
Solutions for the 2018 Entrance Examination for the BSc Programmes at CMI

Part A

1. Consider an equilateral triangle ABC with altitude 3 centimeters. A circle is inscribed
in this triangle, then another circle is drawn such that it is tangent to the inscribed
circle and the sides AB,AC. Infinitely many such circles are drawn; each tangent to the
previous circle and the sides AB,AC. The figure shows the construction after 2 steps.

A

B C

Find the sum of the areas of all these circles.
Answer: The radius of the (�rst) inscribed circle is 1. Its not hard to see that

that as you go on inscribing the circles the corresponding radii decrease by 1/3.
Let A denote the total area of these circles then

A = π(1)2 + π(1/3)2 + π(1/9)2 + · · ·
= π + π(1/3)2[1 + (1/3)2 + (1/9)2 + · · · ]
= π + (1/9)A

= (9/8)π.

2. Consider the following function defined for all real numbers x

f(x) =
2018

10 + ex
.

How many integers are there in the range of f?
Answer: 201. Note that the for all values of x the function is strictly decreasing

and the graph lies above x axis. As x goes far left the denominator approaches

10 and the function value approaches 201.8. On the other hand, as goes far right

the denominator blows up and the function value approaches 0. Since this is a

continuous function by the intermediate value theorem all values in the interval

(0, 201.8) are assumed.

3. List every solution of the following equation. You need not simplify your answer(s).

3
√
x+ 4− 3

√
x = 1.

Put t = 3
√
x, to get (t3 + 4) = (1 + t)3. This leads to the quadratic t2 + t − 1 = 0.

Solve it and then take the cube root of the solutions. The answers are −2±
√

5.
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4. Compute the following integral

∫ π
2

0

dx

(
√

sinx+
√

cosx)4

Pull cos2 x out from the denominator and then substitute u for
√

tanx + 1. The
answer is 1

3
.

5. List in increasing order all positive integers n ≤ 40 such that n cannot be written in the
form a2 − b2, where a and b are positive integers.
Answer: 1, 4 and all even numbers of the form 4k + 2

6. Consider the equation
z2018 = 20182018 + i,

where i =
√
−1.

(a) How many complex solutions does this equation have?

(b) How many solutions lie in the first quadrant?

(c) How many solutions lie in the second quadrant?

The equation has 2018 complex solutions. In the polar form the right hand side

of the equation can be expressed as reiθ, where θ is a very small positive angle.

Note that 2018 is 2 mod 4. Of the 2018 solutions of x2018 = r, one each is on

positive and negative X-axis. The remaining 2016 are divided equally in the four

quadrants, 504 each. Now rotating these by the very tiny angle θ/2018 gives 505
each in the �rst and third quadrant but still 504 in second and fourth.

7. Let x3 + ax2 + bx+ 8 = 0 be a cubic equation with integer coefficients. Suppose both r
and −r are roots of this equation, where r > 0 is a real number. List all possible pairs
of values (a, b).
Plugging in r and −r in the equation we get r2 + b = 0 and ar2 + 8 = 0. Let the
third root be s, then expanding (x+r)(x−r)(x+s) and comparing it with the given

equation tells us that ab = 8. So the possible values of a, b are −1,−2,−4,−8, i.e.,
both a, b negative such that ab = 8.

8. How many non-congruent triangles are there with integer lengths a ≤ b ≤ c such that
a+ b+ c = 20?
It is clear that 1 < a ≤ b ≤ c < 10. Now, c < a + b and c = 20 − a − b implies

10 < a + b; this also means that b ≥ a and b ≥ 11 − a. Moreover, we also have

b ≤ 20− a− b. One can further conclude that a ≤ 6, otherwise 7 ≤ b ≤ 6. So as a
ranges from 2 to 6 we have that b takes the following values a = 2, b = 9; a = 3, b =
8; a = 4, b ∈ {7, 8}; a = 5, b ∈ {6, 7}; a = 6, b ∈ {6, 7}. The total number of possible

triangles is 8.

9. Consider a sequence of polynomials with real coefficients defined by

p0(x) = (x2 + 1)(x2 + 2) · · · (x2 + 1009)
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with subsequent polynomials defined by pk+1(x) := pk(x+ 1)− pk(x) for k ≥ 0. Find the
least n such that

pn(1) = pn(2) = · · · = pn(5000).

Answer n = 2018. Note that deg p0(x) = 2018 and deg pk(x) = 2018 − k. De�ne

gn(x) = pn(x)− pn(1), hence gn(x) has degree 2018− n and 5000 roots.

10. Recall that arcsin(t) (also known as sin−1(t)) is a function with domain [−1, 1] and range
[−π

2
, π
2
]. Consider the function f(x) := arcsin(sin(x)) and answer the following questions

as a series of four letters (T for True and F for False) in order.

(a) The function f(x) is well defined for all real numbers x.TRUE

(b) The function f(x) is continuous wherever it is defined. TRUE

(c) The function f(x) is differentiable wherever it is continuous. FALSE

This is a periodic function with period 2π. On [−π/2, π/2] it is identity and

on [π/2, 3π/2] it is negative identity. Hence the function is well-de�ned and

continuous everywhere. However, it is not di�erentiable at nonzero multiples of

π/2.
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Answers to part B
If you need extra space for any problem,

continue on one of the colored blank pages at the end and write a note to that effect.

1. Answer the following questions-

(a) A natural number k is called stable if there exist k distinct natural numbers
a1, . . . , ak, each ai > 1, such that

1

a1
+ · · ·+ 1

ak
= 1.

Show that if k is stable then k + 1 is also stable. Using this or otherwise, find all
stable numbers. [5 marks]
It is clear that 1 and 2 are not stable. However, 3 is stable. Let k ≥ 3 be

stable hence there are a1, . . . , ak all distinct and
∑

1
ai

= 1. This implies that
1
2

+
∑

1
2ai

= 1. Hence all numbers except 2 are stable.

(b) Let f be a differentiable function defined on a subset A of R. Define

f ∗(y) := max
x∈A
{yx− f(x)} ,

whenever the above maximum is finite. For the function f(x) = − ln(x), determine
the set of points for which f ∗ is defined and find an expression for f ∗(y) involving
only y and constants. [5 marks]
First, note that the function f(x) is de�ned only for the positive values of

x. Now if y ≥ 0 then the �rst derivative of xy + ln(x) is y + 1
x
which is

strictly positive for x > 0. Hence xy + ln(x) is an increasing function and

consequently f ∗(y) is not de�ned.

Now if y < 0 then x = − 1
y
is the only critical point of xy + ln(x). Moreover,

either of the derivative test tells us that it is in fact the maxima. Hence,

the domain of f ∗(y) is y < 0 and

f ∗(y) = ln(
−1

y
)− 1.
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2. Answer the following questions

(a) Find all real solutions of the equation [6 marks]

(
x2 − 2x

)x2 + x− 6
= 1.

Explain why your solutions are the only solutions.
Answer x = −3, 1, 1 ±

√
2 are the only solutions. First, we want either

x2 + x − 6 = 0 or x2 − 2x = 1. However, when x = 2 the base as well as the

exponent are 0 giving us an indeterminate form. Hence x = 2 will not work.

Moreover, when x = −3 the base is positive. Second, observe that when

x = 1 we get (−1)−4 which equals 1.

(b) The following expression is a rational number. Find its value. [9 marks]

3

√
6
√

3 + 10− 3

√
6
√

3− 10.

Answer : 2. Let the numbers be a, b respectively. Note a3 − b3 = 20 and

ab = 2. Putting it in (a − b)3 we get (a − b)3 = 20 − 6(a − b). This cubic has

one real solution a− b = 2 and two complex solutions.
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3. Let f be a function on the nonnegative integers defined as follows

f(2n) = f(f(n)) and f(2n+ 1) = f(2n) + 1.

(a) If f(0) = 0, find f(n) for every n. [2 marks]

(b) Show that f(0) cannot equal 1. [4 marks]

(c) For what nonnegative integers k (if any) can f(0) equal 2k? [9 marks]

Answer

(a) Suppose f(0) = 0 then f(1) = 1 and f(2) = f(f(1)) = f(1) = 1. It implies that

f(3) = 1 + 1 = 2 and f(4) = f(1) = 1. The pattern continues and we get that

if 2k + 1 ≥ 3 then f(2k + 1) = 2. On the other hand if 2k ≥ 4 then f(2k) = 1.

(b) Suppose f(0) = 1. We have f(0) = f(2 · 0) = f(f(0)) = f(1). But we also have

f(1) = f(0) + 1, a contradiction.

(c) Suppose f(0) = 2k. Then, 2k = f(2·0) = f(f(0)) = f(2k), and f(2k+1) = f(2k)+
1 = 2k + 1. Notice that f(1) = f(0) + 1 = 2k + 1, and f(2) = f(f(1)) = 2k + 1.
In this way, we see that for any n, f(2n) = 2k + 1. This contradicts that fact
that f(2k) = 2k.
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4. Let ABC be an equilateral triangle with side length 2. Point A′ is chosen on side BC
such that the length of A′B is k < 1. Likewise points B′ and C ′ are chosen on sides CA
and AB with AC ′ = CB′ = k. Line segments are drawn from points A′, B′, C ′ to their
corresponding opposite vertices. The intersections of these line segments form a triangle,
labeled PQR in the interior.

A B

C

C ′

B′

A′

P Q

R

Show that the triangle PQR is an equilateral triangle with side length 4(1−k)√
k2−2k+4

.

Note that triangles ABA′, CAC ′ and BCB′ are congruent by the SAS test. Trian-

gles BA′Q, CB′R and AC ′P are also congruent. By using the property of opposite

angles we get that all the three angles of the triangle PQR are the same. Hence

it is an equilateral triangle.

Dropping the perpendicular bisector AO on the side BC we get the following:

AA′2 = AO2 + A′A2

= (1− k)2 + (
√

3)2

= k2 − 2k + 4.

Observe that triangles ABA′ and BQA′ are similar by the AAA test: A′QB and

A′BA are 60 degrees and A′BQ and A′AB are corresponding angles. Therefore:

AB

BQ
=
BA′

QA′
=
A′A

A′B

2

BQ
=

k

QA′
=

√
k2 − 2k + 4

k

BQ =
2k√

k2 − 2k + 4

QA′ =
k2√

k2 − 2k + 4
.

Now using AA′ = AP + PQ+QA′ we get

PQ =
4(1− k)√
k2 − 2k + 4

.
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5. An alien language has n letters b1, . . . , bn. For some k < n/2 assume that all words
formed by any of the k letters (written left to right) are meaningful. These words are
called k-words. Such a k-word is considered sacred if:

i) no letter appears twice and,

ii) if a letter bi appears in the word then the letters bi−1 and bi+1 do not appear. (Here
bn+1 = b1 and b0 = bn.)

For example, if n = 7 and k = 3 then b1b3b6, b3b1b6, b2b4b6 are sacred 3-words. On the
other hand b1b7b4, b2b2b6 are not sacred. What is the total number of sacred k-words?
Use your formula to find the answer for n = 10 and k = 4.
We will count the sacred words starting with b1. Since b1 is chosen bn and b2 are
out of the picture. In order to �ll the remaining k−1 positions we have to choose
non-consecutive bi's. Note that, specifying these bi's is equivalent to specifying

the gaps between them. For example, let n = 7, k = 3 and we would like to

choose b1, b3, b6. Then the triple (1, 2, 1) speci�es that leave one alphabet after

b1, drop two after b3 and drop one after b6. Hence, in general let x1, x2, . . . , xk be
these gaps. It is clear that each of this gap is at least 1 and they add up to n−k.
So our counting problem is now - in how many di�erent ways one can choose k
natural numbers, each of which is at least 1, that add up to n − k. The answer

is
(
n−k−1
k−1

)
. In fact, this is equivalent to counting the number of ways one can

choose k− 1 `plus' signs from n− k− 1of them when n− k is written as a sum of

1's (n − k of them). However, note that we haven't assigned positions to these

letters yet. t This can be done in (k − 1)! ways. Hence the answer is

(k − 1)!

(
n− k − 1

k − 1

)
.

In order to count the total number of sacred words we just need to multiply the

above number by n. The �nal answer is

n(k − 1)!

(
n− k − 1

k − 1

)
= n(k − 1)!

(n− k − 1)!

(n− 2k)!(k − 1)!

= n
(n− k − 1)!

(n− 2k)!

= n (n− k − 1)(n− k − 2) · · · (n− 2k + 1).

For n = 10 and k = 4 the answer is 600.
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6. Imagine the unit square in the plane to be a carrom board. Assume the striker is just
a point, moving with no friction (so it goes forever), and that when it hits an edge, the
angle of reflection is equal to the angle of incidence, as in real life. When it hits another
edge it bounces again similarly and so on. If the striker ever hits a corner it falls into
the pocket and disappears. The trajectory of the striker is completely determined by its

starting point (x, y) and its initial velocity
−−−→
(p, q).

If the striker eventually returns to its initial state (i.e. initial position and initial velocity),
we define its bounce number to be the number of edges it hits before returning to its initial
state for the first time.

For example, the trajectory with initial state [(.5, .5);
−−−→
(1, 0)] has bounce number 2 and

it returns to its initial state for the first time in 2 time units. And the trajectory with

initial state [(.25, .75);
−−−→
(1, 1)] has bounce number 4.

(a) Suppose the striker has initial state [(.5, .5);
−−−→
(p, q)]. If p > q ≥ 0 then what is the

velocity after it hits an edge for the first time? What if q > p ≥ 0? [2 marks]

(b) Draw a trajectory with bounce number 5 or justify why it is impossible. [3 marks]

(c) Consider the trajectory with initial state [(x, y);
−−−→
(p, 0)] where p is a positive integer.

In how much time will the striker first return to its initial state? [2 marks]

(d) What is the bounce number for the initial state [(x, y);
−−−→
(p, q)] where p, q are relatively

prime positive integers, assuming the striker never hits a corner? [8 marks]

(a) If p > q then the striker will hit the vertical edge �rst, and its new velocity

will be
−−−−→
(−p, q). If p < q then the striker will hit the horizontal edge �rst, and

its new velocity will be
−−−−→
(p,−q).

(b) No, it is not possible. If the striker has bounce number 5, then it must have

an odd number of vertical edge bounces or horizontal edge bounces. In the

former case, when the striker returns to its initial state, the x-component

of its velocity will be wrong, by the formula in part (a). In the latter case

the y component will be wrong.

(c) It will take 2
p
time to return to its initial state.

(d) The bounce number is 2p+ 2q. At time 2, the striker will have completed p
horizontal round-trips and q vertical round trips, and will have returned to

its initial state. To see this, note that from part (c) it will take time 2
p
for

each horizontal round trip and time 2
q
for each vertical round trip. Since p

and q are relatively prime, it will only be at time 2 that an integer number

of vertical and horizontal round trips have been completed.
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