Notations: In the following, $\mathbb{N}=\{1,2,3, \cdots\}$ denotes the set of natural numbers, \mathbb{R} denotes the set of real numbers.

1. Find all pairs (x, y) with x, y real, satisfying the equations:

$$
\sin \left(\frac{x+y}{2}\right)=0, \quad|x|+|y|=1
$$

2. Suppose that $P Q$ and $R S$ are two chords of a circle intersecting at a point O. It is given that $P O=3 \mathrm{~cm}$ and $S O=4 \mathrm{~cm}$. Moreover, the area of the triangle $P O R$ is $7 \mathrm{~cm}^{2}$. Find the area of the triangle $Q O S$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that for all $x \in \mathbb{R}$ and for all $t \geq 0$,

$$
f(x)=f\left(e^{t} x\right)
$$

Show that f is a constant function.
4. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a continuous function such that for all $x \in$ $(0, \infty)$,

$$
f(2 x)=f(x)
$$

Show that the function g defined by the equation

$$
g(x)=\int_{x}^{2 x} f(t) \frac{d t}{t} \text { for } x>0
$$

is a constant function.
P.T.O.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that its derivative f^{\prime} is a continuous function. Moreover, assume that for all $x \in \mathbb{R}$,

$$
0 \leq\left|f^{\prime}(x)\right| \leq \frac{1}{2}
$$

Define a sequence of real numbers $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ by:

$$
\begin{gathered}
a_{1}=1 \\
a_{n+1}=f\left(a_{n}\right) \text { for all } n \in \mathbb{N}
\end{gathered}
$$

Prove that there exists a positive real number M such that for all $n \in \mathbb{N}$,

$$
\left|a_{n}\right| \leq M
$$

6. Let $a \geq b \geq c>0$ be real numbers such that for all $n \in \mathbb{N}$, there exist triangles of side lengths a^{n}, b^{n}, c^{n}. Prove that the triangles are isosceles.
7. Let $a, b, c \in \mathbb{N}$ be such that

$$
a^{2}+b^{2}=c^{2} \text { and } c-b=1
$$

Prove that
(i) a is odd,
(ii) b is divisible by 4 ,
(iii) $a^{b}+b^{a}$ is divisible by c.
8. Let $n \geq 3$. Let $A=\left(\left(a_{i j}\right)\right)_{1 \leq i, j \leq n}$ be an $n \times n$ matrix such that $a_{i j} \in\{1,-1\}$ for all $1 \leq i, j \leq n$. Suppose that

$$
\begin{gathered}
a_{k 1}=1 \text { for all } 1 \leq k \leq n \text { and } \\
\sum_{k=1}^{n} a_{k i} a_{k j}=0 \text { for all } i \neq j
\end{gathered}
$$

Show that n is a multiple of 4 .

