
Lecture 2

Bounded above sequence / Upper bound

 is said to be bounded above/ having upper bound if there exists
some  such that .

Ex:  = {  }

=> This is bounded above sequence with upper bound .

Ex:  = {  is not bounded above} as  for .

Bounded below sequence / lower bound

If there exists  such that  then the sequence 
is said to be bounded below sequence.

Ex:  is not bounded above sequence but we can choose 
such that .

=> it is a bounded below sequence.

Bounded sequence

If a sequence has both upper bound as well as lower bound then the sequence
is called as a bounded sequence. Mathematically, for a bounded sequence,
there exists m such that .
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Ex: 

Upper bound is not unique but least upper bound is always unique.

Greatest lower bound ( )

where  lower bound.

Ex: 

Lower bound is not unique but greatest lower bound is always unique.

Theorem. Every convergent sequence is bounded sequence but
converse need not be true.

Monotonically increasing sequence

A sequence is monotonically increasing if .

Ex:  is monotonically increasing sequence as  for all

n.

Monotonically decreasing sequence

A sequence is monotonically decreasing sequence if

{ 1
n } = {1, 1

2 , 1
3 , ⋯}

Mi ∈ [1, ∞)

⇒ lub{
1

n
} = 1

glb

glb = sup/max{mi}

mi →

{ 1
n } = {1, 1

2 , 1
3 , ⋯}

mi ∈ (−∞, 0]

⇒ glb{
1

n
} = 0

xn ≤ xn+1 ∀ n

{n} = {1, 2, 3, ⋯} xn ≤ xn+1

xn ≥ xn+1 ∀ n



Ex:  is monotonically decreasing sequence.

Constant sequence is both monotonically increasing as well as
monotonically decreasing sequence.

Strictly monotonically increasing sequence

A sequence is strictly monotonically increasing sequence if

Strictly monotonically decreasing sequence

A sequence is monotonically decreasing sequence if

Monotonic convergence theorem

1. Monotonically increasing sequence which is bounded above is
convergent.

Ex: 


This is convergent to .

2. Monotonically decreasing sequence which is bounded below is
convergent.
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This is convergent to .


Subsequence
If  is an infinite sequence then  is a subsequence of  if there
exists an increasing sequence  of  such that .

Ex:  and 

Then we obtain subsequence .


Theorem. Every subsequence of convergent sequence is
convergent but converse need not be true.

 convergent then  is also convergent.

Squeeze principle / Sandwich theorem
For sequences  if

then  also equals L.

Thus if  and  converges to a same value then  also converges to that
same value.
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Cauchy sequence
 is said to be a cauchy sequence if  such that 

.

Ex: 


we can choose  and . So for ,

=>  is a cauchy sequence.

Theorem. Every convergent sequence is a cauchy sequence but
converse need not be true.
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