 4(a2 + b2 + c2 + d2)abcd,

which is equivalent to each of

16s2 > 4(16s2 − 12)r and s2 > (4s2 − 3)r.

To that end, we will find an upper bound for r in terms of t.

Define

p(x) = (x− a)(x− b)(x− c)(x− d) = x4 − 4sx3 + 6x2 − qx+ r

and

f(x) =
p(x)

x
= x3 − 4sx2 + 6x− q +

r

x

for x > 0. Then the zeroes of f are a, b, c, and d. Let g(x) = 3x4−8sx3+6x2−r so

that f ′(x) = g(x)
x2 = 0 if and only if g(x) = 0. Since g is a fourth degree polynomial

with a positive coefficient of x4 and g(0) = −r < 0, then g has at least one negative
zero. By Rolle’s theorem applied to f , f ′ has at least three positive zeroes, and
thus, so does g. Since

g′(x) = 12x3 − 24sx2 + 12x = 12x(x2 − t2 + 1

t
x+ 1) = 12x(x− t)(x− 1

t
),

then g′(x) = 0 when x = 0, x = t, and x = 1
t . Thus g(t) > 0 and g( 1

t ) 6 0. But

g(t) = 3t4 − 4(t4 + t2) + 6t2 − r = 2t2 − t4 − r
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and so, r 6 2t2 − t4. Thus,

(4s2 − 3)(2t2 − t4) > (4s2 − 3)r

and it is sufficient to show that s2 > (4s2 − 3)(2t2 − t4), which is equivalent to

(
t2 + 1

2t
)2 > ((t2 + 1)2 − 3t2)(2− t2)

and

(t2 − 1)2(2t2 − 1)2 > 0.

Note that r = 2t2 − t4 if and only if three of a, b, c, and d are equal to t and the

fourth is 2−t2
t .

Equality holds for t = 1 or t =
1√
2

. That is, when (a, b, c, d) = (1, 1, 1, 1) or

(a, b, c, d) = (
1√
2
,

1√
2
,

1√
2
,

3√
2

) or a permutation thereof.

4556. Proposed by Marian Cucoanes and Lorean Saceanu.

Let x ≥ 1 be a real number and consider a triangle ABC. Prove that

(x− cosA)(x− cosB)(x− cosC)

(x+ cosA)(x+ cosB)(x+ cosC)
≤
[

(3x− 1)R− r
(3x+ 1)R+ r

]3
.

When does the equality hold?

We received 9 solutions, two of which were incorrect. We present the solution by
Theo Koupelis.

Setting c1 =
∑

cyc cosA, c2 =
∑

cyc cosA cosB, and c3 =
∏

cyc cosA, and noting
the well-known expression c1 = 1 + (r/R), we rewrite the given inequality as

x3 − c1x2 + c2x− c3
x3 + c1x2 + c2x+ c3

≤
(

3x− c1
3x+ c1

)3

. (1)

The denominators of the fractions on both sides of (1) are positive (because x ≥ 1
and the triangle is not trivial, that is r > 0). Therefore, after clearing denomina-
tors, (1) is equivalent to showing that

x2(8c31 − 27c1c2 + 27c3) ≥ c21(c1c2 − 9c3). (2)

We will first show that

c1c2 − 9c3 ≥ 0. (3)
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If the triangle is not obtuse (and not trivial) then the values of cosA, cosB, cosC
are in [0, 1), and by AM-GM we have

c1c2 − 9c3 =
∑
sym

cos2A cosB − 6
∏
cyc

cosA ≥ 0,

with equality when the triangle is equilateral.

If the triangle is obtuse, say 90◦ < ∠C < 180◦, then cosC = − cosD, where
∠D = π − ∠C; however, we still have

cosA+ cosB − cosD = 1 + (r/R) > 1,

and therefore cosD < cosA+ cosB − 1, and thus

c1c2 − 9c3 ≥ cos2A(1− cosA) + cos2B(1− cosB)+

+ cos2D(cosA+ cosB) + 6 cosA · cosB · cosD > 0.

Therefore, inequality (3) holds, with equality for an equilateral triangle.

We will now show that

8c31 − 27c1c2 + 27c3 ≥ c21(c1c2 − 9c3). (4)

We can rewrite this expression as

2(c21 − 3c2)− c21 + 3

4c1
· (c1c2 − 9c3) ≥ 0.

But with 1 < c1 ≤ 3/2, we have (c1 − 1)(c1 − 3) < 0, and thus 0 <
c21+3
4c1

< 1.
Therefore, inequality (4) will hold if we can show the stronger inequality

2(c21 − 3c2)− (c1c2 − 9c3) ≥ 0. (5)

But this is obvious because it is equivalent to showing that

2

(∑
cyc

cos2A−
∑
cyc

cosA · cosB

)
+ 6 cosA · cosB · cosC −

∑
sym

cos2A · cosB ≥ 0,

or ∑
cyc

(cosA− cosB)2(1− cosC) ≥ 0.

Therefore, inequality (4) holds; for a non-trivial triangle, equality in (4) and (5)
occurs for an equilateral triangle. That is because in such a case we have

c21 = 3c2 = 9
4 and c1c2 = 9c3 = 9

8 .

From (3) and (4) we conclude that inequality (2), and therefore (1), holds for all
x ≥ 1. Equality occurs for an equilateral triangle.
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4557. Proposed by George Apostolopoulos.

Let ma, mb and mc be the lengths of the medians of a triangle ABC with cir-
cumradius R and inradius r. Let a, b and c be the lengths of the sides of ABC.
Prove

24r2

R
≤ a2

ma
+

b2

mb
+

c2

mc
≤ 4r2 − 2Rr

r
.

We received 20 submissions all of which noticed a small typo on the right side of
the given inequality, and gave valid proof for the intended correct version. We
present the solution by Marie-Nicole Gras.

By Cauchy-Schwarz Inequality we have

(ma +mb +mc)

(
a2

ma
+

b2

mb
+

c2

mc

)
≥ (a+ b+ c)2,

so
a2

ma
+

b2

mb
+

c2

mc
≥ 4s2

ma +mb +mc
,

where s denotes the semiperimeter of 4ABC.

The following inequalities are all well known [see items 5.1, 5.11, and 8.2 on pp.
48, 52, and 73 of Geometric Inequalities by O. Bottema et al.]: 2r ≤ R, s2 ≥ 27r2,
and ma +mb +mc ≤ 4R+ r ≤ 9

2R. Hence we have,

a2

ma
+

b2

mb
+

c2

mc
≥ 4(27r2)

9
2R

=
24r2

R
.

To prove the right inequality, we let T , ha, hb and hc denote the area and heights

of 4ABC, respectively. Since mx ≥ hx and hx =
2T

x
for all x ∈ {a, b, c} we have

a2

ma
+

b2

mb
+

c2

mc
≤ a2

ha
+
b2

hb
+
c2

hc
=
a3 + b3 + c3

2T
. (1)

The results below are all well known: abc = 4srR, ab + bc + ca = s2 + 4rR + r2,
and s2 ≤ 4R2 + 4rR + 3r2 [Gerretsen Inequality; see item 5.8 on p. 50 of the
aforementioned reference]. Using these together with a + b + c = 2s, we then
obtain

a3 + b3 + c3 = (a+ b+ c)3 − 3(a+ b+ c)(ab+ bc+ ca) + 3abc

= (2s)3 − 3(2r)(s2 + 4rR+ r2) + 3(4srR)

= 2s3 − 12srR− 6sr2 = 2s(s2 − 6rR− 3r2)

≤ 2s(4R2 + 4rR+ 3r2 − 6rR− 3r2) = 2s(4R2 − 2rR).

Since T = sr we finally obtain

a3 + b3 + c3

2T
≤ 4R2 − 2rR

r
. (2)

From (1) and (2), the given right inequality follows and the proof is complete.

Crux Mathematicorum, Vol. 47(1), January 2021



Solutions /59

4558. Proposed by Thanos Kalogerakis, Leonard Giugiuc and Kadir Altintas.

Consider a diagram below, where triangle SAT is right-angled and tanT > 2. The
point K lies on the segment ST such that SK = 2KT . The circle centered at K
with radius KS intersects the line AT at P and Q. Point D is the projection of S
on AT and E is a point on AT such that D lies on AE and AD = 2DE. Finally,
suppose that SQ and SP intersect the perpendicular at E on AT at B and C
respectively. Prove that S is the incenter of the triangle ABC.

We received 12 submissions, all correct. Most solutions used coordinates for the
proof, and we feature one example of that approach. We then present the unique
submission that exploited similar triangles and considerable persistence.

Solution 1, by Eugen J. Ionascu.

Let us employ an analytical proof. We let D be the origin of the coordinate axes,
S be the point (0, 1) on the y-axis, and assign A the coordinates (−a, 0), with
a > 0. Similarly, we assign the points P, T , and Q of the x−axis the respective
coordinates (p, 0), (t, 0), and (q, 0). Since SD is an altitude of the right triangle
AST , we have that ta = 1, so that T has coordinates

(
1
a , 0
)
, and K (which is 2

3 of

the distance from S to T ) is the point
(

2
3a ,

1
3

)
. Since ST =

√
1+a2

a , we find that
the equation of the circle with center K and radius SK is given by

(x− 2

3a
)2 + (y − 1

3
)2 =

4(1 + a2)

9a2
.

(We see that tan∠ATS = AS
ST = a; although one of the stated assumptions implies

that a > 2, we shall see that no such condition is required for the conclusion to
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hold. Specifically, we shall assume only that a > 0.) Setting y = 0 and solving for
x gives the x-coordinates of P and Q:

p =
2

3a
−
√

4

9a2
+

1

3
and q =

2

3a
+

√
4

9a2
+

1

3
. (1)

We observe that the product of these x-coordinates is

pq = −1

3
. (2)

By hypothesis, E is the point (a
2 , 0). Since BC is parallel to the y-axis, the

distance from S = (0, 1) to BC equals DE = a
2 . Consequently, to prove that S

is the incenter of ∆ABC we must show that the distance to sides AB and AC is
also a

2 .

To determine the coordinates of B =
(
a
2 , b
)
, we find where SQ, with equation

x + qy − q = 0, meets the line x = a
2 , namely b = 1 − a

2q . But from (2) we have
1
q = −3p, so that from (1) we have finally that

b = 2−
√

1 +
3a2

4
< 1.

The equation of the line AB is −bx + 3a
2 y − ab = 0; consequently, the distance

from S to AB equals

| 3a2 − ab|√
b2 + ( 3a

2 )2
=

−a
2 + a

√
1 + 3a2

4√(
2−

√
1 + 3a2

4

)2

+ ( 3a
2 )2

=
a

2
·

√
4 + 3a2 − 1√

5 + 3a2 − 2
√

4 + 3a2
=
a

2
.

Similarly, with C the point
(
a
2 , c
)

we have c = 2 +
√

1 + 3a2

4 > 1, the line AC

satisfies −cx+ 3a
2 y− ac = 0, and the distance from S to AC equals a

2 , as desired.

We have proved that S is a tritangent center. It remains to show that S is in the
interior of ∆ABC (and therefore not an excenter). Because BC is parallel to the
y-axis, which separates the vertex A from the side BC, S must lie on an angle
bisector between A and the opposite side. It remains to show that S = (0, 1) lies
between the points where x = 0 intersects the sides AB and AC. We see that

x = 0 meets AB where y = 2
3

(
2−

√
1 + 3a2

4

)
< 1,

and

x = 0 meets AC where y = 2
3

(
2 +

√
1 + 3a2

4

)
> 1, which concludes the proof.

Solution 2, by Thinh Nguyen, supplemented and modified by the editor.

Editor’s comment. Nguyen tacitly uses the same symbol XY to indicate the
line determined by the points X and Y , and the directed distance from X to
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Y . The context always make clear the intended meaning. In addition, the editor
has introduced the symbol ∠XY Z to indicate a directed angle, namely the angle
required to rotate the line Y X in the positive direction about Y to coincide with
the line Y Z.

Denote by M the point where SD intersects AB. From the similar right triangles
ABE and AMD we have DM

EB = AD
AE = 2

3 , so that DM = 2
3EB, and

SM = SD +DM = SD +
2

3
EB. (3)

Similarly, using the similar right triangles SDQ and BEQ we have EB
SD = EQ

QD , so
that

EB

SD
+ 1 =

EQ

QD
+
QD

QD
=
ED

QD
=

DA

2QD

and, therefore,

EB =

(
DA

2QD
− 1

)
SD.

We plug this expression for EB into (3) to get

SM = SD +
2

3

(
DA

2QD
− 1

)
SD =

1

3
SD

(
DA

QD
+ 1

)
=
SD

3
· QA
QD

,
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so that, finally,
SA

SM
=

SA
SD·QA
3QD

=
3SA ·QD
SD ·QA . (4)

The altitude SD partitions the right triangle AST into two triangles similar to it:
∆AST ∼ ∆ADS ∼ ∆SDT . Consequently,

AS2 = AD ·AT, ST 2 = AT ·DT, and
SA

SD
=
ST

DT
.

But AS is tangent to the circle SPQ, so that we also have AS2 = AP · AQ (the
power of A with respect to this circle); it follows that AD

AQ = AP
AT , whence (using

AD = AQ+QD and AP = AT + TP )

AQ+QD

AQ
=
AT + TP

AT
,

or
QD

AQ
=
TP

AT
=
TP ·DT
AT ·DT =

TP ·DT
ST 2

.

Consequently, equation (4) becomes

SA

SM
=

3SA

SD
· TP ·DT

ST 2
=

3ST

DT
· TP ·DT

ST 2
=

3TP

ST
=

3TP

3KT
=
TP

TK
.

Furthermore, because ∠ASM = ∠KTP (their corresponding sides are perpendic-
ular), the triangles ASM and PTK are oppositely similar (by side-angle-side),
whence

∠CBA = ∠SMA (corresponding sides parallel)

= ∠PKT (corresponding angles of similar triangles)

= ∠PKS

= 2∠PQS (angle inscribed in circle with center K)

= 2∠EQB

= 2(90◦ − ∠QBE) (∆EQB is a right triangle)

= 2∠EBQ = 2∠CBS.

Thus,

∠SBA = ∠CBA− ∠CBS = 2∠CBS − ∠CBS = ∠CBS;

that is, BS is the bisector of ∠CBA.

It remains to show that CS is the bisector of ∠ACB. To that end, let F be the
second point where BS meets the circle ABC, and let I and J be the midpoints
of CS and CA. Note that IJ is parallel to AS. The chords FA and FC have
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equal lengths (because they subtend equal inscribed angles), which implies that
FJ ⊥ AC. Much as before we have

∠JFC =
1

2
∠AFC =

1

2
∠ABC =

1

2
∠ABE

= 90◦ − ∠EBQ

= ∠BQE = ∠SQP = ∠ASD = ∠JIP = ∠JIC.

This equality implies that points F,C, I, J are concyclic, so ∠FIC = ∠FJC = 90◦.
Moreover, since I is the midpoint of SC, we deduce that ∆FSC is isosceles; that
is, ∠CSF = ∠FCS. It follows that

∠ACS = ∠FCS−∠FCA = ∠CSF−∠FBA = (∠SCB+∠CBS)−∠SBA = ∠SCB.

We conclude that CS bisects ∠ACB, which completes the proof that S is the
incenter of ∆ABC.

Editor’s comments. The UCLan Cyprus Problem Solving Group proved the result
in the more general setting with SK

KT = AD
DE = k, where k can be any real number

greater than 1. (They explain that their restriction of k to k > 1 was a convenient
way to insure the existence of the points P and Q, and to keep the tritangent center
S inside ∆ABC.) Both of our featured proofs can be modified to accommodate
this generalization.

As a byproduct of his solution, Bataille observed that the incenter S of ∆ABC
lies on the line segment DG joining D to the centroid G, 3

4 of the way from D to
G.

4559. Proposed by Nho Nguyen Van.

Let xk be positive real numbers. Prove that for every natural number n ≥ 2, we
have (

n∑
k=1

x10k

)3

≥
(

n∑
k=1

x15k

)2

We received 26 submissions and they were all correct. There are many different
ways to prove the inequality. We present the following 4 solutions, slightly modified
by the editor.

Solution 1, by Michel Bataille, Oliver Geupel, Vivek Mehra, Ángel Plaza, Digby
Smith, and the proposer (independently).

Noting that the proposed inequality is homogeneous, we may assume in addition
that

n∑
k=1

x10k = 1.
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So the inequality reads
n∑

k=1

x15k ≤ 1,

which follows because for each k, x15k ≤ x10k , since xk ∈ (0, 1).

Solution 2, by Devis Alvarado and Vivek Mehra (independently).

For each 1 ≤ k ≤ n, we set yk = x5k. By Cauchy-Schwarz inequality, we have(
n∑

k=1

y3k

)2

=

(
n∑

k=1

yky
2
k

)2

≤
(

n∑
k=1

y2k

)(
n∑

k=1

y4k

)

=

(
n∑

k=1

y2k

)( n∑
k=1

y2k

)2

− 2
∑
k<j

y2ky
2
j


≤

(
n∑

k=1

y2k

)(
n∑

k=1

y2k

)2

=

(
n∑

k=1

y2k

)3

.

Substituting the xk’s, the result is obtained.

Solution 3, by Carl Libis and UCLan Cyprus Problem Solving Group (indepen-
dently).

After expanding, we see that the right-hand side of the inequality is equal to

n∑
k=1

x30k + 2
∑

16k<`6n

x15k x
15
` .

Since all terms are positive, the left-hand side of the inequality is at least

n∑
k=1

x30k + 3
∑

16k<`6n

(x20k x
10
` + x10k x

20
` ) .

where we have omitted terms of the form x10k x
10
` x

10
m . The inequality now follows

immediately by AM-GM inequality, as

x20k x
10
` + x10k x

20
` > 2x15k x

15
`

for each k, `.

We conclude by noting that the inequality holds for n = 1. Furthermore, since the
terms are positive, the case n = 1 is the only case in which we can have equality.
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Solution 4, by Charles Diminnie, Marie-Nicole Gras, Richard Hess, Theo Koupelis,
and Shrinivas Udpikar (independently).

For all k = 1, . . . , n, we put ak = x5k; then the given inequality is equivalent to(
n∑

k=1

a2k

)3

≥
(

n∑
k=1

a3k

)2

. (1)

We prove (1) by induction. Obviously, it is true for n = 1. Suppose that (1) holds
for n ≥ 1; then by inductive hypothesis, we have

(
a2n+1 +

n∑
k=1

a2k

)3

= a6n+1 + 3a4n+1

(
n∑

k=1

a2k

)
+ 3a2n+1

(
n∑

k=1

a2k

)2

+

(
n∑

k=1

a2k

)3

≥ a6n+1 + a4n+1

(
n∑

k=1

a2k

)
+ a2n+1

(
n∑

k=1

a4k

)
+

(
n∑

k=1

a3k

)2

= a6n+1 + a2n+1

(
n∑

k=1

a2k(a2n+1 + a2k)

)
+

(
n∑

k=1

a3k

)2

≥ a6n+1 + a2n+1

(
n∑

k=1

a2k(2an+1ak)

)
+

(
n∑

k=1

a3k

)2

= a6n+1 + 2a3n+1

(
n∑

k=1

a3k

)
+

(
n∑

k=1

a3k

)2

=

(
a3n+1 +

n∑
k=1

a3k

)2

·

Thus we have proved (1) and the required result follows.

Editor’s Comment. As pointed out by Walther Janous, Oliver Geupel, and Mis-
souri State University Problem Solving Group, the proposed inequality is a special
case of the following classical inequality (see for example page 4 of G. H. Hardy,
J.E. Littlewood; G. Pólya, Inequalities, 2nd ed, Cambridge University Press, 1952):
for any 0 < r < s, and any positive numbers x1, x2, . . . , xn, we have(

n∑
k=1

xsk

)1/s

≤
(

n∑
k=1

xrk

)1/r

. (2)

The idea in the solution 1 presented above can be used to prove the above inequal-
ity.
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As pointed out by Zoltan Retkes, the proposed inequality can be also treated in
the p-norm setting. Let x = (x1, x2, . . . , xn) ∈ Rn, for each p ≥ 1,

‖x‖p =

(
n∑

k=1

|xk|p
) 1

p

defines the p-norm on Rn. In general, we have the following relations between
p-norms: if 1 ≤ q ≤ p, we have

‖x‖p ≤ ‖x‖q ≤ n
1
q−

1
p ‖x‖p. (3)

Note that the first inequality in (3) is just inequality (2), and the second inequality
in (3) is a consequence of Hölder’s inequality.

4560. Proposed by Mihaela Berindeanu.

Let E and F be midpoints on the respective sides CA and AB of triangle ABC, and
let P be the second point of intersection of the circles ABE and ACF . Prove that
the circle AEF intersects the line AP again in the point X for which AX = 2XP .

We received 15 submissions, all of which were correct, and will sample three of the
various approaches.

Solution 1 by the UCLan Cyprus Problem Solving Group.

Since A,E, P,B are concyclic (in that order), then ∠PBF = ∠PBA = ∠PEC.
Since A,C, P, F are concyclic, then ∠ECP = ∠ACP = ∠BFP . It follows that
the triangles 4PBF and 4PEC are similar. Letting hB and hC be the altitudes
from P for this pair of similar triangles, we have

sin(∠BAP )

sin(∠CAP )
=
hB/AP

hC/AP
=
hB
hC

=
FB

EC
=
AB

AC
.

Since A,E,X, F are concyclic, say on a circle of radius R, then

FX

EX
=

2R sin(∠BAP )

2R sin(∠CAP )
=
AB

AC
.
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Again because A,E,X, F are concyclic, we have ∠XFA = ∠XEC. Since also
FA/EC = AB/AC = FX/EX, it follows that the triangles 4XFA and 4XEC
are similar. Therefore ∠CXE = ∠AXF = ∠AEF = ∠C (of ∆ABC). Since also
∠AXE = ∠AFE = ∠B, it follows that ∠PXC = ∠A.

Since A,C, P, F are concyclic, we then have ∠CPX = ∠CPA = ∠CFA. Since
also ∠PXC = ∠A it follows that the triangles 4PXC and 4FAC are similar.
Using also the similarity of the triangles 4XFA and 4XEC we get

XP =
(AF )(XC)

AC
=

(AF )(AX)(EC)

(AC)(AF )
=
AX

2
,

as required.

Solution 2 by Theo Koupelis.

Let O, Ē, F̄ , and Ō be the circumcenters of the circles ABC, ABE, ACF, and
AEF, respectively. The chord AE is common to the circles AEF and ABE, and
thus points Ō and Ē are on the perpendicular bisector of AE. The chord AC
is common to the circles ABC and ACF, and thus points O and F̄ are on the
perpendicular bisector of AC. Therefore ŌĒ is parallel to F̄O. Similarly, points
Ō and F̄ are on the perpendicular bisector of AF, and points O and Ē are on the
perpendicular bisector of AB; therefore F̄ Ō is parallel to OĒ. As a result, ŌĒOF̄
is a parallelogram.

Because E and F are the midpoints of the sides AC and AB, respectively, the
triangles AFE and ABC are similar, with a ratio of similitude of 2. Therefore the
points A, Ō, and O are colinear with AŌ = ŌO. Thus AO is the diameter of the
circle (Ō) = (AEF ), and with X being on this circle we have OX ⊥ AX.
Let Q be the intersection point of the diagonals ŌO and ĒF̄ of the parallelogram
ŌĒOF̄ . The chord AP is the common chord of the circles (Ē) and (F̄ ), and thus
ĒF̄ ⊥ AP and therefore QĒ ⊥ AP. Let Ō1 and Q1 be the projections of the points
Ō and Q, respectively, on AP. Then AQ1 = Q1P, AŌ1 = Ō1X, and Ō1Q1 = Q1X.
Thus, AŌ1 = AQ1 − Ō1Q1 = Q1P −Q1X = XP. Therefore AX = 2AŌ1 = 2XP.

Solution 3 by Sorin Rubinescu.

We shall prove that AX = 2
3AP (which, because X is between A and P , is

equivalent to AX = 2XP ). Consider the inversion in the unit circle with center A.
Because A is on the three given circles, these transform into lines. Specifically, the
circumcircle of 4AFC is interchanged with the line F ′C ′, while the circumcircle
of 4AEB is interchanged with the line E′B′; therefore, point P is sent to P ′ =
F ′C ′ ∩ E′B′, while X is sent to X ′ = AP ′ ∩ E′F ′.
The relations AE ·AE′ = 1 = AC ·AC ′ imply that

AE′

AC ′
=
AC

AE
= 2.
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Similarly,
AF ′

AB′
=
AB

AF
= 2.

As a result, P ′ must be the centroid of triangle AF ′E′ (with its medians F ′C ′, E′B′

and, therefore, AX ′). But P ′ is 2
3 of the way along the median from the vertex A

to the midpoint X ′ of the opposite side; because AP · AP ′ = AX · AX ′, we see
that also AX

AP = 2
3 , as desired.

Editor’s comments. As part of his solution, Ivko Dimitrić observed that AP is the
symmedian from A of ∆ABC. This follows easily from the third of our featured
solutions: The reflection of ∆ABC in the line that bisects ∠A (which takes that
triangle to a triangle homothetic to the triangle AE′F ′ of Solution 3) takes the
median from A into the corresponding symmedian.
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