
2017 Entrance Examination for the BSc Programmes at CMI

Solutions

Read the instructions on the front of the booklet carefully!

Part A. Write your final answers on page 3.

Part A is worth a total of (4 × 10 = 40) points. Points will be given based only on clearly
legible final answers filled in the correct place on page 3. Write all answers for a single question
on the designated line and in the order in which they are asked, separated by commas.

Unless specified otherwise, each answer is either a number (rational/ real/ complex) or, where
appropriate, one of the phrases “infinite”/“does not exist”/“not possible to decide”. Write in-
teger answers in the usual decimal form. Write non-integer rationals as ratios of two integers.

1. Consider the following construction in a circle. Choose points A,B,C on the given circle
such that ∠ABC is 60◦ and AB = BC. Draw another circle that is tangential to the
chords AB,BC and to the original circle.
Do the above construction in the unit circle to obtain a circle S1. Repeat the process in
S1 to obtain another circle S2. What is the radius of S2?

Solution. Consider the center O and diameter BD of the unit circle. It is easy to see
that S1 passes through D and its center E lies between O and D. Let r be the radius of
S1, so length of ED is r. Consider the perpendicular from E to chord BA, meeting BA
in point F. Then length of EF is also r and therefore in the 30-60-90 triangle BEF, the
length of the hypotenuse BE is 2r. Thus 2 = BD = BE + ED = 3r, thus r = 2

3
. By

similarity, the radius of S2 is 2
3
× 2

3
= 4

9
.

2. 10 oranges are to be placed in 5 distinct boxes labeled U, V, W, X, Y. A box may contain
any number of oranges including no oranges or all the oranges. What is the number of
ways to distribute the oranges so that exactly two of the boxes contain exactly two
oranges each?

Solution. From the five distinct boxes, there are 10 ways to pick the two boxes that will
have 2 oranges each. We need to distribute the remaining 6 oranges in the remaining
three boxes such that none of the three boxes gets exactly 2 oranges. The possible
distributions are 6+0+0 (which can be done in 3 ways) or 5+1+0 (6 ways) or 4+1+1 (3
ways) or 3+3+0 (3 ways). Thus the required answer is 10× (3 + 6 + 3 + 3) = 150.

3. Find the volume of the solid obtained when the region bounded by y =
√
x, y = −x and

the line x = 4 is revolved around the x-axis. (It may be useful to draw the specified
region.)

Solution. From x = 0 to x = 1 we have
√
x ≥ |−x|, so from x = 0 to x = 1 the volume

swept out by the part of the given region that lies below X-axis is included in the volume
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swept out by the part above X-axis. So from x = 0 and x = 1 we just have to take the
volume obtained by revolving the area below y =

√
x. Similarly, from x = 1 to x = 4 we

have | − x| ≥
√
x, so here we just have to take the volume obtained by the revolving the

area below y = x. Thus the required volume is obtained by adding volumes of two solids
of revolution around X-axis: area under y =

√
x from x = 0 to x = 1 and area under

y = x from x = 1 to x = 4.

4. Positive integers a and b, possibly equal, are chosen randomly from among the divisors
of 400. The numbers a, b are chosen independently, each divisor being equally likely to
be chosen. Find the probability that gcd(a, b) = 1 and lcm(a, b) = 400.

Solution. 400 = 52 × 24 has (2 + 1) × (4 + 1) = 15 factors, so total number of pairs
(a, b) is 225. For a, b to be coprime, they should have no prime factor in common and
then their lcm is just their product, which is required to be 400. So there are only four
allowed pairs: (1,400), (400,1), (25,16) and (16,25). The probability is 4

225
.

5. Find all complex solutions to the equation:

x4 + x3 + 2x2 + x+ 1 = 0.

Solution. It is easy to see that x4 + x3 + 2x2 + x+ 1 = (x2 + 1)(x2 + x+ 1).

6. Let g be a function such that all its derivatives exist. We say g has an inflection point
at x0 if the second derivative g′′ changes sign at x0 i.e., if g′′(x0 − ε)× g′′(x0 + ε) < 0 for
all small enough positive ε.

(a) If g′′(x0) = 0 then g has an inflection point at x0. True or False?

(b) If g has an inflection point at x0 then g′′(x0) = 0. True or False?

(c) Find all values x0 at which x4(x− 10) has an inflection point.

Solution. In (c), g′′(x) = 20x3 − 120x2 = 20x2(x − 6) and this changes sign only at
x = 6. Note that for this function, g′′(0) = 0 but g′′ does not change sign at x = 0, thus
(a) is FALSE. On the other hand (b) is TRUE: Suppose for some g, the double derivative
g′′ changes sign at x0. Then g′′(x0) = 0 as g′′ is continuous (because g′′ is given to be
differentiable).

7. Write the values of the following.

(a)

∫ 3

−3
|3x2 − 3| dx.

(b) f ′(1) where f(t) =

∫ t

0

|3x2 − 3| dx.

Solution. (a) By symmetry we can calculate the definite integral from 0 to 3 and double
the answer. Note that |3x2 − 3| = 3x2 − 3 from x = 1 to 3 and |3x2 − 3| = 3− 3x2 from
x = 0 to 1. So break the calculation at x = 1 etc.
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(b) |3x2− 3| is a continuous function so by the fundamental theorem of calculus, f ′(1) =
|3× 12 − 3| = 0

8. For this question write your answers as a series of four letters (Y for Yes and N for No)
in order. Is it possible to find a 2× 2 matrix M for which the equation M~x = ~p has:

(a) no solutions for some but not all ~p; exactly one solution for all other ~p ?

(b) exactly one solution for some but not all ~p; more than one solution for all other ~p ?

(c) no solutions for some but not all ~p; more than one solution for all other ~p ?

(d) no solutions for some ~p, exactly one solution for some ~p and more than one solution
for some ~p ?

Solution. If M has nonzero determinant, then for any ~p, we see that M~x = ~p has the
unique solution ~x = M−1~p. If determinant of M is zero then we can make two cases. (i)
If M is the zero matrix, then M~x = ~p has infinitely many solutions for ~p = ~0 and no
solutions otherwise. (ii) If M is nonzero then it is easy to see that we are solving two
equations in two variables whose left hand sides are proportional. So if the two right
hand constants that make up ~p are in the same proportion, then we will have infinitely
many solutions (because one of the variables can be arbitrary). If the constants are not
in the same proportion, then the two equations will be inconsistent and we will have no
solutions. Thus the answer is NNYN. It is also possible to think geometrically in terms of
(at most) two lines, each moving in a parallel family. If the lines have the same slope they
either coincide or don’t intersect. Otherwise they have a unique point of intersection.

Note: In general linear algebra gives the right tools to analyze matrix equations, e.g. in
this problem we can say the following. If M = 0 then the space of solutions is either
empty or two-dimensional. If M 6= 0 then either there is a unique solution (precisely
when determinant 6= 0) or, when determinant is 0, the space of solutions is either empty
or one-dimensional. For larger matrices the possibilities are more complicated, but they
can be described precisely using the language provided by linear algebra.

9. Let f be a continuous function from R to R (where R is the set of all real numbers) that
satisfies the following property: For every natural number n

f(n) = the smallest prime factor of n.

For example, f(12) = 2, f(105) = 3. Calculate the following.

(a) limx→∞ f(x).

(b) The number of solutions to the equation f(x) = 2016.

Solution. f(x) will take value 2 for all even x. At the same time, primes provide an
increasing infinite sequence of positive integers for which f(x) = x. Thus limx→∞ f(x)
does not exist. By intermediate value theorem, for each prime p > 2016 there is an x
between p and p+ 1 such that f(x) = 2016.
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10. Consider the following function:

f(x) =

{
x2 cos( 1

x
), x 6= 0,

a, x = 0.

(a) Find the value of a for which f is continuous.

Use this value of a to calculate the following.

(b) f ′(0).

(c) lim
x→0

f ′(x).

Solution. cos( 1
x
) is sandwiched between −1 and 1, so limx→0 f(x) = 0 = a makes

f continuous. Now f ′(0) = limh→0
h2 cos( 1

h
)−0

h
= limh→0 h cos( 1

h
) which is similarly 0.

Finally, for nonzero x, calculate f ′(x) = 2x cos( 1
x
)+sin( 1

x
), so limx→0 f

′(x) does not exist
as limx→0 2x cos( 1

x
) = 0 and limx→0 sin( 1

x
) does not exist.
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2017 Entrance Examination for the BSc Programmes at CMI

Solutions to Part B

1. Answer the following questions

(a) Evaluate
lim
x→0+

(xx
x − xx).

First consider the limit

lim
x→0+

xx = lim
x→0+

(elogx x)

= lim
x→0+

(e
log x
1/x ). (1)

Now consider the following limit

lim
x→0+

log x

1/x
= lim

x→0

1/x

−1/x2

= 0 (2)

substituting the value 0 from (2) in equation (1) we get that the limit is 1.
Now,

lim
x→0+

(xx
x − xx) = lim

x→0+
xx

x − lim
x→0+

xx

= lim
x→0+

xlimx→0+ xx − lim
x→0+

xx

= 0− 1

= −1.
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(b) Let A = 2π
9
, i.e., A = 40 degrees. Calculate the following

1 + cosA+ cos 2A+ cos 4A+ cos 5A+ cos 7A+ cos 8A.

There are many ways to arrive at the answer 1. Here are two approaches.

Let S be the above sum. Then

S = 1 + cosA+ cos 2A+ cos 4A cos(2π − 4A) + cos(2π − 2A) + cos(2π − A)
= 1 + 2(cosA+ cos 2A+ cos 4A)

= 1 + 2

(
2 cos(

3A

2
) cos(

A

2
) + cos(π − A

2
)

)
= 1 + 2

(
2 cos(

π

3
) cos(

A

2
)− cos(

A

2
)

)
= 1 + 2

(
2× 1

2
cos(

A

2
)− cos(

A

2
)

)
= 1.

Recall that cosnA is the real part of einA. Then

S =
8∑

n=0

cosnA−
2∑

n=1

cos(3nA)

= Re

(
8∑

n=0

einA −
2∑

n=1

ein
2π
3

)
= Re

(
0− ω − ω2

)
= 1.

Here ω is a complex cube root of unity.

(c) Find the number of solutions to ex = x
2017

+ 1.
First, note that x = 0 is clearly a solution. Let f(x) = ex − x

2017
− 1. Then

x0 = − log 2017 is the only critical point of f(x). For all x < x0 we have

f ′(x) < 0. Since f(x) → ∞ as x → −∞ there is only one solution in the

interval (−∞, x0). For all x > x0 we have f ′(x) > 0 (i.e., ex > 1
2017

). Hence

there is only one solution in the interval (x0,∞). In total there are exactly

two solutions.
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2. Let L be the line of intersection of the planes x+ y = 0 and y + z = 0.

(a) Write the vector equation of L, i.e., find (a, b, c) and (p, q, r) such that

L = {(a, b, c) + λ(p, q, r) | λ is a real number.}

(b) Find the equation of a plane obtained by rotating x+ y = 0 about L by 45◦.

Clearly the line L passes through the origin. Moreover L is in the direction

perpendicular to the normals to the both the planes. The direction vector can

be obtained by computing following cross product

(̂i+ ĵ)× (ĵ + k̂) = î− ĵ + k̂.

Hence L can be written as

L = {(0, 0, 0) + λ(1,−1, 1) | λ is a real number }

First, note that the equation of any plane that contains the line L is given by

x+ (1 + λ)y + λz = 0.

Second, note that one can rotate the plane x + y = 0 in either clockwise or in

anticlockwise direction. Consequently there are two such planes. The normal of

one of the planes makes an angle of 45◦ with the normal of x + y = 0 and the

other normal makes an angle of 135◦.

(̂i+ ĵ) · (̂i+ (1 + λ)ĵ + λk̂) = ±|̂i+ ĵ||̂i+ (1 + λ)ĵ + λk̂| cos(π
4
)

2 + λ = ±
√

1 + (1 + λ)2 + λ2

λ2 − 2λ− 2 = 0

λ = 1±
√
3.

So the equation of the plane is

x+ y + (1±
√
3)(y + z) = 0.
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3. Let p(x) be a polynomial of degree strictly less than 100 and such that it does not have
x3 − x as a factor. If

d100

dx100

(
p(x)

x3 − x

)
=
f(x)

g(x)

for some polynomials f(x) and g(x) then find the smallest possible degree of f(x). Here
d100

dx100
means taking the 100th derivative.

Using the division algorithm we have

p(x)

x3 − x
= q(x) +

r(x)

x3 − x
(3)

As the degree of q(x) is strictly less than that of p(x) its 100th derivative is

certainly zero. As x3 − x is not a factor of p(x) one may assume (without loss of

generality) that x2 − 1 is a divides r(x). In that case we have

d100

dx100

(
p(x)

x3 − x

)
=

d100

dx100

(
k

x

)
=

100! k

x100

Hence the least possible degree of f(x) is 0.

If one assumes that x3 − x doesn't divide p(x) then we have

r(x)

x3 − x
=
A′

x
+

B′

x− 1
+

C ′

x+ 1
.

Consequently,

f(x)

g(x)
=

A

x101
+

B

(x− 1)101
+

C

(x+ 1)101

∴ f(x) = A(x2 − 1)101 +B(x2 + x)101 + C(x2 − x)101

= (A+B + C)x202 + 101(B − C)x201 + (

(
101

2

)
B +

(
101

2

)
C − 101A)x200 + · · · .

Choosing B = C and A+B+C = 0 we see that the coe�cient of x200 is (101)(102) 6=
0. Hence the least possible degree of f(x) in this case is 200.

4



4. The domain of a function f is the set of natural numbers. The function is defined as
follows:

f(n) = n+
⌊√

n
⌋

where bkc denotes the nearest integer smaller than or equal to k. For example, bπc =
3, b4c = 4. Prove that for every natural number m the following sequence contains at
least one perfect square

m, f(m), f 2(m), f 3(m), . . .

The notation fk denotes the function obtained by composing f with itself k times, e.g.,
f 2 = f ◦ f .
If m is itself a square then we are done. So assume that m = k2+j for 1 ≤ j ≤ 2k.
Hence we have f(m) = k2 + j + k. Consider the following two sets

A = {m a natural number | m = k2 + j and 0 ≤ j ≤ k}.

B = {m a natural number | m = k2 + j and k + 1 ≤ j ≤ 2k}.

Suppose m is in the set B. Then

f(m) = k2 + j + k

= (k + 1)2 + (j − k − 1).

Hence f(m) is either a square or is in A. Thus it is enough to assume that m ∈ A.
In that case k2 < f(m) < (k + 1)2, so bf(m)c = k. Therefore

f 2(m) = (k + 1)2 + (j − 1).

This clearly implies that f 2j(m) = (k + j)2.
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5. Each integer is colored with exactly one of three possible colors - black, red or white -
satisfying the following two rules: the negative of a black number must be colored white,
and the sum of two white numbers (not necessarily distinct) must be colored black.

(a) Show that the negative of a white number must be colored black and the sum of
two black numbers must be colored white.

(b) Determine all possible colorings of the integers that satisfy these rules.

Suppose an integer n is colored white. Then (n + n) = 2n is black, so −2n is

white, so −2n+ n = −n is black. Thus, the negative of a white number must be

colored black. Now suppose the integers n and m are both colored black. Then

−n and −m are both white, so −n−m is black, so n+m is white. Thus, the sum

of two black numbers must be colored white.

One possible coloring has all the integers colored red, since there are no condi-

tions on red numbers.

If that is not the case, let n be the smallest positive integer that is not colored

red. Suppose the number n is colored black. Then we claim the remaining

colors are all fully determined. Namely, the numbers of the form (3k + 1)n will

be black, the numbers of the form (3k + 2)n will be white, and the numbers of

the form (3k)n will be red, for all integers k. And all remaining colors will be

red. On the other hand, if the number n is colored white to begin with, then the

remaining numbers will be determined by the same rules, but with black and

white switched. Thus we have listed all possible colorings.

In order to prove the above claim, we �rst prove one more rule the colors must

obey. Namely, that (*) The sum of a black number and a white number must

be colored red. Suppose n is black and m is white, and that n + m is black.

But then (n+m) + (−m) is the sum of two black numbers, and must be colored

white, which is a contradiction. Similarly, the sum of n and m cannot be white.

Therefore it must be red.

Using this rule, it is easy to see that the numbers of the form (3k + 1)n will be

black, the numbers of the form (3k + 2)n will be white, and the numbers of the

form (3k)n will be red, for all integers k. It remains to show that all numbers

that are not multiples of n are colored red.

We can prove this by contradiction. As before n is the smallest positive integer

that is not red, and it is colored black. Suppose m is the smallest positive integer

that is neither red nor a multiple of n. Then m = qn+ r, where 0 < r < n is the

remainder when m is divided by n. We know this remainder is nonzero, since m
is not a multiple of n. We also know that q > 0, since m > n. Suppose m is white.

Then, because −n is white, we know m−n = (q− 1)n+ r is black, which gives us

a smaller non-red positive integer that's not a multiple of n. On the other hand,

suppose m is colored black. Then −2n is black, so m− 2n = (q− 2)n+ r is white.
If q > 1, this gives us a smaller positive non-red integer that's not a multiple of

n, which is a contradiction, provided q > 1. But if q = 1, and m− 2n = −n+ r is
white, that means that n− r is black, another contradiction.
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6. You are given a regular hexagon. We say that a square is inscribed in the hexagon if it
can be drawn in the interior such that all the four vertices lie on the perimeter of the
hexagon.

(a) A line segment has its endpoints on opposite edges of the hexagon. Show that it
passes through the center of the hexagon if and only if it divides the two edges in
the same ratio.

(b) Suppose a square ABCD is inscribed in the hexagon such that A and C are on the
opposite sides of the hexagon. Prove that center of the square is same as that of
the hexagon.

(c) Suppose the side of the hexagon is of length 1. Then find the length of the side of
the inscribed square whose one pair of opposite sides is parallel to a pair of opposite
sides of the hexagon.

AD

C B

P

S

U

T R

Q

(d) Show that, up to rotation, there is a unique way of inscribing a square in a regular
hexagon.

(a) Suppose a segment AC meets with opposite sides PQ and TS of a hexagon

and O is the midpoint of AC. We show that

PA
AQ

= TC
CS
⇐⇒ O is the center of the hexagon.

If O is the center of the hexagon, consider triangles OAQ and OCS. By

the SAS test these are congruent. Similarly, triangles OAP and OCT are

congruent.

Conversely, suppose PA
AQ

= TC
CS

= k (say), then

PQ = TS =⇒ PA+AQ = TC+CS =⇒ AQ(k+1) = CS(k+1) =⇒ AQ = CS.

So 4AQO ∼= 4CTO, so that OQ = OT . Also, ∠AOQ = ∠COT and ∠AOP =
∠COS, so Q,O and T are collinear.

(b) Next suppose we have inscribed a square ABCD in a hexagon PQRSTU ,
with A on PQ, B on QR, C on ST and D on TU . We claim that 4AQB is
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congruent to 4CTD. This will prove that both diagonals pass through the

center of the hexagon (using the criterion proved above).

Proof: We know that PA ‖ ST and AC is a transversal. So ∠QAC = ∠TCA,
also ∠BAC = ∠DCA = 45◦. So ∠QAB = ∠DCT .

Similarly, ∠QBA = ∠CDT . Also, ∠AQB = ∠CTD, since they are angles in

a regular hexagon. Moreover, AB = CD. As a result we get that 4QBA ∼=
4TDC.
So we have QB = TD and QA = TC. This in turn implies that BR = DU
and PA = CS Thus,

QB

BR
=
TD

DU
and

PA

AQ
=
SC

CT
.

Hence AC and BD pass through the center of the hexagon.

(c) Let DU = x so DP = 1 − x. Observe that DC = 2x sin 30 and DA = 2(1 −
x) sin 60. Since DC = DA we solving the equations for x we get x = 2√

3+1
.

Consequently the side DC =
√
3(
√
3− 1).

(d) Finally we want to show that there is a unique way of inscribing a square

in a regular hexagon.

Proof: It will be enough to show that the ratios QB
BR

and QA
AP

are equal.

Suppose on the contrary that these ratios aren't equal.

Let ∠QAB = α and ∠QBA = β. Note that then ∠OAQ = 45◦ + α and

∠OBQ = 45◦ + β. Also, α + β = 60◦, since ∠AQB = 120◦.

Let A′ be a point on QR such that QA′

A′R
= QA

AP
. Since 4BOA′ is isosceles,

∠OBA′ equals ∠OA′B, so that

180◦ = ∠OBA′+∠OBQ = ∠OBQ+∠OA′B = ∠OBQ+∠OAQ = 45◦+β+45◦+α,

so α + β = 0◦, a contradiction since α + β = 60◦.
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