CHENNAI MATHEMATICAL INSTITUTE

Undergraduate Programme in Mathematics and Computer Science/Physics
Solutions of the 2279 May 2022 exam

Note: The solutions below consist only of main steps and strategies and do not contain all
the details expected in the exam.

B1. [11 points| Given AXY Z, the following constructions are made: mark point W on
segment X Z, point P on segment XW and point () on segment Y Z such that
Wz PW  QZ
YX XP YQ
See the schematic figure (not to scale). Extend segments QP and Y X to meet at the point
R as shown. Prove that XR = X P.
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Solution: First a construction - mark V' on X Z such that QV is parallel to Y R. There are
two cases here depending on whether V' is between PW or W Z, however, the arguments are
the same. We assume here that V' is between PW. The aim is to show that AV PQ is isosceles
and then show that it is similar to AXPR. Use BPT to conclude that VQ = kiH(XY).
Using the given ratios find an expression for VZ and substitute it in PV = PZ — V Z to
conclude that PV =V Q.

One can also extend ZX to ZX' such that Y X' is parallel to PQ. One can then show that
AY X X' is isosceles and similar to ARX P.

Another strategy is to use Menalaus theorem for AXY Z with segment Q)R as the transversal.

We have:
XRYQ ZP _ 4

RY QZ PX
This leads to the following implications leading to the equality we want:

XR-PZ = RY - PW
XY +XR PW+WZ

XR PW
Xy _wz
XR PZ
PW  PW
XR XP’



B2. [11 points] In the XY plane, draw horizontal and vertical lines through each integer on
both axes so as to get a grid of small 1 x 1 squares whose vertices have integer coordinates.

1. Consider the line segment D joining (0,0) with (m,n). Find the number of small 1 x 1
squares that D cuts through, i.e., squares whose interiors D intersect. For example,
the line segment joining (0,0) and (2, 3) cuts through 4 small squares.

2. Now let L be an arbitrary line. Find the maximum number of small 1 x 1 squares in
an n X n grid that L can cut through.

Solution: Assume ged(m,n) = 1. The line D has to cross m—1 vertical as well as horizontal
lines. Moreover, D doesn’t pass through any grid points. Hence, together with the starting
square, we see that D cuts through m 4+ n — 1 squares.

Let ged(m,n) = d. The above argument is valid from (0,0) to (m/d,n/d) and so on for d
many sections of D. Therefore the total number of squares D cuts is m +n — d.

Note that in order for L to cut through maximum number of squares it should not pass
through any internal grid point. This is possible for a line joining (0,0) with (z,n) where
n —1 < x <n. The required answer is 2n — 1.



B3. [14 points] For a positive integer n, let f(z) := 1+ z + 2?--- + 2. Find the number
of local maxima of f(x). Find the number of local minima of f(z). For each maximum/
minimum (¢, f(c)), find the integer k such that k < ¢ <k + 1.

Solution: We have f/(x) = 1+2x+---+na"" 1. For x > 0 the derivative is strictly positive,
hence f(z) is strictly increasing. Therefore, we should only analyze negative values of x.
Write the derivative as the following rational function

;o ona"—(n+ 1" +1

Note that there is no problem in the expression since we are assuming x < 0. Denote by
D(x) the denominator of the derivative.

The case when n is odd. For x < 0 the polynomial D(z) is strictly positive. Hence there
can’t be any critical point.

The case when n is even. Observe that there could be only one critical point ¢ € (—1,0).
Since D(z) < 0 for « < —1 and D(0) = 1. Moreover, D'(z) > 0 for x < 0 so f'(x)
is increasing on (—o00,0) hence it vanishes exactly once. As the derivative changes sign
from —ve to +ve passing through ¢, so there is exactly one global minimum at ¢ (where,
-1 <e<0).



B4. [14 points] For a continuous function f: R, — R, define
e A, = the area bounded by the graph of f, X-axis, x =1 and z = r.
e B, = the area bounded by the graph of f, X-axis, z = r and z = 2.

Find all continuous functions f for which A, = B, for every positive number 7.

/1Tf(x)dx - / f(x)dz.

Applying d/dr, fundamental theorem of calculus and the chain rule to above equality we get

Solution: We are given

f(x) =zf(2?) VreR,.

Letting g(z) = 2 f(z) we see that g(z) = g(22) for all z in the domain. Hence g(z) = g(z2")
for all x and positive integers n. However, as n goes to infinity 27 tends to 1 we have that
g(x) converges to f(1). Hence xf(z) = f(1) for all values of x € R,.



B5. [14 points] Two distinct real numbers r and s are said to form a good pair (r, s) if
4 s? =80 4t

1. Find a good pair (a,!) with the largest possible value of [. Find a good pair (s, b) with
the smallest value of s. For every good pair (¢, d) other than the two you found, show
that there is a third real number e such that (d,e) and (¢, e) are good pairs.

2. Show that there are infinitely many good pairs of rational numbers.

Solution: Consider the function f(z) = 2 — x?. Therefore (r,s) is a good pair iff f(r) =
f(s).

Observe that = = 0, % are the only critical points of f. The local maximum occurs at x = 0.
The line y = 0 intersects the graph of f(z) at (0,0) and (1,0). Hence the required good pair
(a,l) with the largest [ value is (0, 1).

Note that the local minimum occurs at z = % The line y = f (%) = ;—? intersects the graph

at (_?1, ;—;‘) and (%, ;—;1) Hence the required good pair is (%1, %)
For k € (3,0) the line y = k intersects the graph at 3 points. Hence the last statement of

the first part follows.
For the second part we need to show that there for every rational number ¢ € (g—?, 0) the
equation

22—t —qg=0
has infinitely many rational solutions. However, this is true because there are infinitely many
rationals satisfying c +d+e = 1,cd + de + ce = 0, cde = q.



B6. [14 points] Solve the following.

1. Let p be a prime. Show that 2? + x — 1 has at most two roots modulo p. Find all
primes p for which there is exactly one root.

2. Find all positive integers n < 121 such that n? +n — 1 is divisible by 121.

3. What can you say about the number of roots of this equation modulo p?.

Solution: Let a,b be two distinct roots of the equation modulo p. Therefore, p divides
a’+a—1— (b +b— 1), which is equivalent to saying that p divides either a —b or a +b+ 1.
In the former case we will have a = b, which is not allowed. Since both a,b are between 1
and p we have 3 < a+ b+ 1 < 2p — 3 which impliesa+b+1=p. Thusb=p—a—1is
uniquely determined.

Suppose a is the only root. Then p —a — 1 = a, i.e., p = 2a + 1. Therefore, 2a + 1 divides
4(aTa — 1) and (2a + 1)%. Subtracting we get that 2a + 1 divides 5.

Part 2: Since 121 divides ntn — 1, 11 also divides it. Note that n? +n — 1 and n? +n — 12
are congruent modulo 11. So the roots of the equation are 7,3 modulo 11.

Consider n = 3 + 11k. Then n? + n — 1 is congruent to 77k + 11 modulo 121. Then k = 3
works giving us n = 36. Now consider n = 7 + 11k. In that case, n™n — 1 is congruent to
165k 4+ 55 modulo 121. Which gives us k = 7 and n = 84.

For part (3), let a be a root modulo p. Then n is of the form kp + a for some k between 0
and p — 1. We would like to solve for k the following equation

(kp+a)® + (kp+a) — 1

modulo p?. This is equivalent to finding k& such that p divides k(2a + 1) +a* +a — 1. If
2a + 1 is not a multiple of p then k¥ = —(2a + 1)~ *(a®? +a — 1). If p divides (2a + 1) then it
is 5 and there is no such n.



