Lecture 7

Alternating series

 $\sum_{n=1}^{\infty} u_n = u_1 - u_2 + u_3 - u_4 + u_5 \cdots; u_i \ge 0$ is alternating series as alternating terms have opposite signs.

Leibnitz test

An alternating series converges if

- 1. Each term is numerically less than its preceding term $u_{n+1} < u_n \quad \forall \quad n.$
- 2. $\lim_{n \to \infty} U_n = 0$

Proof.

$$S_{2n} = u_1 - u_2 + u_3 - \dots + u_{2n-1} - u_{2n}
onumber \ = \underbrace{(u_1 - u_2)}_{+ve} + \underbrace{(u_3 - u_4)}_{+ve} + \dots + (u_{2n-1} - u_{2n})$$

 $\text{ if } u_{n+1} < u_n \quad \forall \quad n \text{,} \\$

$$S_{2n+2} = S_{2n} + \underbrace{(U_{2n+1} - U_{2n+2})}_{+ve}$$

 $\Rightarrow \left\{ S_{2n} \right\}$ is monotonically increasing sequence.

$$egin{aligned} S_{2n} &= u_1 - u_2 + u_3 - u_4 + \dots - u_{2n} \ &= u_1 - \underbrace{(u_2 - u_3)}_{+ve} - \underbrace{(u_4 - u_5)}_{+ve} \dots - \underbrace{u_{2n}}_{+ve} \ &\Rightarrow S_{2n} < u_1 \ \ orall \ n \end{aligned}$$

 $\Rightarrow \left\{ S_{2n} \right\}$ is convergent.

$$\begin{split} \lim_{n \to \infty} S_{2n+1} &= \lim_{n \to infty} S_{2n} + u_{2n+1} = \lim_{n \to \infty} S_{2n} + \lim_{n \to \infty} U_{2n+1} \\ &\Rightarrow \lim_{n \to \infty} S_{2n+1} = L = \lim_{n \to \infty} S_{2n} \\ &\Rightarrow \left\{ S_{2n} \right\} \& \left\{ S_{2n+1} \right\} \text{ are both convergent.} \end{split}$$

 $\Rightarrow \left\{ S_n \right\}$ is also convergent.

 $\Rightarrow \sum_{n=1}^{\infty} (-1)^n U_n$ is convergent if $\{U_n\}$ is decreasing & $\lim_{n \to \infty} U_n = 0$.

Ex: $\sum_{n=2}^{\infty} (-1)^{n-1} rac{x^n}{n(n-1)}; \quad 0 < x < 1$ is an alternating series where

$$egin{aligned} &U_n = rac{x^n}{n(n-1)}\ &U_{n+1} - U_n = rac{x^{n+1}}{n(n+1)} - rac{x^n}{n(n-1)}\ &= rac{x^n}{n} \left[rac{x(n-1) - (n+1)}{(n+1)(n-1)}
ight]\ &= rac{x^n}{n} \left[rac{n(x-1) - (x+1)}{(n+1)(n-1)}
ight] \end{aligned}$$

since 0 < x < 1, $U_{n+1} - U_n < 0$

 \Rightarrow { U_n } is monotonically decreasing.

$$\lim_{n o\infty} U_n = \lim_{n o\infty} rac{x^n}{n(n-1)} = 0$$

⇒ By leibnitz test, $\sum_{n=2}^{\infty} (-1)^{n-1} \frac{x^n}{n(n-1)}$ is convergent.

Convergence of arbitrary series $\sum U_n$

- 1. **Absolutely convergent series** : A series is absolutely convergent if $\sum U_n$ is convergent.
- 2. Conditionally convergent series : A series is conditionally convergent if $\sum U_n$ is convergent in the given form but $\sum |U_n|$ is divergent (divergent in

the absolute form).

Ex: $\sum (-1)^n \frac{1}{n^2}$

 $\sum \left|\frac{1}{n^2}\right|$ is convergent.

 \Rightarrow it is absolutely convergent series.

Ex: $\sum (-1)^n \frac{1}{n}$ is convergent by leibnitz test but,

 $\sum \left| (-1)^n \frac{1}{n} \right| = \sum \frac{1}{n}$ is divergent.

 \Rightarrow It is convergent in the given form but divergent in absolute form.

 \Rightarrow It is conditionally convergent series.

Theorem. Every absolutely convergent series is convergent but converse need not be true.

Reimann's rearrangement theorem

For a conditionally convergent series, for any real x there is an rearrangement of $\sum U_n$ which converges to x.

#semester-1 #mathematics #real-analysis