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Undergraduate Programme in Mathematics and Computer Science/Physics

Solutions of the 22nd May 2022 exam

Note: The solutions below consist only of main steps and strategies and do not contain all
the details expected in the exam.

B1. [11 points] Given △XY Z, the following constructions are made: mark point W on
segment XZ, point P on segment XW and point Q on segment Y Z such that

WZ

YX
=

PW

XP
=

QZ

Y Q
= k.

See the schematic figure (not to scale). Extend segments QP and Y X to meet at the point
R as shown. Prove that XR = XP .
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Solution: First a construction - mark V on XZ such that QV is parallel to Y R. There are
two cases here depending on whether V is between PW or WZ, however, the arguments are
the same. We assume here that V is between PW . The aim is to show that△V PQ is isosceles
and then show that it is similar to △XPR. Use BPT to conclude that V Q = k

k+1
(XY ).

Using the given ratios find an expression for V Z and substitute it in PV = PZ − V Z to
conclude that PV = V Q.
One can also extend ZX to ZX ′ such that Y X ′ is parallel to PQ. One can then show that
△Y XX ′ is isosceles and similar to △RXP .
Another strategy is to use Menalaus theorem for△XY Z with segmentQR as the transversal.
We have:

XR

RY

Y Q

QZ

ZP

PX
= −1.

This leads to the following implications leading to the equality we want:

XR · PZ = RY · PW

XY +XR

XR
=

PW +WZ

PW
XY

XR
=

WZ

PZ
PW

XR
=

PW

XP
.
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B2. [11 points] In the XY plane, draw horizontal and vertical lines through each integer on
both axes so as to get a grid of small 1× 1 squares whose vertices have integer coordinates.

1. Consider the line segment D joining (0, 0) with (m,n). Find the number of small 1×1
squares that D cuts through, i.e., squares whose interiors D intersect. For example,
the line segment joining (0, 0) and (2, 3) cuts through 4 small squares.

2. Now let L be an arbitrary line. Find the maximum number of small 1 × 1 squares in
an n× n grid that L can cut through.

Solution: Assume gcd(m,n) = 1. The line D has to crossm−1 vertical as well as horizontal
lines. Moreover, D doesn’t pass through any grid points. Hence, together with the starting
square, we see that D cuts through m+ n− 1 squares.
Let gcd(m,n) = d. The above argument is valid from (0, 0) to (m/d, n/d) and so on for d
many sections of D. Therefore the total number of squares D cuts is m+ n− d.
Note that in order for L to cut through maximum number of squares it should not pass
through any internal grid point. This is possible for a line joining (0, 0) with (x, n) where
n− 1 < x < n. The required answer is 2n− 1.
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B3. [14 points] For a positive integer n, let f(x) := 1 + x+ x2 · · ·+ xn. Find the number
of local maxima of f(x). Find the number of local minima of f(x). For each maximum/
minimum (c, f(c)), find the integer k such that k ≤ c < k + 1.

Solution: We have f ′(x) = 1+2x+ · · ·+nxn−1. For x ≥ 0 the derivative is strictly positive,
hence f(x) is strictly increasing. Therefore, we should only analyze negative values of x.
Write the derivative as the following rational function

f ′(x) =
nxn+1 − (n+ 1)xn + 1

(x− 1)2
.

Note that there is no problem in the expression since we are assuming x < 0. Denote by
D(x) the denominator of the derivative.
The case when n is odd. For x < 0 the polynomial D(x) is strictly positive. Hence there
can’t be any critical point.
The case when n is even. Observe that there could be only one critical point c ∈ (−1, 0).
Since D(x) < 0 for x ≤ −1 and D(0) = 1. Moreover, D′(x) > 0 for x < 0 so f ′(x)
is increasing on (−∞, 0) hence it vanishes exactly once. As the derivative changes sign
from −ve to +ve passing through c, so there is exactly one global minimum at c (where,
−1 < c < 0).
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B4. [14 points] For a continuous function f : R+ → R+, define

• Ar = the area bounded by the graph of f , X-axis, x = 1 and x = r.

• Br = the area bounded by the graph of f , X-axis, x = r and x = r2.

Find all continuous functions f for which Ar = Br for every positive number r.

Solution: We are given ∫ r

1

f(x)dx =

∫ r2

r

f(x)dx.

Applying d/dr, fundamental theorem of calculus and the chain rule to above equality we get

f(x) = xf(x2) ∀x ∈ R+.

Letting g(x) = xf(x) we see that g(x) = g(x2) for all x in the domain. Hence g(x) = g(x
1
2n )

for all x and positive integers n. However, as n goes to infinity x
1
2n tends to 1 we have that

g(x) converges to f(1). Hence xf(x) = f(1) for all values of x ∈ R+.
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B5. [14 points] Two distinct real numbers r and s are said to form a good pair (r, s) if

r3 + s2 = s3 + r2.

1. Find a good pair (a, l) with the largest possible value of l. Find a good pair (s, b) with
the smallest value of s. For every good pair (c, d) other than the two you found, show
that there is a third real number e such that (d, e) and (c, e) are good pairs.

2. Show that there are infinitely many good pairs of rational numbers.

Solution: Consider the function f(x) = x3 − x2. Therefore (r, s) is a good pair iff f(r) =
f(s).
Observe that x = 0, 2

3
are the only critical points of f . The local maximum occurs at x = 0.

The line y = 0 intersects the graph of f(x) at (0, 0) and (1, 0). Hence the required good pair
(a, l) with the largest l value is (0, 1).
Note that the local minimum occurs at x = 2

3
. The line y = f(2

3
) = −4

27
intersects the graph

at (−1
3
, −4
27
) and (2

3
, −4
27
). Hence the required good pair is (−1

3
, 2
3
).

For k ∈ (−4
27
, 0) the line y = k intersects the graph at 3 points. Hence the last statement of

the first part follows.
For the second part we need to show that there for every rational number q ∈ (−4

27
, 0) the

equation
x3 − x2 − q = 0

has infinitely many rational solutions. However, this is true because there are infinitely many
rationals satisfying c+ d+ e = 1, cd+ de+ ce = 0, cde = q.
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B6. [14 points] Solve the following.

1. Let p be a prime. Show that x2 + x − 1 has at most two roots modulo p. Find all
primes p for which there is exactly one root.

2. Find all positive integers n ≤ 121 such that n2 + n− 1 is divisible by 121.

3. What can you say about the number of roots of this equation modulo p2.

Solution: Let a, b be two distinct roots of the equation modulo p. Therefore, p divides
a2+ a− 1− (b2+ b− 1), which is equivalent to saying that p divides either a− b or a+ b+1.
In the former case we will have a = b, which is not allowed. Since both a, b are between 1
and p we have 3 ≤ a + b + 1 ≤ 2p − 3 which implies a + b + 1 = p. Thus b = p − a − 1 is
uniquely determined.
Suppose a is the only root. Then p − a − 1 = a, i.e., p = 2a + 1. Therefore, 2a + 1 divides
4(a+a− 1) and (2a+ 1)2. Subtracting we get that 2a+ 1 divides 5.
Part 2: Since 121 divides n+n− 1, 11 also divides it. Note that n2 + n− 1 and n2 + n− 12
are congruent modulo 11. So the roots of the equation are 7, 3 modulo 11.
Consider n = 3 + 11k. Then n2 + n − 1 is congruent to 77k + 11 modulo 121. Then k = 3
works giving us n = 36. Now consider n = 7 + 11k. In that case, n+n − 1 is congruent to
165k + 55 modulo 121. Which gives us k = 7 and n = 84.
For part (3), let a be a root modulo p. Then n is of the form kp + a for some k between 0
and p− 1. We would like to solve for k the following equation

(kp+ a)2 + (kp+ a)− 1

modulo p2. This is equivalent to finding k such that p divides k(2a + 1) + a2 + a − 1. If
2a+ 1 is not a multiple of p then k = −(2a+ 1)−1(a2 + a− 1). If p divides (2a+ 1) then it
is 5 and there is no such n.
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