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Shawn Godin



MathemAttic /49

MATHEMATTIC
No. 12

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by April 15, 2020.

MA56. For a given arithmetic series the sum of the first 50 terms is 200, and
the sum of the next 50 terms is 2700. What is the first term of the series?

MA57. Define a boomerang as a quadrilateral whose opposite sides do not
intersect and one of whose internal angles is greater than 180 degrees (see the
accompanying figure). Let C be a convex polygon having s sides. Suppose that
the interior region of C is the union of q quadrilaterals, none of whose interiors
intersect one another. Also suppose that b of these quadrilaterals are boomerangs.

Show that q ≥ b+
s− 2

2
.

MA58. Proposed by John McLoughlin.

If the digits 1, 2, 3, 4, 5, 6, 7, 8 and 9 are randomly ordered to form a nine-digit
number, what is the probability that the number is divisible by 99?

MA59. Find positive integer solutions of

xx
xx

= (19− yx)yx
y − 74.
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MA60. Three equilateral triangles with sides of length 1 are shown shaded
in a larger equilateral triangle. The total area of the three small triangles is half
the area of the large triangle. What is the side-length of the larger equilateral
triangle?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problémes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 avril 2020.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

MA56. Pour une certaine série arithméthique, la somme des 50 premiers
termes est 200, tandis que la somme des 50 termes suivants est 2700. Déterminer
le premier terme de la série.

MA57. On définit un boomerang comme étant un quadrilatère dont les côtés
opposés ne se coupent pas et dont un des angles internes est de plus que 180
degrés, tel qu’illustré. Soit maintenant C un polygone convexe ayant s côtés.
Supposer que la région interne de C est la réunion de q quadrilatères dont les
intérieurs s’intersectent pas. Supposer de plus que b de ces quadrilatères sont des

boomerangs. Démontrer que q ≥ b+
s− 2

2
.

MA58. Proposed by John McLoughlin.

Les chiffres 1, 2, 3, 4, 5, 6, 7, 8 et 9 sont réarrangés de façon aléatoire pour former
un entier à neuf chiffres. Déterminer la probabilité que cet entier soit divisible par
99.

MA59. Déterminer les solutions entières positives à l’équation

xx
xx

= (19− yx)yx
y − 74.
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MA60. Trois triangles équilatéraux à côtés de longueur 1 sont indiqués à
l’intérieur d’un plus gros triangle équilatéral. La surface totale des trois petits
triangles égale la moitié de la surface du gros triangle. Déterminer la longueur du
côté du gros triangle.

Crux Mathematicorum, Vol. 46(2), February 2020
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2019: 45(7), p. 379-380.

MA31. Given that the areas of an equilateral triangle with side length t and
a square with side length s are equal, determine the value of t

s .

The problem was proposed by John Grant McLoughlin.

We received 4 correct solutions. We present an amalgamation of the submitted
solutions.

The formula for the area of the square is s2 and the formula for the area of the

equilateral triangle is
√
3t2

4 . We can deduce that s2 =
√
3t2

4 , which we can rearrange

to 4√
3

= t2

s2 . Taking the square root of both sides and rationalizing the denominator

we get t
s = 2 4√27

3 .

MA32. Jack and Madeline are playing a dice game. Jack rolls a 6-sided
die (numbered 1 to 6) and Madeline rolls an 8-sided die (numbered 1 to 8). The
person who rolls the higher number wins the game. If Jack and Madeline roll the
same number, the game is replayed. If a tie occurs a second time, then Jack is
declared the winner. Which person has the better chance of winning? What are
the odds in favour of this person winning the game?

Adapted from NLTA Math League Problem.

We received 2 correct submissions. We present the solution by Digby Smith, mod-
ified by the editor.

There are 6 × 8 = 48 possible outcomes of dice tosses. Let P (X) denote the
probability of X occurring. We observe the following:

1. P (Jack and Madeline roll the same number) =
1

8

2. P (Madeline wins a toss)
= P (Madeline rolls 8)
+ P (Madeline rolls 7)
+ P (Madeline rolls 6, Jack rolls less than 6)
+ P (Madeline rolls 5, Jack rolls less than 5)
+ P (Madeline rolls 4, Jack rolls less than 4)
+ P (Madeline rolls 3, Jack rolls less than 3)
+ P (Madeline rolls 2, Jack rolls less than 2)

=
1

8
+

1

8
+

Å
1

8

ãÅ
5

6
+

4

6
+

3

6
+

2

6
+

1

6

ã
=

9

16
.

Copyright © Canadian Mathematical Society, 2020



54/ MathemAttic

3. P (Madeline wins on first toss) =
9

16
.

4. P (Madeline wins on second toss)
= P (Jack and Madeline roll the same number)× P (Madeline wins a toss)

=
1

8

Å
9

16

ã
=

9

128

It follows that

P (Madeline wins) =
9

16
+

9

128
=

81

128

and

P (Jack wins) = 1− 81

128
=

47

128
.

We conclude that the odds in favour of Madeline are 81:47 and she has a better
chance of winning.

MA33. Note that
»

2 2
3 = 2

»
2
3 . Determine conditions for which

»
a bc = a

»
b
c ,

where a, b, c are positive integers.

The problem was proposed by John Grant McLoughlin.

We received 7 solutions, with varying conditions. We present the solution of the
Missouri State University Problem Solving Group, which went so far as to be able
to generate all such a, b, and c.

Assume that a, b, and c satisfy …
a
b

c
= a

…
b

c

or rather …
ac+ b

c
= a

…
b

c

Squaring both sides we find
ac+ b

c
=
a2b

c

which simplifies to ac+ b = a2b and then ac = b(a2 − 1).

Now, since gcd(a, a2−1) = 1 we can see that a | b(a2−1) implies a | b. Let b = ka.
Then we find that

ac = ka(a2 − 1)

or rather c = k(a2 − 1).

It is readily verified that for any choice of a ≥ 2 and k ≥ 1, the triple

(a, b, c) = (a, ka, k(a2 − 1))

will satisfy the condition.

Crux Mathematicorum, Vol. 46(2), February 2020
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MA34. Try to replace each ∗ with a different digit from 1 to 9 so that the
multiplication is correct. (Each digit from 1 to 9 must be used once.)

∗ ∗ ∗ ∗
× ∗
∗ ∗ ∗ ∗

Determine whether a solution is possible. If so, determine whether the solution is
unique.

Originally from “Mathematical Puzzling” by Anthony Gardiner.

We received 1 correct solution and one incorrect solution. We present an approach
for the problem and the conclusion of Doddy Kastanya.

A formal proof of the answers will just devolve into case based work. One approach
is to consider the possible values for the single digit in the product. It cannot be
1 as otherwise the four digit numbers would be identical.

If the single digit were d and the four digit number in the product is n, then
the resulting four digit number is dn. We can see 1234 ≤ n and dn ≤ 9876 so

n ≤ 9876

d
. Putting these together, we narrow down the possible values of n to

the range 1234 ≤ n ≤ 9876

d
. Then we just check for each possible d = 2, · · · , 9

for possible n in this range with distinct digits which has dn with distinct digits,
using all 9 nonzero digits once.

d range of possible values for n n that fit the description

2 1234 ≤ n ≤ 4938 none

3 1234 ≤ n ≤ 3292 none

4 1234 ≤ n ≤ 2469 1738, 1963

5 1234 ≤ n ≤ 1975 none

6 1234 ≤ n ≤ 1646 none

7 1234 ≤ n ≤ 1410 none

8 1234 ≤ n ≤ 1234 none

9 1234 ≤ n ≤ 1097 impossible

It takes some effort, or better yet a computer program, but we find exactly two
solutions:

1 7 3 8

× 4

6 9 5 2

1 9 6 3

× 4

7 8 5 2

Copyright © Canadian Mathematical Society, 2020
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MA35. A polygon has angles that are all equal. If the sides of this polygon
are not all equal, show that the polygon must have an even number of sides.

Originally from “Mathematical Puzzling” by Anthony Gardiner.

We received two submissions (including the author), one proving that the claim
of the author is false. We present the solution by the Missouri State University
Problem Solving Group showing that the claim is false.

The claim is false. Given any regular n-gon, n > 3, with vertices A1, . . . , An, let
B2 be a point in the interior of A1A2 and B3 be a point in the interior of A3A4 such

that B2A2 = A3B3. Since
←−−→
B2B3 is parallel to

←−−→
A2A3, ∠A1B2B3

∼= ∠A1A2A3
∼=

∠A2A3A4
∼= ∠B2B3A4. Therefore the polygon with verticesA1, B2, B3, A4, . . . , An

also has all angles congruent. However, B2B3 ≥ A2A3 and A1B2 < A1A2 = A2A3,
so all the sides are not congruent.

Crux Mathematicorum, Vol. 46(2), February 2020
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PROBLEM SOLVING
VIGNETTES

No. 10

Shawn Godin

Revisiting Dirichlet

Sometimes a simple idea can be very powerful. In mathematics this happens all
the time. In this issue, we revisit an idea, the pigeonhole principle, that I used to
solve a problem from the course C&O 380 that I took as an undergraduate from
professor Ross Honsberger [2018: 44(4), p. 157-159].

Pigeonhole principle (a.k.a. Dirichlet box principle):
If you have n pigeonholes and m > n pigeons, then there must be at least one
pigeonhole that contains at least two pigeons.

To see this in action, think about the following statement: if 8 people are gathered
together in a room, at least two of them were born on the same day of the week.
Why does this work? Let’s think of the worst case scenario. Imagine the people
arrive at the room one at a time, and we only let people in that were born on a
different day of the week than everyone else that is already in the room. We can
do this up to a point. Once we reach seven people, every day has been accounted
for which means that if we allow an eighth person to enter, this person must have
been born on the same day as somebody already present. The pigeonhole principle
is an example of an existence theorem in mathematics. It tells us something must
exist, but it doesn’t really give us any idea how to find it.

The key idea for using the pigeonhole principle is to define our groups in such a
way that we are forced to have an overlap. In some problems, like the example
above, it is obvious. In others we have to work a bit. Let’s look at problem #7
from C&O 380 [2018: 44(10), p. 419]:

Of 5 points inside a square of unit side, show that some pair is less

than
√
2
2 units apart.

Since we have 5 points and we are trying to force a pair of them to have a condition,
it gives us the hint that we want to work with 4 categories. It seems natural to
cut the square into four congruent squares as shown below.

1 2

3 4

Thus the pigeonhole principle guarantees that at least two points will be in the
same region. How far apart can they be? The furthest apart would be if they were

Copyright © Canadian Mathematical Society, 2020
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at opposite vertices of the square, which the Pythagorean theorem tells us are
√
2
2

units apart. Since we are picking points from inside the square, we are guaranteed

that two must be less than
√
2
2 units apart, so we are done.

Care is needed since we can break the square up into any four disjoint regions and
the pigeonhole principle will ensure that at least two are in the same region. If we
don’t create our regions carefully, we may not get what we are after. For example,
we could have created the four regions as shown below.

1 2 3 4

We still know for sure that at least two of the points will fall in the same rectangle,

but now they can be as far apart as (almost)
√
17
4 which is larger than

√
2
2 . We

cannot conclude that the problem is impossible just because our configuration
gives a larger number. So build your groups carefully.

Next, let’s consider problem #11 from C&O 380 [2019: 45(4), p. 176]: Prove that
no matter how the points of a closed unit square are coloured red or blue, either

some two red points or some two blue points are at least
√
5
2 units apart.

Consider any three corners of the square. Since we have only two colours, at least
two of the points have the same colour. If two of the same coloured corners are

diagonally opposite of each other, they are
√

2 units apart which is larger than
√
5
2

and we are done.

Suppose the two points that are the same colour are not diagonally opposite. Then
we can assume, without loss of generality, that two vertices on the same edge are
red and the other vertex is blue, as in the diagram below. Consider the midpoint of
the edge nearest one of the red vertices, but not between one of the three coloured
vertices, as indicated by a “?” in the diagram. This point, taken with the further
red vertex and the blue vertex, forms an isosceles triangle. Once again, we can
conclude that at least two vertices will be the same colour. Since the original two
vertices are coloured oppositely, the new point is the same colour as one of them.

The Pythagorean theorem again yields that these points are
√
5
2 units apart, and

we are done.

?

Notice that in the first case we were told we had 5 points which gave us the hint
that we are looking at four categories. The second problem was a little different.
We had to focus in on the two colours, which would be our categories. That meant

Crux Mathematicorum, Vol. 46(2), February 2020
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we had to look at 3 points to force two of them to be the same colour and piece
our proof together from there. Let’s look at problems #21–25 from C&O 380 and
choose one to focus on.

#21. Suppose each point of the plane is coloured red or blue. Show that some
rectangle has its vertices all the same colour.

#22. In chess, is it possible for a knight to go from the lower left corner square of
the board to the upper right corner square and in the process to land exactly
once on each other square?

#23. Prove that the number of people at the opera next Thursday night who will
shake hands an odd number of times is an even number of people.

#24. Prove that no matter what three points of a square lattice are joined, an
equilateral triangle will never occur.

#25. Prove that
1

2
· 3

4
· 5

6
· 7

8
· · · 99

100
<

1

10

Let’s looks closely at #21. Again we have two colours, so again we know that for
any three points we pick on the plane, at least two will be the same colour. We
need four points, all the same colour, forming a rectangle. Let’s investigate all the
possibilities of three coloured points. Taking into account the order of the points,
there are 2× 2× 2 = 8 possibilities, pictured below.

Notice that, if I have two identically coloured arrangements of three points, cor-
rectly arranged, I will have satisfied the conditions of the problem.

Thus, if I pick a 3 × 9 rectangular grid of points, since there are 8 possible ways
to colour the points in each column, we must have at least two columns whose
colourings are the same. Since there are three points in each column, at least two
of them are the same, so we can create our rectangle with vertices the same colour,
and we are done.

Copyright © Canadian Mathematical Society, 2020
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If we think a bit, we can actually refine our proof. Notice that two of the 8
colourings have all three points coloured the same. One of these three coloured
configurations will match with any configuration having two points of that same
colour to produce our desired rectangle.

Therefore, we can classify our groups of three as one of two types: type R with
at least 2 red points and type B with at least 2 blue points. Now, if we have a
3× 7 rectangular grid of points, at least 4 must be of the same type R or B. This
extends the original idea of the pigeonhole principle to:

Generalized pigeonhole principle:
If you have n pigeonholes and m > kn pigeons, for some integer k, then there must
be at least one pigeonhole that contains at least k + 1 pigeons.

In our case, if we look at the worst case scenario, when I have six things into two
groups, I could have three of each. As soon as I add another, there must be some
group with four(7 = 3× 2 + 1, so we must have one with at least 3 + 1 = 4).

So there must be at least four Rs or at least four Bs. Suppose we have four Bs.
We can break the Bs up into three groups: the first and second must be blue; the
first and third must be blue; and the second and the third must be blue. These
possibilities are pictured below, where the “open” point could be either red or
blue. With this classification, the configuration with three blues would fit in any
category. Thus, since we have four Bs, but three groups, there must be at least
two in the same group, guaranteeing our desired rectangle.

Knowing the nuances of a technique or theorem and how to use it in your solutions
is very important. Hopefully, the examples provide some insight into using the
pigeonhole principle or problem solving in general. Enjoy the rest of the problems,
we may talk about some of them in a future column.

Crux Mathematicorum, Vol. 46(2), February 2020
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OLYMPIAD CORNER
No. 380

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by April 15, 2020.

OC466. In a convex quadrilateral ABCD the diagonals AC and BD in-
tersect at point O. The points A1, B1, C1, D1 are respectively on the segments
AO,BO,CO,DO such that AA1 = CC1 and BB1 = DD1. Let M and N be,
respectively, the second intersections of the circumcircles of 4AOB and 4COD
and the circumcircles of 4AOD and 4BOC, and let P and Q be, respectively,
the second intersections of the circumcircles of 4A1OB1 and 4C1OD1 and the
circumcircles of 4A1OD1 and 4B1OC1. Prove that the points M,N,P,Q lie on
a circle.

OC467. Let p > 2 be a prime number and let x, y ∈
{

1, 2, . . . , p−12
}

. Prove
that if x (p− x) y (p− y) is a perfect square, then x = y.

OC468. Let ABCD be a cyclic quadrilateral. The point P is chosen on
the line AB such that the circle passing through C,D and P touches the line
AB. Similarly, the point Q is chosen on the line CD such that the circle passing
through A,B and Q touches the line CD. Prove that the distance between P and
the line CD equals the distance between Q and the line AB.

OC469. Prove that for all nonnegative real numbers x, y, z satisfying x+ y+
z = 1 it holds

1 ≤ x

1− yz +
y

1− zx +
z

1− xy ≤
9

8
.

OC470. Prove that there is a natural number n having more than 2017
divisors d such that √

n ≤ d < 1.01
√
n.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 avril 2020.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

OC466. Les diagonales AC et BD du quadrilatère convexe ABCD inter-
sectent en O. Les points A1, B1, C1, D1 se trouvent sur les segments AO, BO,
CO, DO, respectivement, de façon à ce que AA1 = CC1 et BB1 = DD1. Soient
M et N les deuxièmes points d’intersection des cercles circonscrits de 4AOB
et 4COD, puis des cercles circonscrits de 4AOD et 4BOC, respectivement.
Aussi, soient P et Q les deuxièmes points d’intersection des cercles circonscrits
de 4A1OB1 et 4C1OD1, puis des cercles circonscrits de 4A1OD1 et 4B1OC1,
respectivement. Démontrer que M , N , P et Q se trouvent sur un même cercle.

OC467. Soit p > 2 un nombre premier et soient x, y ∈
{

1, 2, . . . , p−12
}

.
Démontrer que si x (p− x) y (p− y) est un carré parfait, alors x = y.

OC468. Soit ABCD un quadrilatère cyclique. Le point P est choisi sur la
ligne AB de façon à ce que le cercle passant par C, D et P touche la ligne AB.
De façon similaire, le point Q est choisi sur la ligne CD de façon à ce que le cercle
passant par A, B et Q touche la ligne CD. Démontrer que la distance entre P et
la ligne CD égale la distance entre Q et la ligne AB.

OC469. Démontrer que pour tous nombres réels non négatifs x, y, z tels que
x+ y + z = 1, l’inégalité suivante tient:

1 ≤ x

1− yz +
y

1− zx +
z

1− xy ≤
9

8
.

OC470. Démontrer qu’il existe un nombre naturel n ayant plus que 2017
diviseurs d tels que √

n ≤ d < 1.01
√
n.

Crux Mathematicorum, Vol. 46(2), February 2020
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2019: 45(7), p. 395–396.

OC441. Let f : [0,∞)→ (0,∞) be a continuous function.

(a) Prove that there exists a natural number n0 such that for any natural number
n > n0 there exists a unique real number xn > 0 for which

n

∫ xn

0

f(t) dt = 1;

(b) Prove that the sequence (nxn)n≥1 is convergent and find its limit.

Originally Romania MO, 1st Problem, Grade 12, Final Round 2017.

We received 4 submissions. We present the solution by Ivko Dimitrić.

(a) The function F (x) =
∫ x
0
f(t) dt is the antiderivative of f that satisfies F (0) = 0

and F ′(x) = f(x) > 0. Thus, F is increasing and hence one-to-one.

Let S = supx≥0 F (x). Then S is a positive number or ∞. If S =∞, take n0 = 1.
Otherwise, let n0 be the first positive integer for which n0S ≥ 1. In any case, we
will have 1/n0 ≤ S. Then, for any integer n > n0 we obtain

F (0) = 0 <
1

n
<

1

n0
≤ S.

Since F is differentiable and hence continuous, by the Intermediate Value Theorem,
F takes all values between 0 and S and since F is, moreover, one-to-one, there
exists a unique number xn ∈ (0,∞) such that

F (xn) =
1

n
, i. e. n

∫ xn

0

f(t) dt = 1.

(b) Since F is increasing and

F (xn) =
1

n
>

1

n+ 1
= F (xn+1),

it follows that xn > xn+1. So, the sequence (xn)n>n0
is decreasing and being

bounded by 0 from below, it must be convergent. Let L = limn→∞ xn. By conti-
nuity of F we have then

F (L) = F ( lim
n→∞

xn) = lim
n→∞

F (xn) = lim
n→∞

1

n
= 0 = F (0),
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implying L = 0, since F is also one-to-one. By the Mean Value Theorem for the
integrals, there exist a number cn, 0 < cn < xn such that

1

xn − 0

∫ xn

0

f(t) dt = f(cn) ⇐⇒ 1

n
= F (xn) = xnf(cn),

so that

nxn =
1

f(cn)
.

Since 0 < cn < xn and limn→∞ xn = 0, by the Squeeze Theorem we have that
limn→∞ cn = 0. Consequently, for n > n0

lim
n→∞

(nxn) =
1

limn→∞ f(cn)
=

1

f(limn→∞ cn)
=

1

f(0)

by continuity of f, which shows that the sequence (nxn)n>n0 is convergent with
the limit of 1/f(0), and the same conclusion holds for the sequence (nxn)n≥1,
regardless of the choice of few initial terms xn when n ≤ n0.

OC442. Let H = {1, 2, . . . , n}. Are there two disjoint subsets A and B such
that A∪B = H and such that the sum of the elements in A is equal to the product
of the elements in B if (a) n = 2016? (b) n = 2017?

Originally Hungary MO, 1st Problem, 2nd Category, Final Round 2017.

We received 3 submissions. We present the solution by Nicholas Fleece, who gen-
eralized the problem.

Rather than simply searching for a solution to these two problems, we wish to
search for a method that will solve this problem for all n. We can begin this by
looking at subsets for smaller n’s. The first thing we note is that for n = 3 we
have the solution:

A = {1, 2}, B = {3}

We find no such solution for n = 4, but starting at n = 5 we begin to see a pattern.
Note the following table, where in each row, the bold numbers are elements of B,
and the rest are in A.

1 2 3 4 5

1 2 3 4 5 6

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11

It is by viewing this pattern that we can arrive at the following solution.
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Let Hn = {1, 2, ..., n}. Define

Bn = {1, n+ n(mod2)

2
− 1, n− n(mod2)} and An = Hn \Bn.

Clearly, An ∩Bn = ∅ and An ∪Bn = Hn. It then remains to be shown that:∏
b∈Bn

b =
∑
a∈An

a. (1)

First, note the following: ∑
h∈Hn

h =
n∑
i=1

i =
n(n+ 1)

2
. (2)

In order to show that this solution holds ∀n ≥ 5, we will break this up into two
cases: one for even n, and one for odd n.

Case 1: n is odd. In this case, Bn = {1, n−12 , n− 1}.
In order to prove (1) holds ∀n ≥ 5 where n is odd, we must first show that (1)
holds in the base case of n = 5. In this case we have A5 = {3, 5} and B5 = {1, 2, 4}
and

(1)(2)(4) = 3 + 5.

So (1) holds for n = 5. Now, inductively assume (1) holds for n.

Then we have: ∏
b∈Bn

b =
∑
a∈An

a.

From (2) we arrive at:

(1)

Å
n− 1

2

ã
(n− 1) =

n(n+ 1)

2
− n− 1

2
− (n− 1)− 1

n2 − 2n+ 1

2
=
n2 + 1

2
− n

n2 − 2n+ 1

2
+ 2n =

n2 + 1

2
− n+ 2n

(1)

Å
n+ 1

2

ã
(n+ 1) =

n2 + 2n+ 1

2

(1)

Å
n+ 1

2

ã
(n+ 1) =

(n+ 2)(n+ 3)− 3n− 5

2

(1)

Å
n+ 1

2

ã
(n+ 1) =

(n+ 2)(n+ 3)

2
− n+ 1

2
− (n+ 1)− 1∏

b∈Bn+2

b =
∑

a∈An+2

a.

Thus, (1) is true ∀n ≥ 5, where n is odd.
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Case 2: n is even. In this case, Bn = {1, n−22 , n}.

Similarly, to prove (1) holds ∀n ≥ 6 where n is even, we must first show that
(1) holds in the base case of n = 6. In this case we have A6 = {3, 4, 5} and
B6 = {1, 2, 6} and

(1)(2)(6) = 3 + 4 + 5.

So (1) holds for n = 6. Again, inductively assume (1) holds for n.

Then we have: ∏
b∈Bn

b =
∑
a∈An

a.

From (2) we arrive at:

(1)

Å
n− 2

2

ã
n =

n(n+ 1)

2
− n− 2

2
− n− 1

n2 − 2n

2
=
n(n+ 1)

2
− n− 2

2
− n− 1

n2 − 2n

2
+ 2n =

n(n+ 1)

2
− n− 2

2
− n− 1 + 2n

(1)
(n

2

)
(n+ 2) =

n(n+ 2)

2

(1)
(n

2

)
(n+ 2) =

(n+ 2)(n+ 3)− 3(n+ 2)

2

(1)
(n

2

)
(n+ 2) =

(n+ 2)(n+ 3)

2
− n

2
− (n+ 2)− 1∏

b∈Bn+2

b =
∑

a∈An+2

a.

Thus, (1) is true ∀n ≥ 6, where n is even.

Combining these two cases, we have that (1) is true ∀n ≥ 5.

We then have the following solutions:

(a) B2016 = {1, 1007, 2016}, which is verified by:

(1)(1007)(2016) =
(2016)(2017)

2
− 2016− 1007− 1

2030112 = 2030112∏
b∈B2016

b =
∑

a∈A2016

a.
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(b) B2017 = {1, 1008, 2016}, which is verified by:

(1)(1008)(2016) =
(2017)(2018)

2
− 2016− 1008− 1

2032128 = 2032128∏
b∈B2017

b =
∑

a∈A2017

a.

OC443. In a triangle ABC, the foot of the altitude drawn from A is T and
the angle bisector of ∠B intersects side AC at D. If ∠BDA = 45◦, find ∠DTC.

Originally Hungary MO, 2nd Problem, 2nd Category, Final Round 2017.

We received 9 submissions. We present 2 solutions.

Solution 1, by Miguel Amengual Covas.

In the accompanying figure, the segments AT (extended) and BC intersect the
circumcircle of 4ABD at U and V respectively. Quadrilateral ABUD is cyclic,
and on chord AB we have

∠BUT = ∠BUA = ∠BDA = 45◦

in right-triangle BTU , implying

arc BA = arc UV (= 2× 45◦ = 90◦) . (3)

B
C

A

D

U

V

M

T45◦ 45◦

45◦

∗
∗

45◦
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Since BD bisects ∠B, D bisects arc AV , that is,

arc AD = arc DV. (4)

Adding (1) and (2) yields

arc BD = arc DU

and hence

BD = DU.

Therefore 4BDU is isosceles and triangles BDT and UDT are congruent (s-s-s)
with ∠BDT = ∠TDU . Being DT the internal bisector of angle D in isosceles
triangle BDU , DT is actually the perpendicular bisector of BU i.e.,

DT ⊥ BU. (5)

Now, if M is the midpoint of the basis BU in isosceles right-angled triangle BTU ,
we have

TM ⊥ BU. (6)

From (3) and (4) we conclude that points D, T , M are collinear. Hence ∠BTM
and ∠DTV are vertically opposite angles, and so

∠DTC = ∠DTV = ∠BTM = 45◦.

Solution 2, by Oliver Geupel.

We prove that ∠DTC = 45◦. Suppose that the lines AT and BD meet at point
E. Checking the sums of angles in triangles ABT , BTE, AED, and ATC, we
successively find:

∠BAT = 90◦ − ∠B, ∠DEA = ∠BET = 90◦ − ∠B/2, ∠TAC = 45◦ + ∠B/2,

∠A = ∠BAT + ∠TAC = 135◦ − ∠B/2, ∠C = 45◦ − ∠B/2.
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Applying the angle bisector theorem and the law of sines, we deduce

CD

AD
=
BC

AB
=

sin∠A
sin∠C

=
sin(135◦ − ∠B/2)

sin(45◦ − ∠B/2

=
cos(45◦ − ∠B/2)

sin(45◦ − ∠B/2)

= cot∠C

=
CT

TA
.

Thus, in triangle ATC, point D divides CA in the ratio CT : TA. By the converse
of the angle bisector theorem, TD bisects the right angle ∠CTA.

OC444. We have n2 empty boxes, each with a square bottom. The height
and the width of each box are natural numbers in the set {1, 2, . . . , n}. Each box
differs from any other box in at least one of these two dimensions. We are allowed
to insert a box into another if each dimension of the first box is smaller than the
corresponding dimension of the second box and at least one of the dimensions is
at least 2 units less than the corresponding larger box dimension. In this way, we
can create a sequence of boxes inserted into each other in the same orientation
(i.e. the first box is inside the second, the second box is inside the third, etc.). We
store each sequence of boxes on a shelf with each shelf holding one set of nested
boxes. Determine the smallest number of shelves needed to store all the n2 boxes.

Originally Czech-Slovakia MO, 2nd Problem, Category A, Local Round, 2017.

We received no solutions to this problem.

OC445. There are 100 diamonds in a pile, of which 50 are genuine and 50
are fake. We invited a distinguished expert, who can recognize which diamonds
are genuine. Each time we show him three diamonds, he chooses two of them
and (truthfully) tells whether they are both genuine, one genuine or none genuine.
Establish if we can guarantee to spot all the genuine diamonds no matter how the
expert chooses the judged pair.

Originally Czech-Slovakia MO, 1st Problem, Final Round 2017.

We received one incomplete solution to this problem.
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Applications of the Riemann
integral to find limits

Robert Bosch
Sometimes the terms of a sequence can be recognized as successive
Riemann sums for a function, and this can prove helpful for finding
the limit of the sequence.

1 The Riemann Integral

The Riemann integral is defined as the limit of a sequence of sums:∫ b

a

f(x)dx = lim
||P||→0

n∑
k=1

(xk − xk−1)f(ξk),

where ||P|| is the norm of the partition P and xk−1 ≤ ξk ≤ xk. The sums are
called Riemann sums.

It was introduced by Georg Friedrich Bernhard Riemann (1826 − 1866) in the
paper Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe
(On the representability of a function by a trigonometric series.) This paper was
submitted to the University of Göttingen in 1854 as Riemann’s Habilitationsschrift
(qualification to become an instructor.) It was published in 1868 in Abhandlungen
der Königlichen Gesellschaft der Wissenschaften zu Göttingen (Proceedings of the
Royal Philosophical Society at Göttingen,) vol. 13, pages 87−132. For Riemann’s
definition of his integral, see section 4, “Über den Begriff eines bestimmten Integrals
und den Umfang seiner Gültigkeit” (“On the concept of a definite integral and the
extent of its validity,”) pages 101− 103.

A partition P of an interval [a, b] is a finite sequence of numbers of the form

a = x0 < x1 < x2 < · · · < xn = b;

each [xk−1, xk] is called a sub-interval of the partition. The mesh or norm of a
partition is defined to be the length of the longest sub-interval, that is,

||P|| = max {xk − xk−1 : k = 1, 2, ..., n} ,
and f is Riemann integrable in [a, b] when there exists a real number I such that,
for every positive real number ε there is a positive real number δ such that if
||P|| < δ, then for any Riemann sum S(P, f) we have |S(P, f)− I| < ε. In
this article we are assuming all the functions f are continuous on [a, b], so are
integrable.

While the definition of a Riemann sum allows for unevenly spaced xk and odd
choices of ξk, but as by definition the integral is independent of these choices, it
is most usual to consider uniformly spaced xk and ξk = xk.
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2 Problems

The first and second problems are from [1]. Our solutions to both are different
from the solutions in the book.

Problem 1. Evaluate

lim
n→∞

n∑
k=1

n

4n2 + k2
.

Solution. To solve this problem the suitable partition P, the function f and
intermediate points ξk are

P =

ß
0 <

1

n
<

2

n
< · · · < n− 1

n
< 1

™
,

f(x) =
1

4 + x2
,

ξk =
k

n
.

From xk =
k

n
, we get

xk − xk−1 =
k

n
− k − 1

n
=

1

n
.

Clearly ||P|| = 1
n → 0 when n→∞. Then

lim
n→∞

n∑
k=1

n

4n2 + k2
= lim
n→∞

n∑
k=1

1

n
· 1

4 +
(
k
n

)2 = lim
n→∞

n∑
k=1

(xk − xk−1) f

Å
k

n

ã
,

= lim
n→∞

n∑
k=1

(xk − xk−1) f (ξk) = lim
||P||→0

n∑
k=1

(xk − xk−1) f (ξk) ,

=

∫ 1

0

1

4 + x2
dx =

1

4

∫ 1

0

1

1 +
(
x
2

)2 dx =
1

2
arctan

(x
2

)
|10=

1

2
arctan

Å
1

2

ã
.

Problem 2. Evaluate

lim
n→∞

n∑
k=1

arctan

Å
n

n2 + k2

ã
.

Solution. We start with the following Lemma.

Lemma: x− x3

3
< arctanx < x for x > 0.

Proof. The right side is equivalent to the well known inequality tanx > x for
x > 0. To prove the left side we consider the function

f(x) = 3 arctanx+ x3 − 3x,
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we will show f(x) is positive for positive x. Since f(0) = 0, it is enough to prove
that f(x) is increasing on (0,+∞). The first derivative of f(x) is

f ′(x) =
3

x2 + 1
+ 3x2 − 3.

Thus f ′(x) > 0 if and only if x4 > 0.

By the Lemma,

n

n2 + k2
− 1

3

Å
n

n2 + k2

ã3
< arctan

Å
n

n2 + k2

ã
<

n

n2 + k2
.

Now we are ready to consider the summation from k = 1 to n, and later the limit
when n goes to infinity, with the intention to get the initial limit proposed in
Problem 2.

As with the previous problem, one will easily show

lim
n→∞

n∑
k=1

n

n2 + k2
=

∫ 1

0

1

1 + x2
dx =

π

4
.

On the other hand, we have

n∑
k=1

Å
n

n2 + k2

ã3
<

n∑
k=1

( n
n2

)3
=

n∑
k=1

1

n3
=

1

n2
,

and thus

lim
n→∞

n∑
k=1

Å
n

n2 + k2

ã3
= 0,

by the Squeeze Theorem. Another application of the Squeeze Theorem implies
that

lim
n→∞

n∑
k=1

arctan

Å
n

n2 + k2

ã
=
π

4
.

Now, we will see two problems from The Putnam competition.

Problem 3. [A3, 1961] Evaluate

lim
n→∞

n2∑
k=1

n

n2 + k2
.

Solution. [2] We write the sum in the form

Sn =
1

n

n2∑
k=1

1

1 +
(
k
n

)2 .
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Since ∫ (k2+1)/n

k/n

1

1 + x2
dx <

1

n
· 1

1 +
(
k
n

)2 < ∫ k2/n

(k−1)/n

1

1 + x2
dx,

we get ∫ (n2+1)/n

1/n

1

1 + x2
dx < Sn <

∫ n

0

1

1 + x2
dx.

Now ∫ n

0

1

1 + x2
dx = arctann, lim

n→∞
arctann =

π

2
,

∫ n+1/n

1/n

1

1 + x2
dx = arctan

Å
n+

1

n

ã
− arctan

Å
1

n

ã
→ π

2
.

So

lim
n→∞

Sn =
π

2
.

Problem 4. [B5, 2004] Evaluate

lim
x→1−

∞∏
n=0

Å
1 + xn+1

1 + xn

ãxn

.

Solution. [Greg Price, via Tony Zhang and Anders Kaseorg: from Kiran Kedlaya’s
Putnam archives]. By taking logarithms, we see that the desired limit is eL, where

L = lim
x→1−

∞∑
n=0

xn
(
ln(1 + xn+1)− ln(1 + xn)

)
.

Put tn(x) = ln(1 + xn); we can then write xn = exp(tn(x))− 1, and

L = lim
x→1−

∞∑
n=0

(tn(x)− tn+1(x))(1− exp(tn(x))).

The expression on the right is a Riemann sum approximating the integral∫ ln 2

0

(1− et)dt,

over the subdivision of [0, ln 2) given by the tn(x). As x → 1−, the maximum
difference between consecutive tn(x) tends to 0, so the Riemann sum tends to the
value of the integral. Hence

L =

∫ ln 2

0

(1− et)dt = ln 2− 1 .
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Problem 5. [4] Denote by Gn the geometric mean of the binomial coefficientsÇ
n

0

å
,

Ç
n

1

å
, ...,

Ç
n

n

å
.

Prove that
lim
n→∞

Gn =
√
e.

Solution. [5]Ç
n

0

åÇ
n

1

å
· · ·
Ç
n

n

å
=

n∏
k=0

n!

k!(n− k)!
=

(n!)n+1

(1!2! · · ·n!)2

=
n∏
k=1

(n+ 1− k)n+1−2k =
n∏
k=1

Å
n+ 1− k
n+ 1

ãn+1−2k
.

The last equality would hold for any constant denominator a because

n∑
k=1

(n+ 1− 2k) = 0,

whence the denominator is just a0 = 1. Therefore,

Gn = n+1

√Ç
n

0

åÇ
n

1

å
· · ·
Ç
n

n

å
=

n∏
k=1

Å
1− k

n+ 1

ã1− 2k
n+1

.

Taking the natural logarithm, we obtain

1

n
lnGn =

1

n

n∑
k=1

Å
1− 2k

n+ 1

ã
ln

Å
1− k

n+ 1

ã
.

This is just a Riemann sum for the function f(x) = (1 − 2x) ln(1 − x) over the
interval [0, 1]. Passing to the limit, we obtain

lim
n→∞

1

n
lnGn =

∫ 1

0

(1− 2x) ln(1− x)dx.

We split the integral and compute it by parts as follows:∫ 1

0

(1− 2x) ln(1− x)dx

= 2

∫ 1

0

(1− x) ln(1− x)dx−
∫ 1

0

ln(1− x)dx

= −(1− x)2 ln(1− x) |10 −2

∫ 1

0

(1− x)2

2
· 1

1− xdx+ (1− x) ln(1− x) |10 +x |10

= −
∫ 1

0

(1− x)dx+ 1 =
1

2
.
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Exponentiating back, we obtain

lim
n→∞

Gn =
√
e.

Cezar Lupu proposed problem U131, to the journal Mathematical Reflections,
Volume 4, 2009:

Problem U131. Prove that

lim
n→∞

n∑
k=1

arctan
(
k
n

)
n+ k

· ϕ(k)

k
=

3 ln 2

4π
,

where ϕ denotes Euler’s totient function.

In [7], the reader can find a solution to problem U131, and to some other ones
that are similar.

3 Problems for Independent Study

After several problems with solutions, we provide the following list of problems
for the reader to attempt. The requirement to find the limit as n → ∞ of sums
indexed from 1 to n may be taken as a hint to interpret the limit as a Riemann
integral, as in Problem 1. Once an appropriate function is identified, the integral
will give the limit.

In many analysis courses, where the approach is not problem-based, this method
is not shown (except perhaps for the well-known Problem 6.) We hope that this
article will demonstrate its utility for problem-solving.

Problem 6. Show that

lim
n→∞

Å
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

ã
= ln 2.

Problem 7. Evaluate

lim
n→∞

n
√
e+

n
√
e2 + · · ·+ n

√
en

n
.

Problem 8. Evaluate

lim
n→∞

Å
1√

4n2 − 12
+

1√
4n2 − 22

+ · · ·+ 1√
4n2 − n2

ã
.

Problem 9. Evaluate

lim
n→∞

Ç
n
√

2

n+ 1
+

n
√

22

n+ 1/2
+ · · ·+

n
√

2n

n+ 1/n

å
.
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Problem 10. [adapted from [3]] For positive real λ evaluate

lim
n→∞

n∑
k=1

1√
n2 + kn+ λ

.

Problem 11. Evaluate

lim
n→∞

n∑
k=1

sin
(
kπ
n

)
√
n2 + k

.

Problem 12. [6] Prove that

lim
n→∞

n∑
k=1

arctan
(
k
n

)
n+ k

· ϕ(k)

k
=

3 ln 2

4π
,

where ϕ denotes Euler’s totient function. (A solution appears in [7].)
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by April 15, 2020.

4511. Proposed by Robert Frontczak.

Evaluate the following sum in closed form:

∞∑
n=1

Å
1

8n− 7
− 1

8n− 1

ã
.

4512. Proposed by J. Chris Fisher.

For any point E on the side BC of the square ABCD let E′ be chosen on side
CD so that DE′ = CE, and let the lines AE and AE′ intersect the diagonal BD
in points P and Q, respectively. If R is either point whose distance from P equals
PB and from Q equals QD, then prove that ∠QRP = 60◦.

Comment from the proposer: this problem was shown to me 15 years ago; I do not
know its source.

4513. Proposed by H. A. ShahAli.

Let

an =
n∏
k=1

2k

2k − 1

for each natural n. Prove that the number A(m) of n’s for which banc = m is
non-zero and strictly increasing for any integer m ≥ 2.
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4514. Proposed by Leonard Giugiuc.

Let a, b and c be real numbers all greater than or equal to 1
2 such that a+b+c = 3.

Prove that
a2

b+ 1
+

b2

c+ 1
+

c2

a+ 1
≥ a

b+ 1
+

b

c+ 1
+

c

a+ 1
.

4515. Proposed by George Apostolopoulos.

Let a, b, c be positive real numbers. Prove that

(2a+ b)

…
a

b
+ (2b+ c)

…
b

c
+ (2c+ a)

…
c

a

a+ b+ c
≥ 3.

4516. Proposed by Hung Nguyen Viet.

Find the values of:

(a) (1− cot 1◦)(1− cot 2◦)(1− cot 3◦) · · · (1− cot 44◦),

(b)
1

1 + cot 1◦
+

1

1 + cot 2◦
+

1

1 + cot 3◦
+ · · ·+ 1

1 + cot 89◦
.

4517. Proposed by Robert Frontczak.

Let Fn denote the n-th Fibonacci number defined by Fn+1 = Fn + Fn−1, F0 = 0,

F1 = 1. Further, let Tn denote the n-th triangular number, that is Tn =
n(n+ 1)

2
.

Show that
∞∑
n=0

Tn ·
Fn

2n+2
= F7.

4518. Proposed by Miguel Ochoa Sanchez and Leonard Giugiuc.

If O is the circumcenter of a triangle ABC and D is any point on the line AB, let
O1 and O2 be the respective circumcenters of triangles ADC and DBC. Prove
that the orthocenter of triangle O1DO2 lies on the line through O that is parallel
to AB.

4519. Proposed by Leonard Giugiuc.

Let ABCD be a non-degenerate convex quadrilateral. If

AB2 + CD2 + 2AD ·BC = AC2 +BD2,

prove that AD is parallel to BC.
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4520. Proposed by Arsalan Wares.

The figure shows a square with a quarter circle, a semicircle and a circle inside
it. The length of the square is the same as the length of the radius of the quarter
circle which in turn is the same as the length of the diameter of the semicircle.
The circle touches both the quarter circular arc (internally) and the semicircular
arc (externally), and one of the sides of the square as shown. If the length of the
square is 25, find the exact length of the radius of the circle.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposś dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 avril 2020.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à
l’Université de Saint-Boniface, d’avoir traduit les problèmes.

4511. Proposée par Robert Frontczak.

Évaluer la somme suivante en forme close:

∞∑
n=1

Å
1

8n− 7
− 1

8n− 1

ã
.

4512. Proposée par J. Chris Fisher.

Pour un quelconque point E sur le côté BC du carré ABCD, soit E′ choisi sur
le côté CD de façon à ce que DE′ = CE, les lignes AE et AE′ intersectant la
diagonale BD en P et Q, respectivement. Si R est un des deux points dont la
distance à P égale PB et la distance à Q égale QD, démontrer que ∠QRP = 60◦.

Commentaire du proposeur : on m’a montré ce problème il y a 15 ans ; je ne
connais pas son auteur.

4513. Proposée par H. A. ShahAli.

Soit

an =
n∏
k=1

2k

2k − 1

pour tout nombre naturel n. Démontrer que le nombre A(m) de n’s tels que
banc = m est non nul et strictement croissant pour les entiers m ≥ 2.
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4514. Proposée par Leonard Giugiuc.

Soient a, b et c des nombres réels tels que a, b, c ≥ 1
2 et a+ b+ c = 3. Démontrer

que
a2

b+ 1
+

b2

c+ 1
+

c2

a+ 1
≥ a

b+ 1
+

b

c+ 1
+

c

a+ 1
.

4515. Proposée par George Apostolopoulos.

Soient a, b et c des nombres réels positifs. Démontrer que

(2a+ b)

…
a

b
+ (2b+ c)

…
b

c
+ (2c+ a)

…
c

a

a+ b+ c
≥ 3.

4516. Proposée par Hung Nguyen Viet.

Déterminer les valeurs de:

(a) (1− cot 1◦)(1− cot 2◦)(1− cot 3◦) · · · (1− cot 44◦),

(b)
1

1 + cot 1◦
+

1

1 + cot 2◦
+

1

1 + cot 3◦
+ · · ·+ 1

1 + cot 89◦
.

4517. Proposée par Robert Frontczak.

Soit Fn le nième nombre de Fibonacci selon Fn+1 = Fn+Fn−1, F0 = 0, F1 = 1. De

plus, soit Tn le nième nombre triangulaire, c’est-à-dire Tn =
n(n+ 1)

2
. Démontrer

que
∞∑
n=0

Tn ·
Fn

2n+2
= F7.

4518. Proposée par Miguel Ochoa Sanchez and Leonard Giugiuc.

Si O est le centre du cercle circonscrit du triangle ABC et D est un quelconque
point sur la ligne AB, soient O1 et O2 les centres des cercles circonscrits des
triangles ADC et DBC, respectivement. Démontrer que l’orthocentre du triangle
O1DO2 se situe sur la ligne passant par O et parallèle à AB.

4519. Proposée par Leonard Giugiuc.

Soit ABCD un quadrilatère convexe non dégénéré. Si

AB2 + CD2 + 2AD ·BC = AC2 +BD2,

démontrer que AD est parallèle à BC.
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4520. Proposée par Arsalan Wares.

La figure montre un carré, un quart de cercle, un demi cercle et un cercle dans son
intérieur. Noter que la longueur du côté du cercle est la même que le rayon du
quart de cercle et le diamètre du demi cercle. Le cercle touche le quart de cercle à
son interne, le demi cercle à son externe et un des côtés du carré, tel qu’indiqué.
Si le carré est de côté 25, déterminer le rayon du cercle.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2019: 45(7), p. 413–416.

4461. Proposed by Marian Dinca, Leonard Giugiuc and Daniel Sitaru.

Let u, v and w be distinct complex numbers such that
w − u
v − u is not a real number.

Consider a complex number z = αu+βv+γw, where α, β, γ > 0 are real numbers
such that α+ β + γ = 1. Prove that

(|z − v|+ |w − u|)2 + (|z − w|+ |u− v|)2 > (|z − u|+ |v − w|)2.

We received 5 correct solutions. We present two of them.

Solution 1, by C.R. Pranesachar.

Let A,B,C, P be the points in the complex plane that correspond to u, v, w, z
respectively. The conditions entail that the triangle ABC is nondegenerate and P
is inside or on the triangle. It is required to show that

(BP + CA)2 + (CP +AB)2 > (AP +BC)2.

A

B C

P

K L

Determine points K and L such that APBK and APCL are parallelograms. Then

BP + CA = KA+AC > KC

and
CP +AB = LA+BA > BL.

Since KB, AP and LC are all equal and parallel, KLCB is a parallelogram. Hence

KC2 +BL2 = 2(BK2 +KL2) = 2(AP 2 +BC2) = (AP +BC)2 + (AP −BC)2.

Therefore

(BP + CA)2 + (CP +AB)2 > KC2 +BL2 ≥ (AP +BC)2.
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Solution 2, by Sorin Rubinescu.

Let A,B,C, P be as in the foregoing solution, and let Q be the reflection of P in
the side AB. Then ABQC is a convex quadrilateral to which we can apply the
respective quadrilateral theorems of Euler and Ptolemy:

BQ2 + CA2 + CQ2 +AB2 = AQ2 +BC2 + 4MN2

where M and N are the midpoints of BC and AQ, and

BQ · CA+ CQ ·AB ≥ AQ ·BC.

A

B C

P

Q

K L

(BP + CA)2 + (CP +AB)2

= (BP 2 + CA2 + CP 2 +AB2) + 2(BP · CA+ CP ·AB)

= (BQ2 + CA2 + CQ2 +AB2) + 2(BQ · CA+ CQ ·AB)

≥ AQ2 +BC2 + 2(AQ ·BC) ≥ AP 2 +BC2 + 2(AP ·BC)

= (AP +BC)2.

The second inequality is strict when P does not lie on BC. If P = Q, then the
first inequality is strict since M 6= N . The result follows.

4462. Proposed by George Apostolopoulos.

Let a, b, c be the lengths of the sides of triangle ABC with inradius r and circum-
radius R. Show that

a2

b+ c
+

b2

a+ c
+

c2

a+ b
≤ 3
√

6R

4r

»
R(R− r).

We received 11 submissions, all correct. We present the proof by Sorin Rubinescu.
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Let s denote the semiperimeter of triangle ABC. Then

2s

(∑
cyc

a

b+ c

)
=
a(a+ b+ c)

b+ c
+
b(a+ b+ c)

c+ a
+
c(a+ b+ c)

a+ b

= a+ b+ c+
∑
cyc

a2

b+ c

= 2s+
∑
cyc

a2

b+ c
.

Hence, ∑
cyc

a2

b+ c
= 2s

(∑
cyc

a

b+ c
− 1

)
. (1)

Next, we have ∑
cyc

a

b+ c
≤ 2− r

R
, (2)

which was problem #4212 in Crux, Vol. 43 (2), p. 69. [Ed.: A solution was
published on p. 74 of Crux, Vol. 44 (2).]

From (1) and (2) we get∑
cyc

a2

b+ c
≤ 2s

(
1− r

R

)
=

2s

R
(R− r) . (3)

By Mitrinovic’s Inequality, we have

2s ≤ 3
√

3R. (4)

[Ed.: See item 5.3 on p. 49 of Geometric Inequalities by O. Bottema et al.]

From (3) and (4) we get ∑
cyc

a2

b+ c
≤ 3
√

3(R− r).

But

3
√

3(R− r) ≤ 3
√

6

4r
R
»
R(R− r)

⇐⇒ R− r ≤
√

2

4r
R
»
R(R− r)

⇐⇒ (R− r)2 ≤ 1

8r2
R3(R− r)

⇐⇒ R− r ≤ R3

8r2

⇐⇒ 8r2(R− r) ≤ R3. (5)
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Finally, by the AM-GM inequality and Euler’s inequality, 2r ≤ R, we have

8r2(R− r) = 8r · r(R− r) ≤ 8r

Å
r +R− r

2

ã2
= 2rR2 ≤ R3,

so (5) holds, completing the proof.

Editor’s comments. Most submitted solutions quoted various known results/inequalities,
especially the Gerretsen’s Inequality which states that s2 ≤ 4R2 + 3r2 + 4rR.

4463. Proposed by Max A. Alekseyev

For all integers n > m ≥ 0, prove that
n∑
k=0

(−1)k
Ç

2n+ 1

n− k

å
(2k + 1)2m+1 = 0.

We received 6 submissions, all of which were correct and complete. We present
the solution by C.R. Pranesachar.

Recall the following well-known identity. For any integers n, t such that n > t ≥ 0.
n∑
k=0

(−1)k
Ç
n

k

å
kt = 0.

This can be obtained by applying the differential operator d
dx

(
x d
dx

)t−1
on the

binomial identity

(1 + x)n =
n∑
k=0

Ç
n

k

å
xk,

and finally substituting x = −1. Notice that (1 +x) will be a factor in all terms of
the lefthand side, because t < n. A suitable linear combination of such identities
yields another identity

n∑
k=0

(−1)k
Ç
n

k

å
(a+ kd)t = 0, for n > t ≥ 0,

where a and d are fixed constants. We replace n by 2n + 1, t by 2m + 1, with
n > m ≥ 0, a by −(2n+ 1) and d by 2, to get

2n+1∑
k=0

(−1)k
Ç

2n+ 1

k

å
(−(2n+ 1) + 2k)

2m+1
= 0.

It is easy to see that among the 2n+ 2 terms in the above, the first (n+ 1) terms
are the same as the next (n+ 1) terms, in the reverse order. That is,

(−1)k
Ç

2n+ 1

k

å
(−(2n+ 1) + 2k)

2m+1

= (−1)2n+1−k
Ç

2n+ 1

2n+ 1− k

å
(−(2n+ 1) + 2(2n+ 1− k))

2m+1
,
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for 0 ≤ k ≤ n. Hence we have

2
2n+1∑
k=n+1

(−1)k
Ç

2n+ 1

k

å
(2(k − n− 1) + 1)

2m+1
= 0.

Dividing by 2 and adjusting the index of summation k 7→ k + n+ 1 we obtain

n∑
k=0

(−1)k+n+1

Ç
2n+ 1

k + n+ 1

å
(2k + 1)

2m+1
= 0.

Since
(

2n+1
k+n+1

)
=
(
2n+1
n−k

)
, we divide the above by (−1)n+1 and obtain the desired

identity.

4464. Proposed by Borislav Mirchev and Leonard Giugiuc.

Let ABC be a triangle with external angle bisectors k, l and m to angles A,B and
C, respectively. Projections of A on l and m are L and P , respectively. Similarly,
projections of B on m and k are N and K and projections of C on k and l are Q
and M . Show that the points M,N,P,Q,K and L are concyclic.

We received 13 submissions, of which 9 were complete and correct. The presented
solution is that of Cristóbal Sánchez-Rubio, completed by the editor.

Let BC = a, AC = b, AB = c and denote by s the semiperimeter of 4ABC. Let
A′, B′, C ′ be the midpoints of BC, CA and AB respectively.

We will show first that L, C ′, B′ and P are collinear and LP = s. Since LM is
the external angle bisector of ∠B we have ∠LBC ′ = 90◦ − ∠B

2 . LC ′ is a median
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in the right angled triangle 4ALB, so 4LC ′B is isosceles, giving us

LC ′ = C ′B =
c

2
and ∠LC ′B = 180◦ − 2∠LBC ′ = ∠B.

As a midline in 4ABC, C ′B′||BC, whence ∠AC ′B′ = ∠B, and so we note that
∠AC ′B′ = ∠LC ′B. We can thus conclude that ∠LC ′B and ∠AC ′B′ are opposite
angles; that is, L, C ′ and B′ are collinear. Similarly we show that B′P = B′C = b

2
and C ′, B′ and P are collinear. Hence, L, C ′, B′ and P are collinear. Finally,

LP = LC ′ + C ′B′ +B′P =
c

2
+
a

2
+
b

2
= s.

Let I ′ be the incentre of 4A′B′C ′ and r the inradius. We will show that L and
P are equidistant from I ′. Denote by X the point where the incircle of 4A′B′C ′
is tangent to the side B′C ′. The perimeter of 4A′B′C ′ is s and A′C ′ = b

2 ; thus

B′X = s
2 − b

2 , which means

XP = XB′ +B′P =

Å
s

2
− b

2

ã
+
b

2
=
s

2
.

In other words, X is the midpoint of LP . Since I ′X ⊥ LP we get

I ′L = I ′P =

…
r2 +

s2

4
.

Repeat the same steps with K, C ′, A′, N and then Q, B′, A′, M to conclude that
all the points M , N , P , Q, K and L lie on the circle with centre I ′ and radius»
r2 + s2

4 .

4465. Proposed by Nguyen Viet Hung.

Let ABC be a triangle with centroid G and medians ma,mb,mc. Rays AG,BG,CG
intersect the circumcircle at A1,B1,C1 respectively. Prove that

Area[A1B1C1]

Area[ABC]
=

(a2 + b2 + c2)3

(8mambmc)2
.

We received 10 submissions, all of which were correct, and feature the solution by
Sorin Rubinescu with references supplied by the editor.

Let a1, b1, c1 be the lengths of the sides of 4A1B1C1. Then,

[A1B1C1]

[ABC]
=
a1b1c1

4R
· 4R

abc
=
a1b1c1
abc

Because A,B1, A1, B are concylic, we have that 4GAB ∼ 4GB1A1, so that
A1B1

BA = GB1

GA and, therefore,

c1 = c · GB1

GA
= c · GB1 ·GB

GA ·GB = c · R
2 −OG2

GA ·GB ,
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where R2 − OG2 is the power of G with respect to the common circumcircle of
triangles ABC and A1B1C1.

Analogously, a1 = a · R2−OG2

GB·GC and b1 = b · R2−OG2

GC·GA .

Thus,
[A1B1C1]

[ABC]
=

(R2 −OG2)3

(GA ·GB ·GC)2

According to references dealing with the Euler line (for example, Nathan Altshiller
Court’s College Geometry, Corollary 110 on page 71), we have that

R2 −OG2 =
1

3
(GA2 +GB2 +GC2)

=
1

3

ñÅ
2

3
ma

ã2
+

Å
2

3
mb

ã2
+

Å
2

3
mc

ã2ô
=

4

27

(
m2
a +m2

b +m2
c

)
.

However, m2
a +m2

b +m2
c = 3

4 (a2 + b2 + c2) (by the same reference, Theorem 106,
page 70).

Hence, R2 −OG2 = a2+b2+c2

9 .

As a result,

[A1B1C1]

[ABC]
=

1
93 (a2 + b2 + c2)3

1
272 (8mambmc)2

=
(a2 + b2 + c2)3

(8mambmc)2
.

4466. Proposed by Arsalan Wares.

Let A be a regular hexagon with vertices Ak, k = 1, 2, . . . , 6. There are two
congruent overlapping squares inside A. Each of the squares shares one vertex
with A and two vertices of each square lie on opposite sides of hexagon A as in
the figure:

Find the exact area of the shaded region, if the length of each side of hexagon A
is 2.
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We received 22 submissions, out of which 20 were correct and complete. We present
the solution by Richard Hess.

The distance between A2 and A5 is 4. The diagonal length of the large squares
is the same as the distance between parallel sides of the hexagon, which equals
d = 2

√
3. For the shaded square, we obtain a diagonal length of

4− 2(4− d) = 4(
√

3− 1),

leading to an area of
1

2
(4(
√

3− 1))2 = 32− 16
√

3.

4467. Proposed by Paul Bracken.

Show that for x > 0,

arctanx · arctan
1

x
>

x

2(x2 + 1)
.

(Ed.: Take a look at the problem 4327.)

We received 22 submissions, all correct. Seven solvers proved a stronger inequality
using, instead of 1/2, values π2/8, (5π)2/63 or (π−1)/2. We present the solution
approach taken by several solvers.

We know that arctan(x) + arctan
(
1
x

)
= π

2 . Consider the function

f(x) = arctan(x) · arctan

Å
1

x

ã
− x

2(x2 + 1)

for x > 0. We need to show that f(x) > 0 for all x > 0.

Since f
(
1
x

)
= f(x), it suffices to show that f(x) > 0 for all x ∈ (0, 1].

We have

f ′(x) =
π

2(x2 + 1)
− 2 arctan(x)

x2 + 1
+

x2 − 1

2(x2 + 1)2
=

g(x)

x2 + 1
,

where g(x) =
π

2
− 2 arctan(x) +

x2 − 1

2(x2 + 1)
. Since

g′(x) = −x
2 − x+ 1

(x2 + 1)2
,

we have g′(x) < 0 for all x ∈ (0, 1] and g is decreasing on (0, 1].

Finally, since

g(0) =
π

2
− 1

2
> 0 and g(1) =

π

2
− 2

π

4
= 0,
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we get that g(x) > 0 for all x ∈ (0, 1), so f is strictly increasing on (0, 1] with
lim
x→0+

f(x) = 0. So we conclude that f(x) > 0 for all x ∈ (0, 1] and consequently

f(x) > 0 for all x > 0.

4468. Proposed by Florin Stanescu.

Let f : [0, 1] → R be a differentiable function such that f ′ is continuous and
f(0) + f ′(0) = f(1). Show that there exists c ∈ (0, 1) such that

c

2
f(c) =

∫ c

0

f(x)dx.

We received four submissions to the problem, out of which three correctly identified
that there was a mistake in the problem. We present the submission by Alexandru
Daniel P̂ırvuceanu.

Let a, b ∈ R∗ and consider the function f : [0, 1] → R, f(x) = ax + b. Then
f(0) = b, f ′(0) = a and f(1) = a + b, so f(0) + f ′(0) = f(1). Let’s assume that
there exists c ∈ (0, 1) with the required property. Then

ac2 + bc

2
=
ac2 + 2bc

2
⇐⇒ bc = 0,

which is impossible since both b and c are nonzero.

Editor’s Comment. It appears that the problem intended to ask for the existence
of c such that cf( c2 ) =

∫ c
0
f(x)dx. Please submit your solutions to the corrected

version directly to crux.eic@gmail.com

4469. Proposed by Leonard Giugiuc and Dan-Stefan Marinescu.

Let ABC be a triangle and let P be an interior point of ABC. Denote by Ra,
Rb, Rc the circumradii of the triangles PBC,PCA and PAB, respectively. Prove
that RaRbRc ≥ PA · PB · PC.

We received 10 submissions, all correct. We present the solution by Michel Bataille.

Let α = ∠BPC, β = ∠CPA, and γ = ∠APB, so α+ β + γ = 360◦.

Let α1 = ∠PBC and α2 = ∠PCB. Then α+α1+α2 = 180◦ so from the Extended
Law of Sines, we have

PB

sinα2
=

PC

sinα2
= 2Ra.

It follows that

PB · PC = 4R2
a sinα1 sinα2

= 2R2
a(cos(α1 − α2)− cos(180◦ − α))

= 2R2
a(cos(α1 − α2) + cosα),
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and hence,

PB · PC ≤ 2R2
a(1 + cosα) = 4R2

a cos2
α

2
.

Similarly, PC · PA ≤ 4R2
b cos2 β2 and PA · PB ≤ 4R2

c cos2 γ2 . Therefore,

PA2 · PB2 · PC2 ≤ 64R2
aR

2
bR

2
c cos2

α

2
cos2

β

2
cos2

γ

2
,

so

PA · PB · PC ≤ 8RaRbRc cos
α

2
cos

β

2
cos

γ

2
. (1)

Since α
2 + β

2 + γ
2 = 180◦, α2 ,

β
2 , and γ

2 are the interior angles of a triangle so by a
well-known inequality [Ed: Cf. e.g., item #2.23 on p. 25 of Geometric Inequalities
by O. Bottema et al] we have

cos
α

2
cos

β

2
cos

γ

2
≤ 1

8
. (2)

From (1) and (2), RaRbRc ≥ PA · PB · PC follows.

4470. Proposed by Leonard Giugiuc and Diana Trailescu.

Let a, b and c be three distinct complex numbers such that |a| = |b| = |c| = 1 and
|a+ b+ c| ≤ 1. Prove that |a2 + bc| ≥ |b+ c|.
There were 15 correct solutions. We feature 5 solutions.

Solution 1, by Oliver Geupel.

The circumcentre of the triangle with vertices at a, b, c in the complex plane is
at 0; the orthocentre of this triangle at a+ b+ c is contained in this circle, and so
the triangle has all angles acute.

Since the problem is symmetric in b and c, we may assume that a, b, c are in
counterclockwise order, so that b = ae2γi and a = ce2βi where β and γ are the
respective angles at B and C and 0 < β, γ ≤ (π/2). Then, since aā = bb̄ = cc̄ = 1,

|a2 + bc|2 − |b+ c|2 = (a2 + bc)

Å
1

a2
+

1

bc

ã
− (b+ c)

Å
1

b
+

1

c

ã
=

Å
a

b
− b

a

ã(a
c
− c

a

)
= −4 sin(−2γ) sin 2β

= 4 sin 2γ sin 2β.

Since 0 < 2β, 2γ ≤ π, then sin 2γ sin 2β ≥ 0 and the result follows.

Solution 2, by Marie-Nicole Gras and C.R. Pranesachar, independently.
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Let a = eiα, b = eiβ , and c = eiγ . Then

1 ≥ |a+ b+ c|
= (eiα + eiβ + eiγ)(e−iα + e−iβ + e−iγ)

= 3 + 2[cos(α− β) + cos(β − γ) + cos(γ − α)],

whence

0 ≥ 1 + cos(α− β) + cos(γ − β) + cos(γ − α)

= 1 + cos(α− β) + cos((α− β) + (γ − α)) + cos(γ − α)

= (1 + cos(α− β))(1 + cos(γ − α))− sin(α− β) sin(γ − α),

so that

sin(α− β) sin(γ − α) ≥ (1 + cos(α− β))(1 + cos(γ − α)) ≥ 0.

By similar manipulations,

|a2 + bc|2 = 2(1 + cos(2α− β − γ)) and |b+ c|2 = 2(1 + cos(β − γ)).

Therefore

|a2 + bc|2 − |b+ c|2 = 2[cos(2α− β − γ)− cos(γ − β)]

= 2[cos((α− β)− (γ − α))− cos((α− β) + (γ − α))]

= 4 sin(α− β) sin(γ − α) ≥ 0.

Editor’s comment. Prithwijit De and Florentin Visescu took a similar approach,
but made use of the fact that 1 + cos 2x+ cos 2y+ cos 2z = 4 cosx cos y cos z when
x+ y + z = 0.

Solution 3, by Missouri State University Problem Solving Group.

We may suppose that a = eiα, b = e−iβ and c = −eiβ where 0 ≤ β ≤ π/2. Then
|b+ c| = 2 sinβ and |a2 + bc| = |a2− b(−c)| = |a2−1| = |a−1||a+ 1|. Since |a−1|
and |a + 1| are the two legs of a right triangle with vertices at −1, a and 1, then
|a − 1||a + 1| = 2A, twice the area of the triangle. This triangle has base 2 and
height |Im(a)| = | sinα|. Thus

|a2 + bc| = |a− 1||a+ 1| = 2A = 2| sinα|.

Since a + b + c = cosα + i(sinα − 2 sinβ), the condition |a + b + c|2 ≤ 1 implies
that 1− 4 sinα sinβ + 4 sin2 β ≤ 1 or

sinβ(sinα− sinβ) ≥ 0.

If sinβ = 0, then the result holds trivially. If 0 < sinβ ≤ sinα, then the result
still holds.
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Solution 4, by Panagiotis Antonopoulos.

Inequality |a + b + c| ≤ 1 is equivalent to Re(bc̄) + Re(ab̄) + Re(cā) ≤ −1. Let
ab̄ = x+ yi and cā = u+ vi. Then bc̄ = (bā)(ac̄) = (xu− yv)− (xv + yu)i. Thus,
xu−yv+x+u ≤ −1, whence (x+1)(u+1) ≤ yv. Since |x| ≤ |ab̄| = 1 and |u| ≤ 1,
it follow that yv ≥ 0.

Now

|a2 + bc|2 − |b+ c|2 = 2(Re(a2b̄c̄− bc̄))
= 2(Re(ac̄(ab̄− āb)))
= 4yv ≥ 0,

yielding the desired result.

Solution 5, by the proposer.

Suppose that u = b/a and v = c/a. Then |u| = |v| = 1, and we have to prove that
|1 + uv| ≥ |u+ v| subject to |1 + u+ v| ≤ 1.

Suppose, first, that uv = −1. Then v = −ū. Then

|1 + u+ v|2 = (1 + (u− ū))(1− (u− ū)) = 1− (u− ū)2.

Since u − ū is a real multiple of i whose square is nonpositive, |1 + u + v| ≤ 1
implies that |u+ v|2 = (u− ū)2 = 0 and the result follows.

When uv 6= −1, the quantity (u + v)(1 + uv)−1 is well-defined and equal to its
complex conjugate. Hence

(1 + u+ v)− 1

1− (−uv)
=

u+ v

1 + uv

is real. Therefore 1, −uv and 1+u+v are collinear in the complex plane. However,
1 and −uv lie on the circumference of the unit circle while 1 + u+ v lies within it.
Hence |u+ v|, the distance between 1 + u+ v and 1, does not exceed |1 + uv|, the
distance between −uv and 1.
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