CHENNAI MATHEMATICAL INSTITUTE

Undergraduate Programme in Mathematics and Computer Science/Physics Solutions of the $\mathbf{2 2}^{\text {nd }}$ May 2022 exam

Note: The solutions below consist only of main steps and strategies and do not contain all the details expected in the exam.

B1. [11 points] Given $\triangle X Y Z$, the following constructions are made: mark point W on segment $X Z$, point P on segment $X W$ and point Q on segment $Y Z$ such that

$$
\frac{W Z}{Y X}=\frac{P W}{X P}=\frac{Q Z}{Y Q}=k .
$$

See the schematic figure (not to scale). Extend segments $Q P$ and $Y X$ to meet at the point R as shown. Prove that $X R=X P$.

Solution: First a construction - mark V on $X Z$ such that $Q V$ is parallel to $Y R$. There are two cases here depending on whether V is between $P W$ or $W Z$, however, the arguments are the same. We assume here that V is between $P W$. The aim is to show that $\triangle V P Q$ is isosceles and then show that it is similar to $\triangle X P R$. Use BPT to conclude that $V Q=\frac{k}{k+1}(X Y)$. Using the given ratios find an expression for $V Z$ and substitute it in $P V=P Z-V Z$ to conclude that $P V=V Q$.
One can also extend $Z X$ to $Z X^{\prime}$ such that $Y X^{\prime}$ is parallel to $P Q$. One can then show that $\triangle Y X X^{\prime}$ is isosceles and similar to $\triangle R X P$.
Another strategy is to use Menalaus theorem for $\triangle X Y Z$ with segment $Q R$ as the transversal. We have:

$$
\frac{X R}{R Y} \frac{Y Q}{Q Z} \frac{Z P}{P X}=-1
$$

This leads to the following implications leading to the equality we want:

$$
\begin{aligned}
X R \cdot P Z & =R Y \cdot P W \\
\frac{X Y+X R}{X R} & =\frac{P W+W Z}{P W} \\
\frac{X Y}{X R} & =\frac{W Z}{P Z} \\
\frac{P W}{X R} & =\frac{P W}{X P} .
\end{aligned}
$$

B2. [11 points] In the $X Y$ plane, draw horizontal and vertical lines through each integer on both axes so as to get a grid of small 1×1 squares whose vertices have integer coordinates.

1. Consider the line segment D joining $(0,0)$ with (m, n). Find the number of small 1×1 squares that D cuts through, i.e., squares whose interiors D intersect. For example, the line segment joining $(0,0)$ and $(2,3)$ cuts through 4 small squares.
2. Now let L be an arbitrary line. Find the maximum number of small 1×1 squares in an $n \times n$ grid that L can cut through.

Solution: Assume $\operatorname{gcd}(m, n)=1$. The line D has to cross $m-1$ vertical as well as horizontal lines. Moreover, D doesn't pass through any grid points. Hence, together with the starting square, we see that D cuts through $m+n-1$ squares.
Let $\operatorname{gcd}(m, n)=d$. The above argument is valid from $(0,0)$ to $(m / d, n / d)$ and so on for d many sections of D. Therefore the total number of squares D cuts is $m+n-d$.
Note that in order for L to cut through maximum number of squares it should not pass through any internal grid point. This is possible for a line joining $(0,0)$ with (x, n) where $n-1<x<n$. The required answer is $2 n-1$.

B3. [14 points] For a positive integer n, let $f(x):=1+x+x^{2} \cdots+x^{n}$. Find the number of local maxima of $f(x)$. Find the number of local minima of $f(x)$. For each maximum/ minimum $(c, f(c)$), find the integer k such that $k \leq c<k+1$.

Solution: We have $f^{\prime}(x)=1+2 x+\cdots+n x^{n-1}$. For $x \geq 0$ the derivative is strictly positive, hence $f(x)$ is strictly increasing. Therefore, we should only analyze negative values of x. Write the derivative as the following rational function

$$
f^{\prime}(x)=\frac{n x^{n+1}-(n+1) x^{n}+1}{(x-1)^{2}} .
$$

Note that there is no problem in the expression since we are assuming $x<0$. Denote by $D(x)$ the denominator of the derivative.
The case when n is odd. For $x<0$ the polynomial $D(x)$ is strictly positive. Hence there can't be any critical point.
The case when n is even. Observe that there could be only one critical point $c \in(-1,0)$. Since $D(x)<0$ for $x \leq-1$ and $D(0)=1$. Moreover, $D^{\prime}(x)>0$ for $x<0$ so $f^{\prime}(x)$ is increasing on $(-\infty, 0)$ hence it vanishes exactly once. As the derivative changes sign from -ve to +ve passing through c, so there is exactly one global minimum at c (where, $-1<c<0$).

B4. [14 points] For a continuous function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, define

- $A_{r}=$ the area bounded by the graph of f, X-axis, $x=1$ and $x=r$.
- $B_{r}=$ the area bounded by the graph of f, X-axis, $x=r$ and $x=r^{2}$.

Find all continuous functions f for which $A_{r}=B_{r}$ for every positive number r.
Solution: We are given

$$
\int_{1}^{r} f(x) d x=\int_{r}^{r^{2}} f(x) d x
$$

Applying $d / d r$, fundamental theorem of calculus and the chain rule to above equality we get

$$
f(x)=x f\left(x^{2}\right) \quad \forall x \in \mathbb{R}_{+}
$$

Letting $g(x)=x f(x)$ we see that $g(x)=g\left(x^{2}\right)$ for all x in the domain. Hence $g(x)=g\left(x^{\frac{1}{2^{n}}}\right)$ for all x and positive integers n. However, as n goes to infinity $x^{\frac{1}{2^{n}}}$ tends to 1 we have that $g(x)$ converges to $f(1)$. Hence $x f(x)=f(1)$ for all values of $x \in \mathbb{R}_{+}$.

B5. [14 points] Two distinct real numbers r and s are said to form a good pair (r, s) if

$$
r^{3}+s^{2}=s^{3}+r^{2}
$$

1. Find a good pair (a, l) with the largest possible value of l. Find a good pair (s, b) with the smallest value of s. For every good pair (c, d) other than the two you found, show that there is a third real number e such that (d, e) and (c, e) are good pairs.
2. Show that there are infinitely many good pairs of rational numbers.

Solution: Consider the function $f(x)=x^{3}-x^{2}$. Therefore (r, s) is a good pair iff $f(r)=$ $f(s)$.
Observe that $x=0, \frac{2}{3}$ are the only critical points of f. The local maximum occurs at $x=0$. The line $y=0$ intersects the graph of $f(x)$ at $(0,0)$ and $(1,0)$. Hence the required good pair (a, l) with the largest l value is $(0,1)$.
Note that the local minimum occurs at $x=\frac{2}{3}$. The line $y=f\left(\frac{2}{3}\right)=\frac{-4}{27}$ intersects the graph at $\left(\frac{-1}{3}, \frac{-4}{27}\right)$ and $\left(\frac{2}{3}, \frac{-4}{27}\right)$. Hence the required good pair is $\left(\frac{-1}{3}, \frac{2}{3}\right)$.
For $k \in\left(\frac{-4}{27}, 0\right)$ the line $y=k$ intersects the graph at 3 points. Hence the last statement of the first part follows.
For the second part we need to show that there for every rational number $q \in\left(\frac{-4}{27}, 0\right)$ the equation

$$
x^{3}-x^{2}-q=0
$$

has infinitely many rational solutions. However, this is true because there are infinitely many rationals satisfying $c+d+e=1, c d+d e+c e=0, c d e=q$.

B6. [14 points] Solve the following.

1. Let p be a prime. Show that $x^{2}+x-1$ has at most two roots modulo p. Find all primes p for which there is exactly one root.
2. Find all positive integers $n \leq 121$ such that $n^{2}+n-1$ is divisible by 121 .
3. What can you say about the number of roots of this equation modulo p^{2}.

Solution: Let a, b be two distinct roots of the equation modulo p. Therefore, p divides $a^{2}+a-1-\left(b^{2}+b-1\right)$, which is equivalent to saying that p divides either $a-b$ or $a+b+1$. In the former case we will have $a=b$, which is not allowed. Since both a, b are between 1 and p we have $3 \leq a+b+1 \leq 2 p-3$ which implies $a+b+1=p$. Thus $b=p-a-1$ is uniquely determined.
Suppose a is the only root. Then $p-a-1=a$, i.e., $p=2 a+1$. Therefore, $2 a+1$ divides $4\left(a^{+} a-1\right)$ and $(2 a+1)^{2}$. Subtracting we get that $2 a+1$ divides 5 .
Part 2: Since 121 divides $n^{+} n-1,11$ also divides it. Note that $n^{2}+n-1$ and $n^{2}+n-12$ are congruent modulo 11 . So the roots of the equation are 7,3 modulo 11 .
Consider $n=3+11 k$. Then $n^{2}+n-1$ is congruent to $77 k+11$ modulo 121 . Then $k=3$ works giving us $n=36$. Now consider $n=7+11 k$. In that case, $n^{+} n-1$ is congruent to $165 k+55$ modulo 121 . Which gives us $k=7$ and $n=84$.
For part (3), let a be a root modulo p. Then n is of the form $k p+a$ for some k between 0 and $p-1$. We would like to solve for k the following equation

$$
(k p+a)^{2}+(k p+a)-1
$$

modulo p^{2}. This is equivalent to finding k such that p divides $k(2 a+1)+a^{2}+a-1$. If $2 a+1$ is not a multiple of p then $k=-(2 a+1)^{-1}\left(a^{2}+a-1\right)$. If p divides $(2 a+1)$ then it is 5 and there is no such n.

