Lecture 4

Integral test

A positive term series $f(1)+f(2)+\cdots+f(n)+\cdots$ where f(n) decreases as n increases, converges or diverges according as the integral $\int_1^\infty f(x)dx$ is finite or infinite.

$$\begin{array}{l} \text{Upper sum = } s_n = f(1) + f(2) + \cdots + f(n) \\ = f(1) \cdot 1 + f(2) \cdot 1 + \cdots + f(n) \cdot 1 \end{array}$$

$$0 \Rightarrow s_n \geq \int_1^{n+1} f(x) dx$$

Also, the lower sum $s_{n+1}-f(1)=f(2)\cdot 1+f(3)\cdot 1+\cdots+f(n+1)\cdot 1$

$$0 \Rightarrow s_{n+1} - f(1) \leq \int_1^{n+1} f(x) dx$$

$$rightarrow s_{n+1} \leq \int_1^{n+1} f(x) dx + f(1)$$

as $n \longrightarrow \infty$ if $\int_1^\infty f(x) dx$ is finite

 $\Rightarrow s_{n+1} \leq L$

 \Rightarrow $\{s_n\}$ is monotonically increasing which is bounded above. Hence $\{s_n\}$ is convergent.

 $\Rightarrow \sum f(n)$ is convergent.

using the second relation, when $\int_1^\infty f(x)dx$ is infinite,

$$s_n \geq \int_1^{n+1} f(x) dx$$

 $\lim_{n o \infty} s_n \quad ext{does not exists}$

 $\Rightarrow \sum f(n)$ is divergent.

Infinite series of the form $\sum rac{1}{n^p}$

Applying intergral test on $\sum \frac{1}{n}$.

$$\int_{1}^{\infty}rac{1}{x}dx=log(x)igg|_{1}^{\infty}$$

does not exists. $\Rightarrow \sum \frac{1}{n}$ is divergent.

For $\sum rac{1}{n^p}$ when $p < 0, \lim_{n o \infty} U_n
eq 0$ \Rightarrow divergent.

For $\sum \frac{1}{n^p}$ applying intergral test.

$$\int_1^\infty rac{1}{x^p} dx = \int_1^\infty x^{-p} dx = rac{x^{-p+1}}{-p+1}igg|_1^\infty$$

when p > 1,

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \frac{1}{p-1}$$

⇒ finite.

when 0 ,

$$x^{-p+1}\longrightarrow \infty$$

⇒ integral is infinite.

$$\Rightarrow \int_1^\infty x^{-p} dx = egin{cases} rac{1}{1-p}; & ext{if } p > 1. \ \infty; & ext{if } 0$$

Thus $\sum \frac{1}{n^p}$ is convergent when p>1 and divergent when $p\leq 1$.

Ex: Test the convergence of this infinite series $\frac{1}{1\cdot 2\cdot 3}+\frac{3}{2\cdot 4\cdot 5}+\frac{5}{3\cdot 4\cdot 5}+\cdots$

This is positive term series. The necessary condition for convergence is $\lim_{n o \infty} U_n = 0$

$$\sum_{n=1}^{\infty} \frac{2n-1}{n(n+1)(n+2)} > \frac{2n-1}{n^3}$$

 $\Rightarrow \lim_{n \to \infty} U_n = 0$

$$U_n = rac{2n-1}{n(n+1)(n+2)} = rac{2-rac{1}{n}}{n^2(1+rac{1}{n})(1+rac{2}{n})}$$

according to limit form comparision test,

$$ext{if }\lim_{n o\infty}rac{U_n}{V_n}=L(
eq0)$$

they will converge together.

taking $\sum V_n = \sum \frac{1}{n^2}$,

$$\lim_{n o\infty}rac{U_n}{V_n}=\lim_{n o\infty}rac{2-rac{1}{n}}{n^2(1+rac{1}{n})(1+rac{2}{n})}=2(
eq0)$$

we know that $\sum V_n$ is convergent series $\Rightarrow \sum U_n$ is also convergent.

#semester-1 #mathematics #real-analysis