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474/ Editorial

EDITORIAL
This term I’ve been lucky to teach my favourite course – 4th year History of
Mathematics. As we near the end of the term, students have made themselves
comfortable with exploring the human, cultural and social sides of mathematics,
but back in September many of their experiences have been, as one student put
it, “disorienting”. The students, all math majors or minors, have been so focused
on learning the tools of the mathematical trade that they have forgotten to think
about the fact that math is a human endeavour, that it was developed by hu-
mans in their own time, with their own understanding, their own biases (against
other humans or particular mathematical concepts, such as negative or complex
numbers) and their often strong personalities.

In week 1, I presented students with the following few ancient problems and asked
them to use only the tools of the time to solve them:

1. How many cattle are in a herd if 2/3 of 1/3 of them make 70, the number
due as tribute to the owner? (Egypt: Rhind Papyrus (1650 BC))

2. I have a reed. I know not its dimension. I broke off from it 1 cubit and
walked 60 times along its length. I restored to it what I broke off, then
walked 30 times along its length. The area is 375 square cubits. What was
the original length of the reed? (Babylon: Clay Tablets (2000-1000 BC))

3. A tree is 20 feet tall and has a circumference of 3 feet. There is a vine that
winds seven equally spaced times around the tree and reaches the top. What
is the length of the vine? (China: Nine Chapters on the Mathematical Arts
(100 BC))

First of all, students found it hard to not use variables and modern algebraic
techniques (try it yourself). But what was more shocking is that they didn’t
realize that the sources listed were original sources! They thought I’d made these
problems up to be ‘in the spirit of’ what math could have been like in those days
and that I obviously overcomplicated it. Any time labelled BC seems so long ago
that surely math that ancient wasn’t so sophisticated...

This brings me to 47. This is the last issue of the Volume 47 and I did spot 47 as
one of my students was discussing Syrian Arab mathematician Thâbit ibn Qurra
and amicable numbers. I won’t ruin the surprise for you here: look it up, read
about number theory developments in and around 9th century AD, be amazed.
Then read this issue of Crux – how do we compare over 1000 years later?

Kseniya Garaschuk

Crux Mathematicorum, Vol. 47(10), December 2021
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MATHEMATTIC
No. 30

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by February 28, 2022.

MA146. Proposed by Alex Bloom.

Solve the following equation for real numbers x and y:

(x2 + 1)(y2 + 1)− 2(x+ 1)(y + 1) + 4 = 0.

MA147. Proposed by Didier Pinchon.

Let ABC be an acute triangle, D the midpoint of BC, I the center of the incircle
of triangle ABD, and E the intersection between the segment AD and the circle
of diameter BC. Prove that the points A,B,E and I are concyclic.

MA148. A large circle of radius 1 has centre at the point J and 4 small
circles (with diameters equal to the radius of the larger circle) are drawn inside of
it as shown below. Evaluate the area of the larger circle not inside any of the 4
small circles.

MA149. Calculate

52 + 3

52 − 1
+

72 + 3

72 − 1
+

92 + 3

92 − 1
+ · · ·+ 20212 + 3

20212 − 1
.

Copyright © Canadian Mathematical Society, 2021
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MA150. Let us call a point an integer point if both its coordinates are
integer numbers. For example, (1, 2) and (0, 5) are integer points, but (1, 3/2)
is not. What is the minimum number of integer points in the plane needed to
guarantee that there is always a pair amongst them with an integer midpoint?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problèmes dans cette section sont appropriés aux étudiants de l’école secondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 28 février 2022.

MA146. Proposeé par Alex Bloom.

Résoudre l’équation qui suit, où x et y sont des nombres réels:

(x2 + 1)(y2 + 1)− 2(x+ 1)(y + 1) + 4 = 0.

MA147. Proposeé par Didier Pinchon.

Soit ABC un triangle acutangle. Soient aussi D le point milieux de BC, I le centre
du cercle inscrit du triangle ABD, puis E le point d’intersection du segment AD et
du cercle de diamètre BC. Démontrer que les points A, B, E et I sont cocycliques.

MA148. Dans un grand cercle de centre J et de rayon 1, on trace 4 pe-
tits cercles de diamètres égaux au rayon du grand cercle, tel qu’indiqué ci-bas.
Déterminer la surface du grand cercle se trouvant à l’intérieur d’aucun des petits
cercles.

Crux Mathematicorum, Vol. 47(10), December 2021
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MA149. Déterminer

52 + 3

52 − 1
+

72 + 3

72 − 1
+

92 + 3

92 − 1
+ · · ·+ 20212 + 3

20212 − 1
.

MA150. Un point sera dit point entier si ses coordonnées sont des nombres
entiers. Par exemple, (1, 2) et (0, 5) sont des points entiers, mais (1, 3/2) ne l’est
pas. Déterminer le nombre minimum de points entiers requis pour assurer qu’il
y aura obligatoirement une paire de points dont le point milieux sera un point
entier.

Copyright © Canadian Mathematical Society, 2021
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2021: 47(5), p. 225–226.

MA121. If a+ b+ c = 0 and abc = 4, find a3 + b3 + c3.

Originally from the 21st W.J. Blundon Mathematics Contest (2004), problem 7.

We received 21 solutions, of which 18 were correct. We present two solutions, each
slightly modified by the editor.

Solution 1, by Alex Bloom.

We want to find a3 + b3 + c3, given a + b + c = 0 and abc = 4. It is a fairly
well-known factorization that

a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ac).

This claim can also be shown easily by multiplying out the right side. Therefore,

a3 + b3 + c3 − 3 · 4 = 0 · (a2 + b2 + c2 − ab− ac− bc) = 0,

so a3 + b3 + c3 = 12.

Solution 2, by Logan Luo.

Since a+ b+ c = 0, we find that a+ b = −c. By cubing both sides of this, we get

(a+ b)3 = −c3

a3 + 3ab(a+ b) + b3 = −c3

a3 + 3ab(−c) + b3 = −c3

a3 + b3 + c3 = 3abc = 3 · 4 = 12.

MA122. Four people Mr Baker, Ms Carpenter, Mr Driver, and Ms Plumber
are employed for four jobs as a baker, carpenter, driver, and plumber. None of
them has a name identifying their occupation. They make four statements:
1. Mr Baker says he is the plumber.
2. Mr Driver says he is the baker.
3. Ms Carpenter says she is not the plumber.
4. Ms Plumber says she is not the carpenter.

Exactly of the four statements are true. Who is the driver? (One of the
editors apologizes for spilling coffee on the page, but we are sure the question used
to have a unique answer!)

Adjusted version of original problem B4 from the 2012 BC Secondary School Math-
ematics Contest, Senior Final.

Crux Mathematicorum, Vol. 47(10), December 2021
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We received 4 submissions, of which 2 were mostly complete and correct. We
expand on the solutions by Richard Hess and Vishak Srikanth.

Note that Mr Driver, Ms Carpenter and Ms Plumber all claim to be either the
baker or the driver (Mr Driver of course cannot be the driver). Therefore if Mr
Baker is the driver, exactly one statement is true (that of the baker); if Mr Baker is
the carpenter, exactly two statements are true (those of the baker and the driver);
and if Mr Baker is the plumber, exactly three statements are true (those of the
plumber, the baker and the driver). So it is not possible that all or none of the
statements are correct.

Suppose exactly two statements are true, i.e. Mr Baker is the carpenter. Suppose
Mr Driver is the plumber, then either Mr Carpenter and Ms Plumber can be the
driver and we do not have a unique answer. Similarly we don’t get a unique answer
if exactly three statements are true (Mr Baker being the plumber) and Mr Driver
is the carpenter. Therefore the only possibility is that Mr Baker is the driver
and exactly one of the statements is true. A possible assignment could be Mr
Baker/driver, Ms Carpenter/baker, Mr Driver/plumber, Ms Plumber/carpenter.

MA123. A 12-sided polygon is inscribed in a circle of radius length l. What
is the largest possible length of the shortest side of this polygon?

Originally from the Canadian National Mathematics League, Contest 6, April
1994, problem 6-5.

Four solutions were received, none of which considered the possibility that the poly-
gon could lie inside a half-circle.

There are two possibilities, according as the centre of the circle lies in the interior of
the polygon or not. In the first case, the length of each side is an increasing function
of the angle (less that 180◦) it subtends at the centre. Since there are twelve such
angles summing to 360◦, one must be no greater than 30◦. The minimum can be
exactly 30◦, for example when the polygon is regular. The corresponding side has
length

2l sin 15◦ =
1

2
(
√

6−
√

2) = (0.5176 · · · )l.

In the second case, one of the sides separates the rest of the polygon from the
centre. The sum of the angles subtended by the remaining eleven sides at the
centre does not exceed 180◦. At least one of them cannot exceed (180/11)◦ < 30◦.
Thus, the bound of the first case applies here.

MA124. How many different 5-digit numbers can be formed using only the
digits 1, 2, and 3, if digits placed consecutively must differ by at most 1?

Inspired by the 2014-2015 Nova Scotia Math League, Game 1, Team question 9.

We received five submissions, out of which four were correct. We present the
solution by Vishak Srikanth, lightly edited.

Copyright © Canadian Mathematical Society, 2021
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We call a number containing only the digits 1, 2, or 3 and for which consecutive
digits differ by at most 1 a good number. Let an be the number of good n-digit
numbers that end on a 1 or 3 and let bn be the number of good n-digit numbers
that end on a 2. We have a1 = 2 and b1 = 1.

For n ≥ 2 the first n− 1 digits of a good n-digit number form a good (n− 1)-digit
number. Using this we can find recurrence relations for an and bn:

an = an−1 + 2bn−1,

bn = an−1 + bn−1.

Using the recurrence relations, we calculate

a2 = 4, b2 = 3, a3 = 10, b3 = 7, a4 = 24, b4 = 17, a5 = 58, b5 = 41.

Therefore the number of 5-digit good numbers is a5 + b5 = 99.

MA125. Determine all positive integers a and b, a < b, so that exactly 1
100

of the consecutive integers a2, a2 + 1, a2 + 2, . . . , b2 are the squares of integers.

Originally from the 2009 Alberta High School Mathematics Competition, Part II,
problem 2.

We received 7 solutions. We present the solution by Konstantine Zelator.

If a and b are positive integers with 1 ≤ a < b then there are b2−a2+1 consecutive
integers from a2 to b2 (inclusive), out of which exactly b−a+1 are perfect squares
(namely, a2, (a+ 1)2, . . ., (a+ (b− a))2 = b2).

Applying the hypothesis that exactly 1
100 of the integers a2, a2 + 1, . . ., b2 are

perfect squares gives us the integer equation

1

100
(b2 − a2 + 1) = b− a+ 1.

We rewrite this as

(b− a)(b+ a) = 100(b− a) + 99 ⇔ (b− a)(b+ a− 100) = 99.

From the assumption that a and b are integers with 1 ≤ a < b we get that b−a and
b+ a− 100 are also integers, and b− a is positive. Therefore, b− a and b+ a− 100
are two positive integers which multiply to 99. Hence (b− a) ∈ {1, 3, 9, 11, 33, 99};
and since b+ a = 99

b−a + 100, for each possible value of b− a we obtain a solution
(a, b) via

a =

Å
99

b− a + 100− (b− a)

ã
÷ 2 and

b = a+ (b− a).

We end up with the following 6 solutions for (a, b): (99, 100), (65, 68), (51, 60),
(49, 60), (35, 68) and (1, 100).

Crux Mathematicorum, Vol. 47(10), December 2021



Edward Doolittle /481

Explorations in Indigenous
Mathematics

No. 2

Edward Doolittle

Drum Lacing

Drums are widely used by Cree and Mohawk Indigenous people in Canada, among
many others, for ceremony and social dance purposes. Typically a drum has a cir-
cular frame of some sort over which a skin is stretched. The drum skin may have
holes in it, or may be secured on in a more complicated fashion, and then the
drum skin is stretched tight by lacing sinew or rope across the bottom of the drum
to hold the drum skin tightly to the frame. The whole endeavour of drum making
involves a great deal of experience, skill, and art. We will be investigating just a
small part of the process of drum making, the patterns used to lace the skin onto
the frame; and of all the ways to do the lacing, we will be looking at only one
simple way in this article.

Figure 1: A Water Drum (see [1] at 22:42).

A straightforward example of such a pattern can be seen in the construction of a
water drum (see Figure 1). Water drums are used in my community (Six Nations)
for social dances; I have participated in an Ojibway ceremony in which a water
drum was used by special request of the participants; and water drums are used
in the ceremonies of the Native American Church. In the case of a water drum,
the frame is actually a pot which holds water. The drum skin is held in place by

Copyright © Canadian Mathematical Society, 2021
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bunching it up with the help of pebbles at seven evenly spaced locations around
the lip of the cup and then tying with rope to make “handles” between the pebbles
(see Figure 1). Lacing then pulls the handles tight by following a seven-pointed
star pattern as in Figure 2. Numbering the seven locations starting at 0, we have
the pattern of numbers 0, 3, 6, 2, 5, 1, 4, and back to 0. In other words, we start
at 0 and our first target is the position 0 + 3 = 3, which is 3 spaces clockwise
from 0. Our target from there is 3 + 3 = 6, which is 3 more spaces clockwise from
0. Our next target is 6 + 3 ≡ 2, which is another 3 more spaces clockwise. (See
Figure 3.)

Figure 2: Star Pattern on Bottom of Water Drum (see [1] at 20:47).

0

1

2

34

5

6

Figure 3: Number Circle mod 7 with Star Pattern 0 + 3k mod 7

Note that the arithmetic is a little different from the ordinary arithmetic on a
line with which you are most familiar. Here we are doing “circle arithmetic,”

Crux Mathematicorum, Vol. 47(10), December 2021
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generally known in mathematics as modular arithmetic with the modulus 7. It is
like ordinary arithmetic except that we take as many 7s as we can from a result
before writing it down. We do not say that 6 + 3 = 2, because 6 + 3 = 9, but we
do say 6 + 3 = 9 ≡ 9− 7 = 2 in the modulus 7 (which is abbreviated “modulo 7”
or just “mod 7”). We can do modular arithmetic in any modulus, not just 7, but
for now we will be using 7 in most of our examples.

When we lace a water drum we generate an arithmetic sequence modulo 7. An
arithmetic sequence in ordinary arithmetic (also known as “skip counting” in el-
ementary math education) might be 0, 3, 6, 9, 12, . . .. In arithmetic modulo 7 we
don’t have 9, 12, . . . so the arithmetic sequence is 0, 3, 6, 2, 5, 1, 4, 0, . . . instead.
Another way to think about this is that in ordinary arithmetic we are making a
multiplication table for multiples of 3; so in modular arithmetic we are making a
multiplication table for multiples of 3 mod 7 (see Table 1).

× 0 1 2 3 4 5 6

3 0 3 6 2 5 1 4

Table 1: Multiples of 3 mod 7

We can see a few aspects of the arithmetic sequence mod 7 immediately. First,
since the sequence is infinite, but there are only a finite number of positions around
the circle, at least one number must show up more than once in the sequence. In
fact, the first number that is repeated is 0. You should be able to show that in any
arithmetic sequence in any modulus, the first number repeated is the first number
in the sequence. (Hint: what happens if we reverse the sequence?) You should be
able to show that no matter where we start the sequence (e.g., starting at 2 we get
2, 5, 1, 4, 0, 3, 6, 2, . . .) we get a “rotation” of the original sequence, with the same
numbers in the same order. Also note that our arithmetic sequence contains all
the numbers around the circle (which, for historical reasons, are called “residues
mod 7”).

What if we change the number that we add at each stage? Let’s try adding 2
instead of adding 3. You wouldn’t do that when making a proper water drum
because the drum head might slip off too easily, but we can imagine what the
pattern would look like. We start at 0 and then move 2 places around the circle
at each step to obtain 0, 2, 4, 6, 1, 3, 5, 0, . . . (see Figure 4). Note that again we
have reached every position around the circle. Try skips (technically known as
“common differences”) other than 3 and 2. (Note that you don’t have to try skips
larger than 6, because a skip of 11, say, would be the same as a skip of 4.) You
should find that there is only one skip that doesn’t make the sequence reach every
position around the circle: 0 mod 7. Using 0 as a skip generates the arithmetic
sequence 0, 0, 0, . . ..

Now let’s try changing the modulus to see if anything different might occur in a
different modulus. The modulus 10 is interesting. I am not aware of any drums
that have 10 places for the lacing around the circumference, although there may
be such drums; but 10 is interesting for another reason, namely its relationship

Copyright © Canadian Mathematical Society, 2021
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0

1

2

34

5

6

Figure 4: Arithmetic Sequence 0 + 2k mod 7

to ordinary arithmetic base 10. In mod 10 the arithmetic sequence with initial
term 0 and skip 3 is 0, 3, 6, 9, 2, 5, 8, 1, 4, 7, 0, . . ., which reaches every point around
the circle (see Figure 5). Also note that the relationship between multiplication
in ordinary arithmetic and multiplication in modular arithmetic is very clear in
mod 10 if we also keep track of the number of times we have traveled completely
around the circle (see Table 2). Note how the products in ordinary arithmetic arise
naturally by combining the count of the number of full rotations around the circle
with the landing point. This observation is used to teach multiplication tables in
Waldorf schools [2, p. 205–206].

0

1

2

3

4

5

6

7

8

9

Figure 5: Arithmetic Sequence 0 + 3k mod 10

3× 0 1 2 3 4 5 6 7 8 9

rotations 0 0 0 0 1 1 1 2 2 2
residue 0 3 6 9 2 5 8 1 4 7

Table 2: Multiples of 3 mod 10

Crux Mathematicorum, Vol. 47(10), December 2021
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On the other hand, the arithmetic sequence with initial term 0 and common dif-
ference 2 is 0, 2, 4, 6, 8, 0, . . . which does not reach every position around the circle
(see Figure 6). (That does not mean we cannot lace a drum by going two steps
over each time; it means you would need two different laces, one going through the
even-numbered points around the circle, and one going through the odd-numbered
points.) You should identify the set S of common differences mod 10 for which
the arithmetic series reaches every position around the circle (in mod 10 it is
S = {1, 3, 7, 9}). What is the set S in mod 7? Try other moduli; some numbers
used in drum making are 12, 16, 21, and 28. In each case, can you characterize
the set S? For which moduli is the set of common differences which reach every
position around the circle as large as possible (i.e., every residue except for 0)?
Can you say anything about the size of the set S as a function of the modulus for
specific classes of numbers? In general?

0

1

2

3

4

5

6

7

8

9

Figure 6: Arithmetic Sequence 0 + 2k mod 10

Another related question is whether we can find common differences which always
reach every position around the circle, and common differences which never reach
every position around the circle. For example, the common difference 1 is in the
first category for any modulus, and the common difference 0 is in the second
category for any modulus. Can you find another common difference that is in the
first category for any modulus? When making a drum, it may be important to
pull the lace as close to the location directly opposite as possible, but maybe not
directly opposite. Is the resulting common difference in the first category for any
modulus?

We have learned a tool, modular arithmetic, to help us to understand drum making
better. But there is still an enormous variety of lacing techniques that do not fit so
neatly into our current framework. For example, with 12 points around the circle,
some drum makers go straight across (which corresponds to a common difference
of 6), and we know that means they have to use 6 separate laces. If you are
interested, you can find many resources for drum making online, and you should
also consult with local experts (Indigenous elders, Indigenous drum makers) to
learn how drums are made in your local Indigenous communities.

Copyright © Canadian Mathematical Society, 2021
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TEACHING PROBLEMS
No. 14

John McLoughlin

An Inspiring Problem Proposal: Working from the
Solutions

The following problem proposal was submitted to Crux for consideration:

Fill in the spaces between numbers 1 through 9 with either a + or ×
sign so that the resulting value is a perfect square.

The problem proposer, Neculai Stanciu, provides a list of 13 solutions obtained
using a computer. One such solution is given here:

1× 2 + 3 + 4 + 5× 6× 7× 8× 9 = 15129 = 1232.

This solution ought to clarify any concerns about the problem statement. Also, it
is evident that such a solution is likely inaccessible without computer assistance or
exhaustive search of the 28 possible cases. Likewise, a second solution on the list
appears here. Unlike the first, some will recognize the result of 1225 as a perfect
square:

1 + 2× 3× 4× 5× 6 + 7× 8× 9 = 1225 = 352.

The remainder of this article focusses attention on breaking down this problem in
a manner that enriches its merits for teaching and learning about problem solving.
The idea here comes from using the solutions to generate questions, observations,
and guideposts that may enable finding all remaining solutions. Here we go.

Starting point

Observe that the sum of the digits from 1 to 9 is 45 (not a perfect
square). Is it possible to change a single + to × so as to produce a
perfect square?

An important property of consecutive integers is helpful to note. Two consecutive
integers always have an odd sum and an even product. Hence, changing a single +
to × will result in changing the parity of the resulting value. Since 45 is odd, it is
certain that the result will be even. Further, consider the largest possible increase
in value. This would be 8× 9− (8 + 9) = 55. Aha! 45 + 55 = 100 and a solution
is found:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8× 9 = 100 = 102.

Is there another such solution? The only even perfect square between 45 and 100 is
64. A value of 64 would require an increase of 19 from the sign change. Inspection
finds that 5 and 6 satisfy this requirement

1 + 2 + 3 + 4 + 5× 6 + 7 + 8 + 9 = 64 = 82.

Copyright © Canadian Mathematical Society, 2021



488/ Teaching Problems

A curious mathematical fact provides two additional solutions immediately. Ob-
serve that 1 + 2 + 3 = 1× 2× 3. hence we have

1× 2× 3 + 4 + 5 + 6 + 7 + 8× 9 = 100,

1× 2× 3 + 4 + 5× 6 + 7 + 8 + 9 = 64.

Extending this direction of pursuit, we continue forward.

Is it possible to produce a perfect square by changing two plus signs to
multiplication signs?

There are two cases to consider. First, we will consider where the products are
separate. Second, the case of three consecutive integers being multiplied will be
examined.

Case i: Separate products.

Recall that the parity changes when a single + becomes ×; hence, two separate
products will result in the parity being unchanged. That is, the results will be odd
since 45 is odd.

The smallest possible increase would be 1 × 2 + 3 × 4 − (1 + 2 + 3 + 4) = 4. the
largest possible increase is 6× 7 + 8× 9− (6 + 7 + 8 + 9) = 84. The result must be
between 45 + 4 and 45 + 84 inclusive. Aha! 45 + 4 = 49 and a solution is given by:

1× 2 + 3× 4 + 5 + 6 + 7 + 8 + 9 = 49.

The resulting odd parity and the restricted range of values makes 81 and 121 the
only other candidates for resulting perfect squares. Consider the net change in
value for changing + to × between consecutive integers. For example, the pair
(1, 2) gives a net change of −1 as 1×2 is less than 1+2; in contrast, (8, 9) produces
a gain of 55. In summary, we have

(1, 2)→ −1, (2, 3)→ 1, (3, 4)→ 5, (4, 5)→ 11, (5, 6)→ 19,

(6, 7)→ 29, (7, 8)→ 41, (8, 9)→ 55.

The desired results of 81 and 121 would require increases of 36 and 76 respectively.
Since no pair of changes in the above list total either 36 or 76, these results are
unattainable.

Case ii: Three consecutive integers.

Suppose that three consecutive integers are multiplied. For example, 7 × 8 × 9
would produce an increase of 7×8×9− (7 + 8 + 9) = 480, whereas 1×2×3 would
produce no change in value. The resulting range extends from 45 + 0 to 45 + 480,
as in 45 to 525. The summary of changes is given by

(1, 2, 3)→ 0, (2, 3, 4)→ 15, (3, 4, 5)→ 48, (4, 5, 6)→ 105,

(5, 6, 7)→ 192, (6, 7, 8)→ 315, (7, 8, 9)→ 480.
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What about the parity? The product of three consecutive integers is even, but the
sum of three consecutive integers can be odd or even. Hence, all perfect squares
between 45 and 525 remain plausible considerations. However, there is only one
change to consider unlike the preceding case with two separate products. The
question becomes “Does 45 increased by any of the changes listed above produce
a perfect square?” The answer is no.

What next?

Before proceeding further, it is worth inspecting to see if 45 increased by two or
more of the changes may result in a perfect square. These changes though must
not involve the same digits. For example, (2, 3, 4) could only work with triplets
not containing any of 2, 3 or 4. I could not find any solution using exclusively
triples or pairs, but the revelation of potentially mixing these became apparent as
a source of solutions. For example, I noted that 45 + 315 = 360 or 1 less than 192.
The pair (2, 3) produces a change of 1. Combining these facts gives

1 + 2× 3 + 4 + 5 + 6× 7× 8 + 9 = 361 = 192.

Let’s look for more as likely some solutions can be identified. Keep in mind that
the numbers in the pairs and triples cannot be duplicated. Recall the summary of
the changes from above that will assist us. Note that 45 + 480 = 525 as in 232−4.
The pairs offer 5 + (−1) as a representation of this change of 4:

1× 2 + 3× 4 + 5 + 6 + 7× 8× 9 = 529 = 232.

As a cautionary note, it appeared that 45+105+19 would produce a solution. The
digits 5 and 6 appeared in both the changes of 105 and 19, and hence no solution
resulted from this arrangement. The next solution grew from an observation that
45 + 48 = 93 and an additional 28 would make 121. Here, 28 = 29 + (−1).

1× 2 + 3× 4× 5 + 6× 7 + 8 + 9 = 121.

“Playing around” suggested 144 as a possible target. Note that 45 + 55 = 100 and
29 + 15 = 44. Rather fortuitously, there are no digits used twice, thus producing
the solution

1 + 2× 3× 4 + 5 + 6× 7 + 8× 9 = 144.

It seemed that beginning with higher or lower digits, as with (8, 9)→ 55, left more
options as the mid-range digits eliminated more possibilities due to overlap. That
was an observation which grew out of understanding the problem.

Recapping to here

At this point it seemed that the playfulness was diminishing. Keep in mind that
a list of solutions had accompanied the problem proposal. Aside from the two
opening results of 1232 and 352, all of the other solutions to this point have been
found through an organized approach without checking the list of 13 solutions. In
fact, 11 of these have now appeared in the article thus far.
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Next steps

Before abandoning the solving process, it seems worthwhile to consider changes
from using three consecutive multiplication signs as in products of four consecutive
integers. For example, 1× 2× 3× 4− (1 + 2 + 3 + 4) = 14, giving (1, 2, 3, 4)→ 14.
The summary of changes is here:

(1, 2, 3, 4)→ 14, (2, 3, 4, 5)→ 106, (3, 4, 5, 6)→ 342,

(4, 5, 6, 7)→ 818, (5, 6, 7, 8)→ 1654, (6, 7, 8, 9)→ 2994.

It seemed reasonable to check if 45+14 or 45+106 or 45+342 could be combined
with changes from pairs and/or triples involving larger digits to get perfect squares.
It was noted that 45 + 14 = 59 could be combined with (7, 8)→ 41 to equal 100.

1× 2× 3× 4 + 5 + 6 + 7× 8 + 9 = 100.

Knowing one more solution existed and my time on the problem was winding
down, I decided to peek at the list of solutions. Specifically, the glance at results
showed 441 among them. Revisiting the last stage, it was noted that 342 + 45
would get into the neighbourhood. A further increase of 54 would be needed. The
13th and final solution emerged from noting 54 = 55 + (−1):

1× 2 + 3× 4× 5× 6 + 7 + 8× 9 = 441 = 212.

Closing remarks

The problem proposal from Neculai Stanciu inspired me to play with mathematics
while figuring a way of offering insight into the problem solving process. Beginning
with the solutions, it became practical to turn this experience around to one of
teaching through problem solving. The “write out loud” approach taken here has
offered some lessons of its own. First, no permission is needed to play with a prob-
lem. Second, it is not necessary to exhaustively solve a problem. Mathematical
experience can be gained through partially solving a problem and/or getting stuck
altogether. Third, the explication of the process has ideally given some value to
organized solution of a problem while informing the significance of ideas like par-
ity. Finally, it is important to acknowledge inspiration. Upon seeing the problem
proposal, it came to me that this is not to be a problem in a set but rather the
basis of a richer discussion. Thank you Neculai Stanciu for bringing this proposal
to my attention.
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OLYMPIAD CORNER
No. 398

The problems in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by February 28, 2022.

OC556. Find all integer pairs (x, y) that satisfy the equation

7x2 − 4xy + 7y2 = (|x− y|+ 2)3.

OC557. A natural number k is given. For n ∈ N we define fk(n) as the
smallest integer greater than kn such that nfk(n) is a perfect square. Prove that
fk(m) = fk(n) implies m = n.

OC558. Anne consecutively rolls a 2020-sided die with faces labeled from 1
to 2020 and keeps track of the running sum of all her previous dice rolls. She stops
rolling the first time when her running sum is greater than 2019. Let X and Y
be the running sums she is most and least likely to have stopped at with non-zero
probability, respectively. What is the ratio between the probabilities of stopping
at Y to stopping at X?

OC559. A rectangle with side lengths 1 and 3, a square with side length 1,
and a rectangle R are inscribed inside a larger square as shown. The sum of all
possible values for the area of R can be written in the form m

n , where m and n are
relatively prime positive integers. What is m+ n?
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OC560. In the figure below, points A, C are on ray OM and B, D are on
ray ON . It is given that OA = 6cm, OD = 16cm and ∠NOM = 20◦. What is
the minimum length, in cm, of AB +BC + CD?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 28 février 2022.

OC556. Trouvez toutes les paires (x, y) d’entiers vérifiant l’équation

7x2 − 4xy + 7y2 = (|x− y|+ 2)3.

OC557. Soit k un nombre naturel. Pour un n ∈ N donné, on définit fk(n)
comme étant le plus petit entier supérieur à kn pour lequel nfk(n) est un carré
parfait. Montrez que fk(m) = fk(n) implique que m = n.

OC558. Anne lance à répétition un dé à 2020 faces. Celles-ci sont numérotées
de 1 à 2020. Anne note la somme cumulée de tous ses lancers précédents. Elle
cesse de lancer le dé dès que la somme cumulée dépasse 2019. On dénote par X
et Y les sommes cumulées auxquelles elle est respectivement le plus et le moins
susceptible de s’être arrêtée. Quel est le rapport entre la probabilité qu’elle se soit
arrêté à Y et la probabilité qu’elle se soit arrêtée à X?
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OC559. Dans un certain carré sont inscrits un rectangle de côtés 1 et 3, un
carré de côté 1, puis un rectangle R, tel qu’indiqué ci-bas. Or, les valeurs possibles
pour la surface de R peuvent être représentées sous la forme m

n , où m et n sont
des entiers positifs premiers entre eux. Déterminer m+ n.

OC560. Comme l’illustre la figure ci-après, les points A et C sont situés
sur la demi-droite OM alors que les points B et D sont quant à eux situés sur
la demi-droite ON . Si OA = 6cm, OD = 16cm et ∠NOM = 20◦, quelle est la
longueur minimale, en cm, de AB +BC + CD?
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2021: 47(5), p. 238–239.

OC531. Given a non-zero integer k, prove that equation

k =
x2 − xy + 2y2

x+ y

is satisfied by an odd number of ordered pairs of integers (x, y) if and only if k is
divisible by 7.

Originally Problem 6 from the 2017 Czech-Slovakia Math Olympiad, Category A,
Final Round.

We received 6 correct solutions. We present the solution by Oliver Geupel.

An ordered pair (x, y) of integers is a solution of the given equation if and only if

x 6= −y (1)

and
x2 − xy + 2y2 − k(x+ y) = 0,

which we rewrite in the form

(2x− k − y)2 + (y − k)(7y + k) = 0. (2)

Let L0 be the set of solutions of (1) and (2) with y = 0. Let Lk be the set of
solutions of (1) and (2) with y = k. Let L−k/7 be the set of solutions of (1) and
(2) with y = −k/7.

Note that L−k/7 = ∅ when 7 - k. Let L′ be the set of solutions of (1) and (2) with
y /∈ {0, k,−k/7}. The total set L of solutions of (1) and (2) is then the disjoint
union

L = L0 ∪ Lk ∪ L−k/7 ∪ L′.
It is straightforward to check that L0 = {(k, 0)} and Lk = {(k, k)}. If 7 | k then
L−k/7 = {(3k/7,−k/7)}, otherwise L−k/7 = ∅.

Let y /∈ {0, k,−k/7}. Let x1 and x2 be the two complex roots of equation (2)
in the variable x. By Vieta’s Theorem, we have x1 + x2 = k + y. Hence, either
both numbers x1 and x2 are integers, or they are both non-integers. Also the
hypothesis x = −y leads to y = 0, which is impossible. Therefore, there are zero
or two corresponding values of the integer x that satisfy the equation (2). Hence,
|L′| is even, so that |L0 ∪ Lk ∪ L′| is even.

It follows that |L| is odd if and only if
∣∣L−k/7∣∣ is odd, which is satisfied exactly

when k is a multiple of 7.
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OC532. Let f : [a, b]→ R be a Riemann integrable function and let (an)n≥1
be a sequence of positive real numbers such that limn→∞ an = 0.

(a) If A = {m · an | m,n ∈ N∗}, prove that every open interval of positive real
numbers contains elements of A.

(b) If for all n ∈ N∗ and all x, y ∈ [a, b] such that |x − y| = an the following
inequality holds ∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ ≤ |x− y|,
prove that ∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ ≤ |x− y| ∀x, y ∈ [a, b].

Originally problem 3 from the 2018 Romania Math Olympiad, Final Round.

We received 5 correct solutions. We present the solution by Oliver Geupel.

Let us start with part (a) of the problem. Let c and d be real numbers such that
0 < c < d. Since the sequence (an) tends to zero, there is an index n with the
property that an < d− c. Then,

1 <
d

an
− c

an
.

Hence, there is a positive integer m such that

c

an
< m <

d

an
,

that is, the open interval (c, d) includes the number man. This completes part (a).

Let us now turn to part (b). As a Riemann integrable function, f is bounded. Let
K be a real number such that |f(t)| < K whenever a < t < b. Let x, y ∈ [a, b].
Since the inequality to be proved is symmetric in the variables x and y, we may

suppose that x ≤ y. Let n be any positive integer and let m =
ö
y−x
an

ù
. By the

triangle inequality and by the hypothesis of part (b), it holds∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ =

∣∣∣∣∣
(

m∑
k=1

∫ x+kan

x+(k−1)an
f(t) dt

)
+

∫ y

x+man

f(t) dt

∣∣∣∣∣
≤

m∑
k=1

∣∣∣∣∣
∫ x+kan

x+(k−1)an
f(t) dt

∣∣∣∣∣+

∣∣∣∣∫ y

x+man

f(t) dt

∣∣∣∣
≤ man +Kan

≤ |x− y|+Kan.

By hypothesis we have lim
n→∞

Kan = 0. Hence the result (b).
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OC533. For k ∈ Z, define the polynomial Fk(x) = x4 + 2(1−k)x2 + (1 +k)2.
Find all values of k so that Fk is irreducible over Z[x] and reducible over Zp[x] for
all primes p.

Originally problem 4 from the 2018 Romania Math Olympiad, Final Round.

We received 5 solutions, of which 4 were correct and complete. We present the
solution by the Missouri State University Problem Solving Group.

We claim that the result holds precisely when neither k nor −k is a perfect square
in Z.

Note that if α2 = k in a unitary commutative ring R, then

Fk(x) =
(
x2 + 2αx+ (k + 1)

) (
x2 − 2αx+ (k + 1)

)
in R[x]. (1)

Also, if β2 = −k in R, then

Fk(x) =
(
x2 + 2β + (1− k)

) (
x2 − 2β + (1− k)

)
in R[x]. (2)

Therefore if k or −k is a perfect square in Z, then Fk is reducible in Z[x]. On the
other hand if −k is not a perfect square, then we claim Fk has no rational roots
and hence no linear factor. If r were a rational root of Fk(x), then r2 would be a
root of x2 + 2(1− k)x+ (1 + k)2, but the roots are k − 1± 2

√
−k, and these are

not rational.

If γ2 = −1 in R, we have

Fk(x) =
(
x2 + 2γx− (1 + k)

) (
x2 − 2γx− (1 + k)

)
in R[x]. (3)

By unique factorization in C[x], equations (1), (2), and (3) are the only ways of
factoring Fk into monic quadratics and the coefficient of x is not an integer in
any of those factorizations if neither k nor −k is a perfect square. Therefore Fk is
irreducible in Z[x].

On the other hand, it is well known that in Zp at least one of y, z, or yz must be
a square. Therefore one of k,−1, or −k must be a square and hence at least one
of the factorizations above exists in Zp[x].

OC534. The triangle A1A2A3 is given on the plane. Assuming that A4 = A1

and A5 = A2, we define points Xt and Yt for t = 1, 2, 3 as follows. Let Γt be the
excircle of triangle A1A2A3 tangent to the side At+1At+2, and let It be its center.
Let Pt and Qt be the points of tangency of Γt with the lines AtAt+1 and AtAt+2,
respectively. Then Xt and Yt are the intersection points of the line PtQt with the
lines ItAt+1 and ItAt+2, respectively. Prove that the points X1, Y1, X2, Y2, X3, Y3
lie on a circle.

Originally problem 11 from the 2018 Poland Math Olympiad, First Round.

We received 3 correct solutions. We present the solution by the UCLan Cyprus
Problem Solving Group.
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We write α, β and γ for the angles ∠A3A1A2,∠A1A2A3 and ∠A2A3A1 respectively.
We also write a, b, c for the side lengths A2A3, A3A1 and A1A2 respectively.

Since A3Q3 and A3P3 are tangent to Γ3, we have A3Q3 = A3P3, which implies
∠A2Q3Y3 = 90◦ − γ/2. Since Y3A2 is the external angle bisector of Â2, then
∠Y3A2Q3 = 90◦ − β/2. It follows that ∠Q3Y3A2 = 90◦ − α/2.

With similar methods we can calculate the angles in the triangles A3X2P2, P3A1X3

and X1P1A2 and obtain that these triangles are all similar to the triangle Q3Y3A2

Let D,E, F be the points of tangency of Γ1,Γ2 and Γ3 with the lines A2A3, A3A1

and A1A2 respectively.

It is well known that A3Q3 = A2P2 = (a+ b+ c)/2. Therefore A2Q3 = P2A3 from
which we deduce that the triangles A3X2P2 and Q3Y3A2 are equal.

Thus Q3Y3 and A3X2 are equal and parallel and therefore A3Q3Y3X2 is a paral-
lelogram.

So ∠Y3X2Y1 = ∠Y3X2A3 = ∠A2Q3Y3 = 90◦ − γ/2 = ∠Y3X1P1. So X1, Y1, X2, Y3
are concyclic, say they belong to a circle ω1. Analogously, X2, Y2, X3, Y1 belong
to a circle ω2 and X3, Y3, X1, Y2 belong to a circle ω3.

We also have ∠Y2X2Y3 = ∠A3P2X2 = 90◦ − β/2 = ∠Y2X3P3. So X2, Y2, X3, Y3
are concyclic. It follows that Y3 belongs to ω2 and then that ω2 and ω3 coincide.
Thus X1, X2, X3, Y1, Y2, Y3 are concyclic.
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OC535. The set A consists of n real numbers. For the subset X ⊆ A, we
denote by S(X) the sum of the elements of the set X, and we assume S(∅) = 0.
Let k be the number of different real numbers x such that x = S(X) for some
X ⊆ A. Let ` be the number of ordered pairs (X,Y ) of subsets of the set A
satisfying the equality S(X) = S(Y ). Prove that k` ≤ 6n.

Originally problem 12 from the 2018 Poland Math Olympiad, First Round.

We received only 1 correct solution by the UCLan Cyprus Problem Solving Group.

Let B be a set of subsets of A all with distinct sums and let C be a set of subsets
of A all with the same sums. Consider the map f : B ×C → P(A)×P(A) defined
by f(B,C) = (B ∩C,B ∪C). We claim that this is an injection. Indeed, suppose
B ∩ C = B′ ∩ C ′ and B ∪ C = B′ ∪ C ′. Then

S(B) +S(C) = S(B ∪C) +S(B ∩C) = S(B′ ∪C ′) +S(B′ ∩C ′) = S(B′) +S(C ′) .

Since S(C) = S(C ′) we deduce that S(B) = S(B′) and by the definition of B we
get B = B′. Then

C = ((C ∪B) \B) ∪ (C ∩B) = ((C ′ ∪B) \B) ∪ (C ′ ∩B) = C ′ .

Now assume that x1, . . . , xk are all possible sums and for each i assume that there
are ai sets achieving sum xi. Then ` = a21 + · · ·+ a2k and a1 + · · ·+ ak = 2n.

Note that the map f of the first paragraph injects into a pair of subsets (X,Y )
with X ⊆ Y . There are

n∑
k=0

Ç
n

k

å
2n−k = (1 + 2)n = 3n

such pairs. This is because if the set X has k elements, then we have 2n−k choices
for the other elements that Y is going to contain.

This shows that kai 6 3n for each i. Therefore

k` = k(a21 + · · ·+ a2k) 6 3n(a1 + · · ·+ ak) = 6n .
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Equations involving positive
divisors of a given integer (Part II)

Salem Malikić

This article is a continuation of an article published in Crux 48(4). Throughout
the article we focus only on positive divisors of a given integer, hence in most
places we omit to explicitly mention the word positive.

Problem 1 Let 1 = a1 < a2 < . . . and 1 = b1 < b2 < . . . be all divisors of
positive integers a and b, respectively. Find all a and b such that each of them has
at least 11 distinct divisors and the following system of equations is satisfied

a10 + b10 = a

a11 + b11 = b.

(Mongolia, 2017)

Solution. We will first prove that at least one of the numbers a and b has exactly
11 divisors. Assume on the contrary, that each of a and b has more than 11
divisors. Using the formula didτ(n)+1−i = n and the assumption that divisors are
sorted in an increasing order, we have

a10 =
a

aτ(a)+1−10
≤ a

a3
≤ a

3

a11 =
a

aτ(a)+1−11
≤ a

a2
≤ a

2

b10 =
b

bτ(b)+1−10
≤ b

b3
≤ b

3

b11 =
b

bτ(b)+1−11
≤ b

b2
≤ b

2

and adding the above inequalities implies a10 + a11 + b10 + b11 < a + b, which is
in contradiction with the equation obtained by adding up the two equations given
in the problem statement. From this contradiction it follows that at least one of
the numbers a and b has exactly 11 divisors. Due to the second equation of the
system, this number can not be b so a must have exactly 11 divisors. This is only
possible if a = p10, where p is a prime number.

From a10 + b10 = a we now get b10 = p10 − p9 = p9(p − 1). From a11 + b11 = b
it follows that b11 | a11, hence b11 must be a prime power of p not greater than
a11 = p10. Since b10 = p9(p − 1) ≥ p9, we must have b11 = p10. Now, since
b11 = p10, from a11 + b11 = b we have b = 2 · p10. From b10 = p9(p− 1) it follows
that p − 1 is a divisor of b. In other words, p − 1 | 2 · p10. As p and p − 1 are
relatively prime, we have that p − 1 | 2. Therefore p can be either 2 or 3. For
p = 2, we get a = 210 and b = 211 and it is easy to verify that this is a solution.
For p = 3, we get a = 310 and b = 2 · 310, and it can be easily verified that this
pair does not satisfy all conditions of the problem.
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In summary, a = 210, b = 211 is the only solution.

Problem 2 Let 1 = d1 < d2 < · · · < dk = n be all divisors of a positive integer
n. Find all n such that

2n = d25 + d26 − 1.

(Switzerland, 2006)

Solution. Observe first that

2n = d25 + d26 − 1 < d26 + d26 − 1 < 2d26

which, together with d6dk+1−6 = n, implies that k + 1 − 6 < 6 or, equivalently,
k ≤ 10. On the other hand,

2n = d25 + d26 − 1 ≥ d25 + (d5 + 1)2 − 1 > 2d25

and the above inequality implies n > d25. As n = d5dk+1−5 we must have k+1−5 >
5 or, equivalently, k ≥ 10. Now we can conclude that k must be equal to 10.

Since k = 10, we have n = d5d6 and the given equation becomes

2d5d6 = d25 + d26 − 1,

which is equivalent to
(d6 − d5)2 = 1.

The last equation implies that d6 = d5 + 1, hence n = d5(d5 + 1).

Now, as n has 10 distinct positive divisors then either n = p9, for some prime p,
or n = pq4 for some distinct primes p and q.

We can not have n = p9 because in this case d5 and d5 + 1 are each divisible by p,
so p has to divide their difference, which is clearly impossible.

If n = pq4, observe that pq4 = d5(d5 + 1) and the fact that d5 and d5 + 1 are
relatively prime and both greater than 1 implies that either (i) d5 = p and d5+1 =
q4 or (ii) d5 = q4 and d5+1 = p. In the first case p = q4−1 = (q−1)(q+1)(q2+1)
must be a prime, but it is obviously a composite number so there is no solution
in this case. In the second case, q4 + 1 = p. Clearly, q must be even so the only
possibility is q = 2. For q = 2 we have p = 17 and n = 24 · 17 = 272. Direct
verification shows that this is a solution.

In summary, the only positive integer n for which the given equation is satisfied is
272.

Problem 3 Let 1 = d1 < d2 < · · · < dk = n be all divisors of a positive integer
n. Determine all n such that k ≥ 22 and

d27 + d210 =

Å
n

d22

ã2
.

(Belarus, 1998)
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Solution. First, by doing simple modular arithmetic, one can easily prove that, if
integers a, b and c are such that a2 + b2 = c2, then at least one of them is divisible
by 3 and at least one of them is divisible by 5. Observing that, for x ≡ 0 (mod 4)
we have x2 ≡ 0 (mod 8), for x ≡ 2 (mod 4) we have x2 ≡ 4 (mod 8), and for
x ≡ ±1 (mod 4) we have x2 ≡ 1 (mod 8), we can conclude that at least one of a,
b and c must be divisible by 4.

As d7, d10 and n
d22

are divisors of n we conclude that n is divisible by 3, 4 and 5.
Therefore di = i for i ∈ {1, 2, 3, 4, 5, 6}.
Since n is divisible by 2 and 5, it is also divisible by 10, hence d7 ≤ 10. Similarly,
n is also divisible by 12, 15 and 20 implying that d10 ≤ 20.

We discuss four possible cases:

1. d7 = 10

In this case the given equation becomesÅ
n

d22
− d10

ãÅ
n

d22
+ d10

ã
= 100.

Since the numbers in the brackets on the left hand side of the last equation
are of the same parity and the first is strictly smaller than the second, we
have that n

d22
− d10 = 2 and n

d22
+ d10 = 50, which implies d10 = 24. This is

in contradiction with d10 ≤ 20 so we have no solution in this case.

2. d7 = 9

In this case the given equation becomesÅ
n

d22
− d10

ãÅ
n

d22
+ d10

ã
= 81.

so either n
d22
−d10 = 1 and n

d22
+d10 = 81 or n

d22
−d10 = 3 and n

d22
+d10 = 27.

In the first case d10 = 40, which contradicts d10 ≤ 20.
In the second case, d10 = 12 and n

d22
= 15. As n is not divisible by 7 (because

d6 = 6 and d7 = 9) it is also not divisible by 14. Therefore we either have
d11 = 15 or d12 = 15, implying that either n

d22
= d11 or n

d22
= d12. As

n = di ·dk+1−i this would imply that k, the number of divisors of n, is either
32 or 33. On the other hand, since d7 = 9 and d10 = 12, we must have
d8 = 10 and d9 = 11. Now, observe that n is divisible by 22, 32, 5 and 11 so
the number of its divisors is at least 3 · 3 · 2 · 2 = 36, which contradicts the
previous conclusion that k ∈ {32, 33}. Therefore in this case we also have
no solution.

3. d7 = 8

In this case the given equation becomesÅ
n

d22
− d10

ãÅ
n

d22
+ d10

ã
= 64.
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so either n
d22
−d10 = 2 and n

d22
+d10 = 32 or n

d22
−d10 = 4 and n

d22
+d10 = 16.

The second case obviously does not give any solution as it implies d10 = 6 <
d7.
In the first case, we have d10 = 15 and n

d22
= 17 implying that n

d22
= d11 or

n
d22

= d12 so n has either 32 or 33 divisors. Also, as d7 = 8 and d10 = 15, we
must have d8 = 10 and d9 = 12.

We can now easily conclude that n can not have 33 divisors because it is
divisible by 3, but not divisible by 9, hence it is not a perfect square (i.e.,
number of its divisors is an even number).

On the other hand, as n is already divisible by 23, 31, 51 and 171, the number
of its divisors is at least (3 + 1) · (1 + 1) · (1 + 1) · (1 + 1) = 32. Therefore, if
the number of divisors of n is 32 then we must have n = 23 · 3 · 5 · 17 = 2040
and direct verification shows that this is indeed a solution.

4. d7 = 7

In this case the given equation becomesÅ
n

d22
− d10

ãÅ
n

d22
+ d10

ã
= 49.

so we must have n
d22
− d10 = 1 and n

d22
+ d10 = 49, which implies d10 = 24.

As d10 = 24 contradicts the previous conclusion that d10 ≤ 20, we do not
have any solution in this case.

In conclusion, the only number for which all conditions of the problem are fulfilled
is n = 2040.

Problem 4 Find the smallest positive integer n such that

d21 + d22 + · · ·+ d2k = (n+ 3)2,

where d1, d2, . . . , dk are all positive divisors of n.

(Bulgaria, 1999)

Solution. The given equation is equivalent to

d22 + d23 + · · ·+ d2k−1 = 6n+ 8

and from here it obviously follows that k ≥ 3.

For k ≥ 8,

d22 + d23 + · · ·+ d2k−1

≥ (dk−1 − d2)
2

+ (dk−2 − d3)2 + (dk−3 − d4)2 + 2dk−1d2 + 2dk−2d3 + 2dk−3d2.

We claim that RHS of the above inequality is greater than 6n+ 8. To prove this,
observe that dk−3−d4 ≥ 1. Then dk−2−d3 ≥ (dk−3 + 1)− (d4− 1) ≥ 3. Similarly
dk−1−d2 ≥ 5. On the other hand, dk−idi+1 = n for i ∈ {1, 2, 3}. Combining these
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equations and the above inequalities we get the desired result. This implies that
k ≥ 8 is impossible so in the rest we focus on the cases where 3 ≤ k ≤ 7.

First, we prove that n can not be equal to pα, where p is a prime number and
α = k − 1 ≥ 2. Namely, in that case our equation becomes

p2 + p4 + · · ·+ p2α−2 = 6pα + 8,

which is equivalent to

p2
(
1 + p2 + · · ·+ p2α−4 − 6pα−2

)
= 8.

This implies that p2 | 8 so p = 2 and

1 + p2 + · · ·+ p2α−4 − 6pα−2 = 2.

For α ≥ 5 we have 1+p2 + · · ·+p2α−4 > 1+22 +2α−22α−2 > 2+6 ·2α−2, whereas
for each α < 5 a direct verification shows that the above equation does not hold
for p = 2.

We can now conclude that n can not be of the form pα, where p is a prime and
α is an integer. Therefore k must be different from 3 as the only positive integers
that have exactly 3 divisors are those that can be expressed as p2 for some prime
number p. Similarly k must be different from 5 and 7, so we are now left with
discussing the following two cases:

• k = 4 and n = pq, where p and q are two distinct primes.

Without loss of generality we may assume that p < q. The given equation
becomes

p2 + q2 = 6pq + 8.

From here q | p2 − 8. Direct inspection on p shows that the smallest prime
p for which there exists a solution is p = 7. Then q = 41 and n = 287. For
p ≥ 17 we have pq > p2 > 287. As we are interested in minimal n and have
already verified that 287 satisfies all conditions of the problem, here we can
conclude that it is enough to focus only on analyzing cases where p < 17. It
is straightforward to check each of them to conclude that in this case n = 287
is the smallest number satisfying all conditions of the problem.

• k = 6 and n = pq2, where p and q are two distinct primes.

The given equation becomes

p2 + q2 + p2q2 + q4 = 6pq2 + 8

We can not have p ≥ 7 as in that case p2q2 > 6pq2 and q4 > 8 so the left
hand side of the above equation would be greater than its right hand side.
For discussing cases p ≤ 5, first observe that p2 − 8 = q2(6p− q2 − p2 − 1),
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hence q2 | p2 − 8. If p = 2 then q2 | −4 so q must be equal to 2, which
contradicts the assumption that p and q are distinct. For p = 3 we get
that q2 divides 1 and for p = 5 we get that q2 divides 17. Both of these
are obviously impossible so we can conclude that there is no solution in this
case.

In summary, the smallest positive integer n satisfying all conditions of the problem
is 287.

Problem 5 Let 1 = d1 < d2 < · · · < dk = n denote all divisors of an integer n.
Find all positive integers n such that k ≥ 7 and

n = d26 + d27 − 1.

(IMO Shortlist, 1984)

Solution. First, observe that d6 and d7 are relatively prime. Namely, if d is a
positive integer which divides each of d6 and d7 then d divides n as well. But then
from the given equation we have that d | 1, hence d = 1. Second, observe that
d6 and d7 can not each have at least four distinct divisors. Namely, if this is the
case then d6 has two divisors, u and v such that 1 < u < v < d6 and d6 = uv.
Similarly d7 has two divisors, w and s, such that 1 < w < s < d7 and d7 = ws.
Since d6 < d7 we have uw <

√
d6
√
d7 < d7. But then 1, u, v, w, s, uv and uw are

divisors of n and each of them is smaller than d7. Furthermore, since d6 and d7 are
relatively prime, all of these 7 divisors must be distinct. This implies that we have
found 7 distinct divisors of n, each less than d7, which is impossible. Therefore
at least one of the numbers d6 and d7 has less than 4 divisors so it must be equal
to either p or p2, where p is some prime number. As d7 > d6 ≥ 6, we must have
p > 2.

Let x denote the number among d6 and d7 which equals p or p2 for some prime
p > 2 and let y denote the other of these two numbers (i.e., y ∈ {d6, d7} and
y 6= x). Adopting this notation, the given equation becomes n = x2 + y2 − 1. As
x | n and y | n we conclude that x | y2 − 1 and y | x2 − 1. As (i) x | (y − 1)(y + 1)
and (ii) x is a power of an odd prime and (iii) gcd(y−1, y+1) ≤ 2, we can conclude
that either x | y − 1 or x | y + 1. Therefore we discuss the following two cases:

1. x | y − 1

In this case, y − 1 = xa and x2 − 1 = yb = (xa + 1)b, for some positive
integers a and b. The last equation can be rewritten as

x(x− ab) = b+ 1.

As x | b+ 1 we have that b+ 1 ≥ x. But then

x2 − 1 = (xa+ 1)b ≥ (x+ 1)(x− 1) = x2 − 1

with the equality only if a = 1. Therefore y − 1 = x, implying that x = d6,
y = d7 and d7 = d6 + 1.
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2. x | y + 1

In this case, y + 1 = xa and x2 − 1 = yb = (xa − 1)b, for some positive
integers a and b. The last equation can be rewritten as

x(ab− x) = b− 1.

If b = 1 then ab = x, which implies a = x, and y = xa − 1 = x2 − 1 =
(x − 1)(x + 1). Clearly x and y must be equal to d6 and d7, respectively.
From d7 = (d6 − 1)(d6 + 1) we conclude that d6 + 1 | d7. As d6 > 2 then
d7 = (d6− 1)(d6 + 1) > d6 + 1 so n has a divisor d6 + 1 which is greater than
d6 and smaller than d7. This is clearly impossible so b > 1. Now, as x | b−1
and b > 1 we have that b− 1 ≥ x. Then

x2 − 1 = (xa− 1)b ≥ (x− 1)(x+ 1) = x2 − 1

with the equality only if a = 1. In that case y = xa − 1 = x − 1 so y = d6,
x = d7 and d7 = d6 + 1.

From the above we conclude that d7 = d6 + 1. Combined with the equation
n = d26 + d27 − 1, this implies that n = 2d6(d6 + 1). We discuss the following four
possible cases:

1. d6 = p, where p is an odd prime number.

It is obvious that p ≥ 7. Observe that d7 = d6 + 1 is even and does not
have two or more odd prime divisors. Namely, an even number having at
least two odd prime divisors has at least 8 divisors. On the other hand, each
divisor of d7 is also a divisor of n, so d7 can not have more than 7 divisors.
Therefore d7 = 2α+1qβ for some odd prime q and non-negative integers α and
β. Combined with n = 2d6d7, we get that n = 4 · 2α · p · qβ . It is impossible
that β ≥ 2 because in that case 1, 2, 4, p, q, 2q, q2 are 7 distinct divisors of
n, all smaller than d7. If β = 1 then n = 4 · 2α · p · q. We can not have α ≥ 1
because in such a case d7 ≥ 4q so 1, 2, 4, 8, p, q and 2q are 7 distinct divisors
of n, all smaller than d7. Therefore either β = 0 or (α, β) = (0, 1). In the
latter case n = 4pq so n has 12 divisors. Then n = d6d7 and our original
equation becomes d6d7 = d26 + d27 − 1, which does not have any solution as
the right hand side is strictly greater than the left hand side. So we must
have β = 0 and this implies that d7 = 2α+1. As any divisor of d7 is also
a divisor of n and p is an odd divisor of n smaller than d7, 2α+1 can have
at most 6 distinct divisors implying that α ≤ 4. By checking each of the
possible values of α we can easily conclude that only α = 4 yields solution
n = 1984.

2. d7 = p, where p is an odd prime number.

Analogously as in the previous case, we first prove that d6 = p − 1 can
not have two or more odd prime divisors implying that d6 = 2α+1qβ , for
some odd prime q and non-negative integers α and β. This also implies that
n = 2d6d7 = 4 · 2α · p · qβ . If α ≥ 1 and β ≥ 1 then 4q ≤ d6 < d7 and 1,
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2, 4, 8, q, 2q, 4q are 7 distinct divisors of n, each smaller than d7, which is
impossible. Therefore either α = 0 or β = 0 and below we discuss each of
these cases separately.

For the case when α = 0, we have d6 = 2qβ . Since d6 has at most 6 distinct
divisors, we must have β ≤ 2. The case β = 0 will be discussed below. For
β = 1 we have n = 4pq, which has been discussed above and does not yield
any solution. If β = 2, then d6 = 2q2 and p = d7 = d6 + 1 = 2q2 + 1. If
q > 3 the number 2q2 + 1 is divisible by 3 and greater than 3, hence it can
not be equal to a prime number p. Therefore we must have q = 3 implying
that d6 = 18 and n = 2 · 18 · 19 = 684. However, since the sixth smallest
divisor of 684 is less than 18 this is not a solution.

For the case when β = 0, we have d6 = 2α+1 and it suffices to check all
values α ≤ 4. It is easy to verify that none of them yields a solution.

3. d6 = p2, where p is an odd prime number.

Observe that n = 2d6d7 has three divisors that do not divide d7 = p2+1 and
are smaller than d7, namely p, 2p and p2. Therefore d7 is an even number
which has at most 4 distinct divisors. If d7 is a power of 2 then d7 ≤ 23.
On the other hand, d7 ≥ 32 + 1 = 10 so there are no solutions in this case.
Assume now that d7 is not a power of 2. Due to the upper bound on its
number of divisors, we must have d7 = 2q, where q is an odd prime number.
In this case n = 4p2q. If p > 3, then 1, 2, 4, p, 2p and 4p are six positive
divisors of n and each of them is smaller than d6, which is impossible. Direct
verification shows that p = 3 does not yield a solution.

4. d7 = p2, where p is an odd prime number.

In this case d6 = p2 − 1 = (p − 1)(p + 1). As p is an odd prime, p2 − 1 ≡
0 (mod 4) so 4 | n. If p ≥ 11 then 1, 2, 4, p−12 , p−1 and p+1 are six distinct
divisors of n, all less than d6, which is impossible. We directly check each of
the remaining values of p (p = 3, p = 5 and p = 7) and find solution n = 144
for p = 3.

In summary, n = 144 and n = 1984 are the only solutions.

Problems for self study

Problem 6 Let n be a positive integer with divisors 1 = d1 < d2 < · · · < dk = n.
Determine all values of n for which both of the following equalities hold

d5 − d3 = 50

11d5 + 8d7 = 3n.

(Czech-Slovak, 2014)
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Problem 7 Let 1 = d1 < d2 < . . . dk = n be all divisors of a positive integer n.
Find all n such that

n = d24 + d25 − 1.

(www.artofproblemsolving.com)

Problem 8 Let 1 = d1 < d2 < · · · < dk = n be all divisors of a positive integer
n. Given that n = d2d3 + d2d5 + d3d5, find all possible values of k.

(Belarus, 2017)

Problem 9 Consider the set A of positive integers n such that

n = d4i + d4j + d4k + d4l + d4t

where di < dj < dk < dl < dt are some positive divisors of n

a) Prove that all elements of A are divisible by 5.

b) Does A contain only finitely many elements?

(Belarus, 2017)

Problem 10 Find all positive integers n such that

d41 + d42 + · · ·+ d4k = n4 + n3 + n2 + n+ 1

where 1 = d1 < d2 < · · · < dk = n are all divisors of n.

(Switzerland, 2013)

Problem 11 Let 1 = d1 < d2 < · · · < dk = n be all divisors of a positive integer
n. Find all n such that k ≥ 6 and

n = d25 + d26.

(Czech-Polish-Slovak Match, 2019)
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by February 28, 2022.

4691. Proposed by Michel Bataille.

Let ABC be a triangle inscribed in a circle Γ and let U1, U2, U3 be distinct points
of Γ. Let σi be the Simson line of Ui (i = 1, 2, 3) and let Vk be the point of
intersection of σi and σj ({i, j, k} = {1, 2, 3}). Given that ∆V1V2V3 is congruent
to ∆U1U2U3, prove that ∆V1V2V3 and ∆U1U2U3 are symmetrical about a point
and identify this point.

4692. Proposed by Todor Zaharinov.

Let a, b and c be nonzero real numbers such that a3 + b3 + c3 = 0. Find the
minimum possible value of

(a+ b+ c)

Å
1

a
+

1

b
+

1

c

ã
and determine where the minimum holds.

4693. Proposed by Michel Bataille.

Prove that
n∑
k=1

sec4
kπ

2n+ 1
=

8n(n+ 1)(n2 + n+ 1)

3

for any positive integer n.

4694. Proposed by Chen Jiahao.

In triangle ABC, the inscribed circle touches side BC, CA and AB at D,E and
F , respectively. Let A′, B′ and C ′ be the reflection of A,B and C in line EF ,
DF and DE, respectively. Show that the area of triangle DEF equals the area of
triangle A′B′C ′.
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4695. Proposed by George Apostolopoulos.

Let triangle ABC have sides BC = a,CA = b and AB = c and circumradius R.
Equilateral triangles A1BC, B1CA and C1AB are drawn externally to triangle
ABC. Let K, L and M be the centroids of the equilateral triangles, respectively.
Prove that

[ALM ] + [BMK] + [CKL] ≤ 3
√

3

4
R2,

where [·] denotes the area of the corresponding triangle.

4696. Proposed by Elena Corobea.

Find the following limit:

lim
n→∞

∫ 1

0

Ä
1 + x+ x2

2 + · · ·+ xn−1

n−1

än+1Ä
1 + x+ x2

2 + · · ·+ xn

n

än dx.

4697. Proposed by Amit Kumar Basistha.

Let f : N → N with f(1) = 1, f(2) = a for some a ∈ N and, for each positive
integer n ≥ 3, f(n) is the smallest value not assumed at lower integers that is
coprime with f(n− 1). Prove that f is onto.

4698. Proposed by Goran Conar.

Let x1, . . . , xn > 0 be real numbers such that x1 + x2 + · · ·+ xn = 1. Prove that

n∑
i=1

xi ln(1 + xi) < ln 2 .

4699. Proposed by Mihaela Berindeanu.

Let ABC be a non isosceles triangle, D and E be two points outside the triangle
and F be the foot of the altitude from A. Show that if

] (EAC) = ] (ECA) = ] (ABC) , ] (DAB) = ] (ABD) = ] (BCA)

and BE ∩ CD ∩AF = {X}, then AX = XF .

4700. Proposed by Hung Nguyen Viet.

Let ABCD be a unit square. The points M and N lie on the sides BC and CD
respectively such that ∠MAN = 45◦. Prove that

MN +BM ·DN = 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 28 février 2022.

4691. Proposé par Michel Bataille.

Soit ABC un triangle inscrit dans le cercle Γ et soient U1, U2, U3 des points dis-
tincts appartenant à Γ. Pour i = 1, 2, 3, soit σi la droite de Simson de Ui; pour
{i, j, k} = {1, 2, 3}, le point d’intersection de σi et σj est dénoté Vk. Étant donné
que ∆V1V2V3 est congru à ∆U1U2U3, démontrer que ∆V1V2V3 est symétrique à
∆U1U2U3 par rapport à un certain point; aussi, identifier ce point.

4692. Proposé par Todor Zaharinov.

Soient a, b et c des nombres réels non nuls tels que a3 + b3 + c3 = 0. Déterminer
la valeur minimale de

(a+ b+ c)

Å
1

a
+

1

b
+

1

c

ã
et identifier les valeurs de a, b et c produisant ce minimum.

4693. Proposé par Michel Bataille.

Démontrer que
n∑
k=1

sec4
kπ

2n+ 1
=

8n(n+ 1)(n2 + n+ 1)

3

pour tout entier positif n.

4694. Proposé par Chen Jiahao.

Pour le triangle ABC, le cercle inscrit touche les côtés BC, CA et AB en D, E et
F , respectivement. Soient A′, B′ et C ′ les réflexions de A, B et C par rapport aux
lignes EF , DF et DE, respectivement. Démontrer que les surfaces de 4DEF et
4A′B′C ′ sont égales.
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4695. Proposé par George Apostolopoulos.

Le triangle ABC a des côtés de longueurs données par BC = a,CA = b et AB = c;
le rayon du cercle circonscrit est dénoté R. Des triangles équilatéraux A1BC,
B1CA et C1AB sont tracés à l’extérieur du triangle ABC. Enfin, soient K, L et
M les centrodes de ces triangles équilatéraux, respectivement. Démontrer que

[ALM ] + [BMK] + [CKL] ≤ 3
√

3

4
R2,

où [·] dénote la surface du triangle en question.

4696. Proposé par Elena Corobea.

Déterminer la limite suivante:

lim
n→∞

∫ 1

0

Ä
1 + x+ x2

2 + · · ·+ xn−1

n−1

än+1Ä
1 + x+ x2

2 + · · ·+ xn

n

än dx.

4697. Proposé par Amit Kumar Basistha.

Soit f : N→ N une fonction telle que f(1) = 1 et f(2) = a pour un certain a ∈ N;
pour n ≥ 3, f(n) est défini comme étant le plus petit entier positif copremier avec
f(n− 1), puis distinct de f(1), f(2), . . . , f(n− 1). Démontrer que f est surjective.

4698. Proposé par Goran Conar.

Soient x1, . . . , xn > 0 des nombres réels tels que x1 +x2 + · · ·+xn = 1. Démontrer
que

n∑
i=1

xi ln(1 + xi) < ln 2 .

4699. Proposé par Mihaela Berindeanu.

Soit ABC un triangle non isocèle et soient D et E deux points à l’extérieur du
triangle; aussi, soit F le pied de l’altitude émanant de A. Démontrer que si

] (EAC) = ] (ECA) = ] (ABC) , ] (DAB) = ] (ABD) = ] (BCA)

et BE ∩ CD ∩AF = {X}, alors AX = XF .

4700. Proposé par Hung Nguyen Viet.

Soit ABCD un carré de côté 1. Les points M et N se trouvent sur les côtés BC
et CD, respectivement, de façon à ce que ∠MAN = 45◦. Démontrer que

MN +BM ·DN = 1.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2021: 47(5), p. 255–258.

4641. Proposed by Al Şeymanur.

Let K,L, and M be the midpoints of the sides BC,CA, and AB, respectively, of
an acute triangle ABC. Denote by

A′, L′,M ′′ the reflections of A,L,M in the line BC,

B′,M ′,K ′′ the reflections of B,M,K in the line CA,

C ′,K ′, L′′ the reflections of C,K,L in the line AB.

Using square brackets to denote areas, we set T = [ABC], T ′ = [A′B′C ′], and
H = [K ′M ′′L′K ′′M ′L′′]. Prove that

4H − T ′ = 9T, T ′ ≤ 4T and H ≤ 13

4
T.

We received 7 correct solutions. We present 3 solutions.

Solution 1, by Marie-Nicole Gras.

Let a = BC, b = CA, c = AB be the sides of 4ABC; the labels A,B,C denote
the angles ∠BAC, ∠CBA and ∠ACB, respectively.

Points M ′′, L′,K ′′,M ′, L′′ and K ′ are the middle of A′B,A′C,B′C,B′A,C ′A and
C ′B, respectively. The area of polygon A′CB′AC ′B is equal to 4T .

•

• •

A

B C

A′

B′

C ′

K

LM

M ′′
L′

K ′′

M ′

L′′

K ′
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Since 4ABC is acute, we have 3A < 3π
2 ; we put ε1 = 1 if 3A < π, that is to say

the vertex A is outside 4A′B′C ′, and ε1 = −1, otherwise; we define ε2 and ε3,
analogously.

Let S = ε1
[
AB′C ′

]
+ ε2

[
BC ′A′

]
+ ε3

[
CA′B′

]
; then

S =
1

2
bc sin(3A) +

1

2
ca sin(3B) +

1

2
ab sin(3C).

We deduce that
T ′ = 4T − S. (1)

Now, we compute H and note that[
A′M ′′L′

]
=
[
B′K ′′M ′

]
=
[
C ′L′′K ′

]
=

1

4
T,[

AM ′L′′
]

+
[
BK ′M ′′

]
+
[
CL′K ′′

]
=

1

4
S;

We deduce that

H = 4T − 3

4
T − 1

4
S =

13

4
T − 1

4
S; (2)

It follows
4H = 13T − (4T − T ′) = 9T + T ′. (3)

To prove the inequalities, it remains, using (1) and (2), to show that S ≥ 0. We
have, (R is the circumradius):

2S = ab sinC(1− 4 sin2 C) + bc sinA(1− 4 sin2A) + ac sinB(1− 4 sin2B)

=
abc

2R

(
3− 4(sin2A+ sin2B + sin2 C)

)
;

Since it is known [for example, O. Bottema et al, Geometric Inequalities (1968),
item 2.3] that sin2A+ sin2B + sin2 C ≤ 3

4 , we deduce S ≥ 0, whence the proof.

Solution 2, by Theo Koupelis.

Let a, b, c be the side lengths of triangle ABC and R its circumradius. Clearly

[AML] = [MBK] = [KCL] = [KLM ] =
1

4
T.

Triangles AL′′M, ML′′K ′, MK ′B are the reflections of triangles ALM, MLK,
and MKB, respectively, about the line AB, and thus [AL′′K ′B] = 3

4T, with

∠MAL′′ = ∠A and ∠MBK ′ = ∠B.

Similarly, [BM ′′L′C] = 3
4T, with

∠KBM ′′ = ∠B and ∠KCL′ = ∠C,
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and [CK ′′M ′A] = 3
4T, with ∠LCK ′′ = ∠C and ∠LAM ′ = ∠A. Finally, we have

[M ′AL′′] =
1

2
·AM ′ ·AL′′ · sin(∠M ′AL′′) =

bc

8
· sin(∠M ′AL′′).

We note that if 180◦ ≤ 3∠A < 270◦, then ∠M ′AL′′ = 360◦ − 3∠A < 180◦, and
triangle M ′AL′′ is inside the polygon K ′M ′′L′K ′′M ′L′′; otherwise, if 3∠A < 180◦,
then triangle M ′AL′′ is outside the polygon. Similarly for triangles K ′BM ′′ and
L′CK ′′. Therefore,

H = T +
9

4
T − 1

8
[ab · sin(3∠C) + ac · sin(3∠B) + bc · sin(3∠A)] .

Using the law of sines
sin∠A
a

=
sin∠B
b

=
sin∠C
c

=
1

2R
and the identity

sin(3x) = 3 sinx− 4 sin3 x, we rewrite the above expression as

H =
13

4
T − abc

16R3

[
9R2 − (a2 + b2 + c2)

]
. (4)

Similarly, triangles AC ′B, BA′C, and CB′A are reflections of triangle ABC about
its corresponding sides. Therefore [AC ′B] = [BA′C] = [CB′A] = T. Also,

[B′AC ′] =
1

2
· AB′ · AC ′ sin∠B′AC ′ =

bc

2
· sin∠M ′AL′′, because the points

A,M ′, B′ are collinear, and so are the points A,L′′, C ′. Similarly for triangles
C ′BA′ and A′CB′. Therefore, as above, we get

T ′ = T + 3T − 1

2
[ab · sin(3∠C) + ac · sin(3∠B) + bc · sin(3∠A)] ,

or

T ′ = 4T − abc

16R3

[
9R2 − (a2 + b2 + c2)

]
. (5)

From (4) and (5) we see that 4H−T ′ = 9T. Also, it is well-known that for an acute
triangle we have a2 + b2 + c2 ≤ 9R2, with equality if the triangle is equilateral.
Therefore we also have T ′ ≤ 4T and H ≤ 13

4 T.

Solution 3, by Sorin Rubinescu.

Because 4ABC is acute angled, one of the triangles’ AB′C ′, BC ′A′, CB′A′ inte-
rior and ABC’s interior are not disjoint. Let this triangle be CB′A′.

The areas of the congruent triangles ABC,ABC ′, ACB′, BCA are equal to T and
the area of the triangle A′B′C is equal to:

T ′ = 4T + [BC ′A′] + [AB′C ′]− [CB′A′]

= 4T +
bc · sin (2π − 3A)

2
+
ac · sin (2π − 3B)

2
− ab · sin 3C

2

= 4T − 1

2
(ab · sin 3C + ac · sin +bc · sin 3A) ≤ 4T,
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where a, b, c are the lengths of the sides of the triangle ABC.

Thus,
T ′ ≤ 4T. (6)

We have

H = [K ′L”AB] + [K ′BM ′] + [BM ′L′C] + [L”AM ′] + [ACK ′M ′]− [CK”L′] + [ABC]

=
3

4
T +

1

4
[BA′C ′] +

3

4
T +

1

4
[AB′C ′] +

3

4
T − 1

4
[CA′B′] + T,

which gives us:

4H = 9T + (4T + [BC ′A′] + [AB′C ′]− [CA′B′]) = 9T + T ′.

Hence,
4H − T ′ = 9T. (7)

By (6) and (7) it follows that 4H ≤ 4T + 9T = 13 · T , so H ≤ 13
4 T .

4642. Proposed by Adam L. Bruce.

Let A ∈ Rn×n be a positive definite matrix and let x ∈ Rn. Show that

(xTA2x)3 ≤ (xTAx)(xTA2x)(xTA3x).

Six correct solutions were received from 5 respondents.

Solution 1, by Lucas Vantaggio, and the proposer (independently).

Define the inner product 〈x, y〉 = xTAy with associated norm ‖x‖ =
√
〈x, x〉. By

the Cauchy-Schwarz inequality, 〈x, y〉2 ≤ ‖x‖2‖y‖2. Setting y = Ax and using
AT = A yields

(xTA2x)2 ≤ (xTAx)((Ax)TA(Ax)) = (xTAx)(xTA3x),

from which the desired result follows.

Solution 2, by Brian Bradie, and the UCLan Cyprus Problem Solving Group (in-
dependently).

A has n positive real eigenvectors λi with a corresponding orthonormal basis of
eigenvectors vi (1 ≤ i ≤ n). We may suppose that x 6= 0 and that x =

∑n
i=1 µivi.

Then, for k = 1, 2, 3,

xTAkx =
n∑
i=1

µ2
iλ
k
i .

Then

(xTA2x)2 = (
n∑
i=1

µ2
iλ

2
i )

2 ≤ (
n∑
i=1

µ2
iλi)(

n∑
i=1

µ2
iλ

3
i ) = (xTAx)(xTA3x),
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by an application of the Cauchy-Schwarz inequality to the vectors (µiλ
1/2
i ) and

(µiλ
3/2
i ).

Editor’s comment: Two solvers had an approach related to Solution 2 that began
by representing A in the form PDPT where D is a positive nonsingular diagonal
matrix and P is an orthogonal transformation. Then it is sufficient to establish
the result for D.

The UCLan Cyprus Problem Solving Group pointed out that some definitions of
positive definite do not require the matrix to be symmetric. In this case, the
2 × 2 matrix A = (1, 1; 0, 1) and vector (1, 1)T provide a counterexample, since
xTAx = 3, xTA2x = 4 and xTA3x = 5. (Observe that xTAx = x2 + xy + y2.)

4643. Proposed by Nguyen Viet Hung.

Find all pairs (m,n) of positive integers such that gcd(m,n) = 1 and integer
(2m − 1)(2n − 1) is a perfect square.

We received 17 correct solutions. We present the one by the UCLan Cyprus Prob-
lem Solving Group.

Suppose p is a prime such that p|2m − 1 and p|2n − 1.

Let k be the order of 2 modulo p. Then k|m and k|n and therefore k = 1, which
is impossible since 21 6≡ 1 (mod p).

Thus 2m − 1 and 2n − 1 are relatively prime and therefore must both be perfect
squares. For any natural number r ≥ 2 we have that 2r − 1 cannot be a perfect
square since 2r − 1 ≡ 3 (mod 4) and 3 is not a quadratic residue modulo 4.
Therefore we must have m = n = 1 for which (2m − 1)(2n − 1) = 1 is indeed a
perfect square.

4644. Proposed by Mihaela Berindeanu, modified by the Editorial Board.

Let z1, z2, z3 ∈ C be different numbers, with |z1| = |z2| = |z3| = 1. Show that

|2z1 − z2 − z3|+ |z3 − z2| ≥
1√
2

(|z2 − z3||z1 − z3|+ |z2 − z1||z2 − z3|) .

There were 6 correct solutions received. There were two other submissions. One
did not provide a solution but speculated as to whether the problem was known. The
second provided what might have been a valid solution, but there were a number of
complex steps involved that were not transparent.

Solution 1, by Ben Ajiba Mohamed Amine.

Let A,B,C be the respective positions of z1, z2, z3 in the complex plane and
M , corresponding to 1

2 (z2 + z3), be the midpoint of BC. Let a, b, c,m be the
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respective lengths of BC, CA, AB and the median AM . The desired inequality
can be written as √

2(2m+ a) ≥ a(b+ c).

Suppose that AM meets the circle again at D and that d is the length of AD. Since
AM ·MD = BM ·MC and 4m2 = 2(b2+c2)−a2, it follows that m(d−m) = a2/4,
whence

md = m2 +
a2

4
=
b2 + c2

2
.

Since d ≤ 2, the diameter of the circle,

m ≥ 1

4
(b2 + c2) ≥ 1

8
(b+ c)2.

Therefore

(2m+ a)− 1√
2
a(b+ c) ≥ (b+ c)2

4
− 1√

2
a(b+ c) + a

=

Å
b+ c

2
− a√

2

ã2
− a2

2
+ a

=

Å
b+ c

2
− a√

2

ã2
+

1

2
a(2− a)

≥ 0,

as desired. Equality occurs if and only if b = c and a = 2.

Solution 2, by C.R. Pranesachar.

We follow the notation and formulation of the previous solution. Let h be the
length of the altitude from A to BC. Let E complete the parallelogram AMCE
and apply Apollonius’ theorem, 2(AM2 +MC2) = AC2 +ME2, to obtain

2

Å
m2 +

a2

4

ã
= b2 + c2.

Using the fact that a = 2 sinA, we see that the difference between the squares of
the two sides of the desired inequality is

2(2m+ a)2 − (b+ c)2a2 = 8m2 + 8am+ 2a2 − 4(b+ c)2 sin2A

= 4(b2 + c2)(1− sin2A) + 8am− 8bc sin2A

= 4(b2 + c2)(1− sin2A) + 8am− 16[ABC] sinA

= 4(b2 + c2)(1− sin2A) + 8am− 8ah sinA

= 4(b2 + c2)(1− sin2A) + 8a(m− h sinA) ≥ 0,

which establishes the inequality. Equality occurs if and only if sinA = 1 and
m = h, i.e., when triangle ABC is isosceles and right-angled at A.
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4645. Proposed by Leonard Giugiuc and Bogdan Suceava.

Let a, b, c be positive real numbers such that a+ b+ c+ d = 1
a + 1

b + 1
c + 1

d . Prove
that

(a+ b+ c+ d)2 + 48abcd ≥ 64.

We received 6 submissions, 5 of which are correct. We present the solution by Ioan
Viorel Codreanu.

Let S1 = 1
4

∑
a, S2 =

»
1
6

∑
ab, S3 = 3

»
1
4

∑
abc, and S4 = 4

√
abcd denote the

elementary symmetric means of a, b, c, d.

Note first that 1
4 (
∑
a) (
∏
a) = 1

4

∑
abc so

S1S
4
4 = S3

3 . (1)

Hence the given inequality becomes (4S1)2 + 48S4
4 ≥ 64 or

S2
1 + 3S2

4 ≥ 4. (2)

By Newton’s Inequality, we have S2
2 ≥ S1S3 and

S2
3 ≥ S2S4 (3)

which implies
S2S3 ≥ S1S4 (4)

From (1) and (4), we then get S3
3 = S1S4

4 ≤ (S2S3)S4
3 or S3

2 ≤ S2S4
3.

Hence from (3) we have S2S4 ≤ S2S4
3 so S4 ≥ 1. Then by the AM-GM Inequality

we get S1 ≥ S4 ≥ 1. Thus, S1
2 + 3S4

4 ≥ 1 + 3 = 4, establishing (2) and our proof
is complete.

Editor’s comments: Besides the proposers, two other solvers showed that (a+ b+

c+ d)2 + 48abcd = 64 if and only if (a, b, c, d) = (1, 1, 1, 1) or (
√

10,
√
10
5 ,

√
10
5 ,

√
10
5 )

and its cyclic permutations.

4646. Proposed by George Apostolopoulos.

Let ABC be an acute triangle with inradius r and circumradius R. Prove that

cotA+ cotB + cotC ≤
√

3

Å
R

2r

ã2
.

We received 42 solutions, all of which were correct. This included 19 solutions by
Mehra Vivek. We present the solution by Sorin Rubinescu.

We will use the following well-known relations:

cotA+ cotB + cotC =
a2 + b2 + c2

4F
, where F is the area of ABC; (1)
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a2 + b2 + c2 ≤ 9R2; (2)

s ≥ 3r
√

3 (Mitrinovic). (3)

We have

cotA+ cotB + cotC
(1)
=
a2 + b2 + c2

4F

(2)

≤ 9R2

4F
=

9R2

4rs

(3)

≤ 9R2

4r · 3r
√

3
=
√

3

Å
R

2r

ã2
.

Editor’s comment. As a number of solvers pointed out, the requirement that ABC
be acute is unnecessary.

4647. Proposed by Michel Bataille.

In the plane, two circles Γ and γ intersect at A and B. Let M (resp. N) be a
point of the arc of γ exterior (resp. interior) to Γ. If O is the centre of Γ, prove
that

OM2 −ON2 = k(MA ·MB +NA ·NB)

for some real number k independent of the chosen points M and N .

All but one of the seven submissions were correct and complete. We feature a com-
posite of the independent solutions from Marie-Nicole Gras, from Theo Koupelis,
and from the UCLan Cyprus Problem Solving Group.

Let Oγ and r be the center and radius of γ, and denote by t the distance OOγ
between the centers of the two circles. We shall show that k = t

r , whence k is
indeed independent of M and N .

In a Cartesian coordinate system we take Oγ = (0, 0), so that circle Γ has center
O = (−t, 0). Note that OOγ is the perpendicular bisector of AB, so that for
some α ∈ (0, π), A = (r cosα, r sinα) and B = (r cosα,−r sinα). Then we have
M = (r cosϑ, r sinϑ) for some ϑ ∈ (−α, α), and N = (r cosϕ, r sinϕ) for some
ϕ ∈ (α, 2π − α).

By the Law of Cosines (which the French evidently call Alkashi’s formula),

OM2 = t2 + r2 + 2tr cosϑ and ON2 = t2 + r2 + 2tr cosϕ,

so that
OM2 −ON2 = 2tr(cosϑ− cosϕ). (1)

Since 0 < ϑ < α < π, in the circle γ the chords MA and MB have lengths

MA = 2r sin

Å
α− ϑ

2

ã
and MB = 2r sin

Å
α+ ϑ

2

ã
.

Thus

(MA)(MB) = 4r2 sin

Å
α− ϑ

2

ã
sin

Å
α+ ϑ

2

ã
= 2r2(cosϑ− cosα).
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Similarly we obtain
(NA)(NB) = 2r2(cosα− cosϕ).

Thus
(MA)(MB) + (NA)(NB) = 2r2(cosϑ− cosϕ). (2)

By dividing both sides of the equation in (1) by the equation in (2) we conclude
that

k =
OM2 −ON2

(MA)(MB) + (NA)(NB)
=
t

r
,

as claimed.

Editor’s comments. Continuing with the above notation, let us define B′ to be
the point where the line MB again meets Γ. Did you know that the ratio MB′

MA is
independent of the position of M on the circle γ? Indeed, much to this editor’s
surprise,

MB′

MA
=
t

r
.

The person who submitted the incomplete treatment of the solution provided a
neat proof that that the desired quantity k (from the statement of our problem)
equals the quotient MB

MA , but they failed to prove that the ratio is constant.

4648. Proposed by Corneliu Manescu-Avram.

Let a be a positive integer and let p > 3 be a prime number such that a2+a+1 ≡ 0
(mod p). Prove that

(a+ 1)p ≡ ap + 1
(
mod p3

)
.

We received 10 submissions, all of which are correct. We present the solution by
Michel Bataille.

We first show that p ≡ 1 (mod 3). Since

a2 + a+ 1 ≡ 0 (mod p) ,

we have
a3 − 1 = (a− 1)(a2 + a+ 1) ≡ 0 (mod p) ,
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so a3 ≡ 1 (mod p). It follows that the order of a modulo p is 1 or 3.

Since a2 + a+ 1 ≡ 0 (mod p) and p > 3, we have a 6≡ 1 so it must be 3.

Since ap−1 ≡ 1 (mod p) (by Fermat’s Little Theorem), p − 1 is a multiple of 3.
Thus p ≡ 1 (mod 3).

Then what we have now is exactly the Crux problem proposal #3704 in the
January 2012 issue (p. 24) and a solution to which appeared in the January 2013
issue (p. 42). (Ed : one of the 2 solvers there was the current solver here.)

4649. Proposed by Mihaela Berindeanu.

For x, y, z ∈ R, show that

210x

2y + 2z
+

210y

2x + 2z
+

210z

2x + 2y
≥ 26x+2y+z−1 + 26y+2z+x−1 + 26z+2x+y−1.

We received 12 submissions of which 11 were correct and complete. We present
the solution by Oliver Geupel.

Put a = 2x, b = 2y, and c = 2z. Then, a, b, and c are positive numbers. We have
to show that

a10

b+ c
+

b10

c+ a
+

c10

a+ b
≥ 1

2

(
a6b2c+ b6c2a+ c6a2b

)
. (1)

By symmetry of the left hand side of (1) , there is no loss of generality in assuming
that a ≥ b ≥ c. As a consequence,

a

b+ c
≥ b

c+ a
≥ c

a+ b
; a9 ≥ b9 ≥ c9.

Applying Chebyshev’s inequality and Nesbitt’s inequality in succession, we obtain

a10

b+ c
+

b10

c+ a
+

c10

a+ b
≥ 1

3

Å
a

b+ c
+

b

c+ a
+

c

a+ b

ã (
a9 + b9 + c9

)
≥ 1

3
· 3

2

(
a9 + b9 + c9

)
=

1

2

(
a9 + b9 + c9

)
.

By the arithmetic vs. geometric mean inequality, we conclude

a9 + b9 + c9 =
6a9 + 2b9 + c9

9
+

6b9 + 2c9 + a9

9
+

6c9 + 2a9 + b9

9

≥ a6b2c+ b6c2a+ c6a2b.

Hence the result (1).
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4650. Proposed by Roberto F. Stöckli.

Let In = ((n − 1)2, n2]. Define f(n) = 1 if In contains exactly one triangular
number (recall that the nth triangular number is tn = n(n + 1)/2) and f(n) = 0
otherwise. Find the value of

lim
n→∞

f(1) + f(2) + · · ·+ f(n)

n

We received 8 submissions and 7 of them were complete and correct. We present
the solution by the majority of solvers.

Let cn be the number of triangular numbers in (0, n2]; it is easy to show that

lim
n→∞

cn/n =
√

2.

Note that the k-th triangular number tk = k(k+1)/2 belongs to In =
(
(n−1)2, n2

]
if and only if

(n− 1)2 <
k(k + 1)

2
≤ n2

⇐⇒ 8(n− 1)2 + 1 < (2k + 1)2 ≤ 8n2 + 1

⇐⇒ 2k + 1 ∈ Jn :=
(»

8(n− 1)2 + 1,
√

8n2 + 1
]
.

Let

Ln =
√

8n2 + 1−
»

8(n− 1)2 + 1

be the length of Jn. It is easy to verify that 2 ≤ Ln < 4 directly; alternatively,
one can establish so by showing that Ln is increasing in n, and observing that as
n→∞,

Ln =
16n− 8√

8n2 + 1 +
√

8(n− 1)2 + 1
→ 16

4
√

2
= 2
√

2.

It follows that, there exists exactly one or two odd integers in Jn, and consequently
one or two triangular numbers in In.

Let an be the number of Ik containing exactly one triangular number with 1 ≤
k ≤ n and bn the number of Ik containing two triangular numbers with 1 ≤ k ≤ n.
Then we have

an + bn = n

an + 2bn = cn

Solving this system gives an = 2n− cn. Therefore,

lim
n→∞

f(1) + f(2) + · · ·+ f(n)

n
= lim
n→∞

an
n

= lim
n→∞

2n− cn
n

= 2−
√

2.
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4409. Proposed by Cristian Chiser. Correction.

Let A and B be two matrices in M2(R) such that A2 = O2 and B is invertible.
Prove that the polynomial P = det(xB2 −AB +BA) has all real roots.

This problem was originally published in Crux 45(1) with a typo: the conclusion
asked for integer roots instead of real roots, as was stated in the original proposal.
We apologize for the typo and publish the proposer’s intended original solution
here, slightly modified by the editor.

Let Tr(X) denote the trace of the matrix X. Then the polynomial p(x) above can
be written as

p(x) = x2 det(B2) +mx+ det(BA−AB),

where
m = Tr(BA−AB)Tr(B2)− Tr[(BA−AB)B2].

Using basic properties of the trace function, we have

m = −Tr(BAB2) + Tr(AB3) = −Tr(AB3) + Tr(AB3) = 0.

Furthermore, if we set t(x) = det(BA+ xAB), then

t(x) = x2 det(AB) + [Tr(AB)Tr(BA)− Tr(BAAB)]x+ det(BA).

Since A2 = 0, A is singular, and it follows that t(x) = x(Tr(AB))2. Thus setting
x = −1, we deduce that det(BA−AB) = −(Tr(AB))2

Hence p(x) = x2 det(B2)− (Tr(AB))2 and the roots of p(x) are ±Tr(AB)/ det(B).
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