Notations: In the following, $\mathbb{N} = \{1, 2, 3, \cdots\}$ denotes the set of natural numbers, \mathbb{R} denotes the set of real numbers.

1. Find all pairs (x, y) with x, y real, satisfying the equations:

$$\sin\left(\frac{x+y}{2}\right) = 0, \ |x| + |y| = 1.$$

- 2. Suppose that PQ and RS are two chords of a circle intersecting at a point O. It is given that PO = 3 cm and SO = 4 cm. Moreover, the area of the triangle POR is 7 cm². Find the area of the triangle QOS.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that for all $x \in \mathbb{R}$ and for all $t \geq 0$,

$$f(x) = f(e^t x).$$

Show that f is a constant function.

4. Let $f:(0,\infty)\to\mathbb{R}$ be a continuous function such that for all $x\in(0,\infty)$,

$$f(2x) = f(x).$$

Show that the function g defined by the equation

$$g(x) = \int_{x}^{2x} f(t) \frac{dt}{t}$$
 for $x > 0$

is a constant function.

P.T.O.

5. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that its derivative f' is a continuous function. Moreover, assume that for all $x \in \mathbb{R}$,

$$0 \le \left| f'(x) \right| \le \frac{1}{2}.$$

Define a sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$ by:

$$a_1 = 1$$
,

$$a_{n+1} = f(a_n)$$
 for all $n \in \mathbb{N}$.

Prove that there exists a positive real number M such that for all $n \in \mathbb{N}$,

$$|a_n| \leq M$$
.

- 6. Let $a \geq b \geq c > 0$ be real numbers such that for all $n \in \mathbb{N}$, there exist triangles of side lengths a^n , b^n , c^n . Prove that the triangles are isosceles.
- 7. Let $a, b, c \in \mathbb{N}$ be such that

$$a^2 + b^2 = c^2$$
 and $c - b = 1$.

Prove that

- (i) a is odd,
- (ii) b is divisible by 4,
- (iii) $a^b + b^a$ is divisible by c.
- 8. Let $n \geq 3$. Let $A = ((a_{ij}))_{1 \leq i,j \leq n}$ be an $n \times n$ matrix such that $a_{ij} \in \{1,-1\}$ for all $1 \leq i,j \leq n$. Suppose that

$$a_{k1} = 1$$
 for all $1 \le k \le n$ and

$$\sum_{k=1}^{n} a_{ki} a_{kj} = 0 \text{ for all } i \neq j.$$

Show that n is a multiple of 4.