Lecture 3

 $Z = f(x_1, x_2, \cdots, x_n); \quad f : \mathbb{R}^n \longrightarrow \mathbb{R}$ is a function in n variables and requires n + 1 dimensional space to represent it graphically.

Total derivative

 $Z = f(x, y)$ and $x = \phi(t), y = \psi(t)$ where $t \in [a, b]$

 $\frac{dZ}{dt}$ is called the total derivative as all terms depend on t. dt

$$
\frac{dZ}{dt}=\lim_{\Delta t\rightarrow 0}\frac{f(x+\Delta x,y+\Delta y)-f(x,y)}{\Delta t}
$$

as $\Delta t \rightarrow 0$, $\Delta x \rightarrow 0$

$$
\Delta f = f(x + \Delta x, y + \Delta y) - f(x, y)
$$

= $f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y) + f(x, y + \Delta y) - f(x, y)$

$$
\Rightarrow \frac{\Delta f}{\Delta t} = \frac{f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y)}{\Delta x} \cdot \frac{\Delta x}{\Delta t} + \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} \cdot \frac{\Delta y}{\Delta t}
$$

$$
\frac{dZ}{dt} = \lim_{\Delta t \to 0} \frac{\Delta f}{\Delta t} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}
$$

$$
\Rightarrow \frac{dZ}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}
$$

dt

Thus if $Z = f(x_1, x_2, \dots, x_n), \quad x_i = \phi_i(t); \quad t \in [a, b]$ then, dZ dt $=\frac{\partial f}{\partial x}$ $\overline{\partial x_1}$ $\frac{dx_1}{x_2}$ dt $+\frac{\partial f}{\partial x}$ $\overline{\partial x_2}$ $\frac{dx_2}{x_1}$ dt $+\cdots+\frac{\partial f}{\partial x}$ $\overline{\partial x_n}$ $\frac{dx_n}{x_n}$

Coordinate systems in 3D

Cartesian coordinate system

Any point in the 3D space can be represented using the cartesian coordinates ((x, y, z) where x, y, z represent the values of point at x-axis, y-axis & z-axis respectively.

Cylindrical coordinate system

In this system we represent points using the parameters (r, θ, z) where r is the radial distance from the origin, θ is the angle from x-axis and z is the value at the z-axis.

Spherical coordinate system

We can represent any point in 3D using polar coordinates like (r, θ, ϕ) where r is the radial distance of the point from the origin, θ is the angle from z-axis and ϕ is the angle from x-axis.

Chain Rule

If $Z = x^2 + y^2$ where x & y are functions of (r, θ) , $X = x(r, \theta), Y = y(r, \theta)$ then to write $\frac{\partial Z}{\partial \theta}$ or $\frac{\partial Z}{\partial r}$ we use the chain rule. ∂θ ∂Z ∂r

$$
\frac{\partial Z}{\partial r} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial r}
$$

similarly,

$$
\frac{\partial Z}{\partial \theta} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial \theta}
$$

Ex: $Z = x^2 + y^2$, $x = r \cos \theta$, $y = r \sin \theta$

∂Z ∂r $=\frac{\partial Z}{\partial x}$ $\overline{\partial x}$ $\frac{\partial x}{\partial x}$ ∂r $+\frac{\partial Z}{\partial x}$ $\overline{\partial y}$ $\frac{\partial y}{\partial x}$ ∂r $= 2x \cdot \cos \theta + 2y \cdot \sin \theta$ $=2r\cos^2\theta+2r\sin^2\theta$ $=2r(\cos^2\theta+\sin^2\theta)=2r$ ∂Z $\overline{\partial \theta}$ $=\frac{\partial Z}{\partial x}$ $\overline{\partial x}$ $\frac{\partial x}{\partial x}$ $\overline{\partial \theta}$ $+\frac{\partial Z}{\partial \theta}$ $\overline{\partial y}$ $\frac{\partial y}{\partial x}$ $\overline{\partial \theta}$ $= 2x(-r\sin\theta) + 2y(r\cos\theta)$ $= 2(r \cos \theta)(-r \sin \theta) + 2(r \sin \theta)(r \cos \theta)$ $=-2r^2\cos\theta\sin\theta+2r^2\cos\theta\sin\theta=0$

#semester-1 #mathematics #calculus