
Lecture 7

Alternating series
 is alternating series as alternating

terms have opposite signs.

Leibnitz test
An alternating series converges if

1. Each term is numerically less than its preceding term .
2. 

Proof.


if ,


=>  is monotonically increasing sequence.

 is convergent.
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=>  &  are both convergent.

=>  is also convergent.

=>  is convergent if { } is decreasing & .

Ex:  is an alternating series where

since 0 < x < 1, 

=> { } is monotonically decreasing.

=> By leibnitz test,  is convergent.

Convergence of arbitrary series 
1. Absolutely convergent series : A series is absolutely convergent if  is

convergent.
2. Conditionally convergent series : A series is conditionally convergent if 

 is convergent in the given form but  is divergent (divergent in
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the absolute form).

Ex: 

 is convergent.

=> it is absolutely convergent series.

Ex:  is convergent by leibnitz test but,

 is divergent.

=> It is convergent in the given form but divergent in absolute form.

=> It is conditionally convergent series.

Theorem. Every absolutely convergent series is convergent but
converse need not be true.

Reimann's rearrangement theorem
For a conditionally convergent series, for any real  there is an rearrangement of

 which converges to .

#semester-1 #mathematics #real-analysis

∑(−1)n 1
n2

∑ 1
n2∣ ∣∑(−1)n 1

n

∑ (−1)n 1
n = ∑ 1

n∣ ∣ x

∑Un x


