(1) Let the sequence $\left\{a_{n}\right\}_{n \geq 1}$ be defined by

$$
a_{n}=\tan (n \theta),
$$

where $\tan (\theta)=2$. Show that for all n, a_{n} is a rational number which can be written with an odd denominator.
(2) Consider a circle of radius 6 as given in the diagram below. Let B, C, D and E be points on the circle such that $B D$ and $C E$, when extended, intersect at A. If $A D$ and $A E$ have length 5 and 4 respectively, and $D B C$ is a right angle, then show that the length of $B C$ is $\frac{12+9 \sqrt{15}}{5}$.

(3) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function given by

$$
f(x)= \begin{cases}1 & \text { if } x=1 \\ e^{\left(x^{10}-1\right)}+(x-1)^{2} \sin \left(\frac{1}{x-1}\right) & \text { if } x \neq 1\end{cases}
$$

(a) Find $f^{\prime}(1)$.
(b) Evaluate $\lim _{u \rightarrow \infty}\left[100 u-u \sum_{k=1}^{100} f\left(1+\frac{k}{u}\right)\right]$.
(4) Let S be the square formed by the four vertices $(1,1),(1,-1),(-1,1)$, and $(-1,-1)$. Let the region R be the set of points inside S which are closer to the centre than to any of the four sides. Find the area of the region R.
(5) Let $g: \mathbb{N} \rightarrow \mathbb{N}$ with $g(n)$ being the product of the digits of n.
(a) Prove that $g(n) \leq n$ for all $n \in \mathbb{N}$.
(b) Find all $n \in \mathbb{N}$, for which $n^{2}-12 n+36=g(n)$.
(6) Let p_{1}, p_{2}, p_{3} be primes with $p_{2} \neq p_{3}$, such that $4+p_{1} p_{2}$ and $4+p_{1} p_{3}$ are perfect squares. Find all possible values of p_{1}, p_{2}, p_{3}.
(7) Let $A=\{1,2, \ldots, n\}$. For a permutation $P=(P(1), P(2), \cdots, P(n))$ of the elements of A, let $P(1)$ denote the first element of P. Find the number of all such permutations P so that for all $i, j \in A$:

- if $i<j<P(1)$, then j appears before i in P; and
- if $P(1)<i<j$, then i appears before j in P.
(8) Let k, n and r be positive integers.
(a) Let $Q(x)=x^{k}+a_{1} x^{k+1}+\cdots+a_{n} x^{k+n}$ be a polynomial with real coefficients. Show that the function $\frac{Q(x)}{x^{k}}$ is strictly positive for all real x satisfying

$$
0<|x|<\frac{1}{1+\sum_{i=1}^{n}\left|a_{i}\right|} .
$$

(b) Let $P(x)=b_{0}+b_{1} x+\cdots+b_{r} x^{r}$ be a non-zero polynomial with real coefficients. Let m be the smallest number such that $b_{m} \neq$ 0 . Prove that the graph of $y=P(x)$ cuts the x-axis at the origin (i.e. P changes sign at $x=0$) if and only if m is an odd integer.

