Lecture 2

Bounded above sequence / Upper bound

 $\{X(n)\}_{n=1}^{\infty}$ is said to be bounded above/ having upper bound if there exists some $M \in \mathbb{R}$ such that $x_n \leq M$. $n=1$

Ex: $\left\{\frac{1}{n}\right\}_{n=1}^{\infty} = \{1, \frac{1}{2}, \frac{1}{3}, \cdots\}$ ∞ $n=1$ $1, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{3}$ $\frac{1}{3}, \cdots$

 $x_n \leq M$, $M \in (1,\infty)$

 \Rightarrow This is bounded above sequence with upper bound $M \in (1, \infty)$.

Ex: ${n^2}_{n=1}^{\infty}$ = $\{1, 2^2, 3^2, \cdots$ is not bounded above} as $x_n \nleq M$ for $M \in \mathbb{R}$. $_{n=1}^\infty$ = $\{1,2^2,3^2,\cdots$ is not bounded above} as $x_n\nleq M$ for $M\in\mathbb{R}.$

Bounded below sequence / lower bound

If there exists $m\in\mathbb{R} \quad \forall \quad n\geq n_1$ such that $m < x_n$ then the sequence $\big\{X(n)\big\}_{n=1}^\infty$ is said to be bounded below sequence. $n=1$

Ex: $\{n\}_{n=1}^{\infty}$ is not bounded above sequence but we can choose such that $m < x_n$. $_{n=1}^{\infty}$ is not bounded above sequence but we can choose $m\in(-\infty,0)$

 \Rightarrow it is a bounded below sequence.

Bounded sequence

If a sequence has both upper bound as well as lower bound then the sequence is called as a bounded sequence. Mathematically, for a bounded sequence, there exists m such that $|x_n| < m \quad \forall \quad n.$

Least upper bound (lub)

 $lub = inf/min{M_i}$

where $M_i \rightarrow$ upper bound.

$$
\mathsf{Ex:} \left\{ \frac{1}{n} \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \cdots \right\}
$$
\n
$$
M_i \in [1, \infty)
$$
\n
$$
\Rightarrow lub \left\{ \frac{1}{n} \right\} = 1
$$

Upper bound is not unique but least upper bound is always unique.

Greatest lower bound (glb)

$$
\textit{glb} = \textit{sup}/\textit{max}\{m_i\}
$$

where $m_i \rightarrow$ lower bound.

Ex: $\left\{\frac{1}{n}\right\} = \left\{1, \frac{1}{2}\right\}$ $\frac{1}{2}, \frac{1}{3}$ $\frac{1}{3}, \cdots \}$

$$
m_i \in (-\infty, 0]
$$

$$
\Rightarrow glb\Big\{\frac{1}{n}\Big\} = 0
$$

Lower bound is not unique but greatest lower bound is always unique.

Theorem. Every convergent sequence is bounded sequence but converse need not be true.

Monotonically increasing sequence

A sequence is monotonically increasing if $x_n \leq x_{n+1} \quad \forall \quad n.$

Ex: $\left\{n\right\} = \{1, 2, 3, \cdots\}$ is monotonically increasing sequence as $x_n \leq x_{n+1}$ for all n.

Monotonically decreasing sequence

A sequence is monotonically decreasing sequence if

$$
x_n \geq x_{n+1} \quad \forall \quad n
$$

Ex: $\left\{\frac{1}{n}\right\} = \left\{1, \frac{1}{2}, \frac{1}{3}, \cdots\right\}$ is monotonically decreasing sequence. $\frac{1}{2}, \frac{1}{3}$ $\frac{1}{3}, \cdots \}$

Constant sequence is both monotonically increasing as well as monotonically decreasing sequence.

Strictly monotonically increasing sequence

A sequence is strictly monotonically increasing sequence if

 $x_n < x_{n+1}$ \forall n

Strictly monotonically decreasing sequence

A sequence is monotonically decreasing sequence if

 $x_n > x_{n+1}$ \forall n

Monotonic convergence theorem

1. Monotonically increasing sequence which is bounded above is convergent.

$$
\textsf{Ex:} \left\{ x_n=1-\tfrac{1}{n} \right\} = \left\{ 0,\tfrac{1}{2},\tfrac{2}{3},\cdots \right\}
$$

$$
\lim_{n\to\infty} 1-\frac{1}{n}=1
$$

This is convergent to $lub.$

2. Monotonically decreasing sequence which is bounded below is convergent.

$$
\textsf{Ex:} \left\{\tfrac{1}{n}\right\} = \left\{1, \tfrac{1}{2}, \tfrac{1}{3}, \cdots \right\}
$$

$$
\lim_{n\to\infty}\frac{1}{n}=0
$$

This is convergent to $glb.$

Subsequence

If $\left\{x_n\right\}_{n=1}^\infty$ is an infinite sequence then $\left\{b_i\right\}$ is a subsequence of $\left\{x_n\right\}$ if there exists an increasing sequence $\{n_i\}$ of ${\mathbb N}$ such that $\big\{b_i=x_{n_i}\big\}.$ $_{n=1}^{\infty}$ is an infinite sequence then $\left\{b_{i}\right\}$ is a subsequence of $\left\{x_{n}\right\}$

$$
\textsf{Ex:} \left\{ x_n = \tfrac{1}{n} \right\}_{n=1}^\infty \text{ and } \left\{ n_i \right\} = 1, 4, 5, 7, \cdots
$$

Then we obtain subsequence $\big\{b_i\big\} = \Big\{1, \frac{1}{4}, \frac{1}{5}, \cdots \Big\}.$ $\frac{1}{4}, \frac{1}{5}$ $\frac{1}{5}, \cdots \Big\}$.

> **Theorem.** Every subsequence of convergent sequence is convergent but converse need not be true.

 $\{x_n\} \longrightarrow$ convergent then $\{x_{n_k}\}$ is also convergent.

Squeeze principle / Sandwich theorem

For sequences $\{a_n\}, \{b_n\}, \{c_n\}$ if

$$
a_n \leq b_n \leq c_n
$$

\$\&\$

$$
\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L
$$

then $\lim_{n\to\infty}b_n$ also equals L.

Thus if a_n and c_n converges to a same value then b_n also converges to that same value.

Cauchy sequence

 $\{x_n\}_{n=1}^\infty$ is said to be a cauchy sequence if $\forall \epsilon > 0, \exists n_1 \in \mathbb{N}$ such that $|x_n-x_m|<\epsilon \quad \forall \quad n,m\geq n_1.$ $_{n=1}^\infty$ is said to be a cauchy sequence if $\quad \forall \quad \epsilon > 0, \quad \exists \quad n_1 \in \mathbb{N}$

Ex: $\left\{\frac{1}{n}\right\}$

we can choose $\epsilon = 0.1$ and $n_1 = 2$. So for $n \geq 3, m \geq 4$,

$$
x_n - x_m = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} < \epsilon
$$

 $\Rightarrow \left\{\frac{1}{n}\right\}$ is a cauchy sequence.

Theorem. Every convergent sequence is a cauchy sequence but converse need not be true.

#semester-1 #mathematics #real-analysis