Lecture 2

Bounded above sequence / Upper bound

 $ig\{X(n)ig\}_{n=1}^\infty$ is said to be bounded above/ having upper bound if there exists some $M\in\mathbb{R}$ such that $x_n\leq M.$

Ex: $\left\{\frac{1}{n}\right\}_{n=1}^{\infty} = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$

 $x_n \leq M, \quad M \in (1,\infty)$

⇒ This is bounded above sequence with upper bound $M \in (1,\infty)$.

 $\mathsf{Ex}: \left\{n^2\right\}_{n=1}^\infty \mathsf{=} \{1,2^2,3^2,\cdots \mathsf{is} \mathsf{ not} \mathsf{ bounded above} \} \mathsf{ as } x_n \nleq M \mathsf{ for } M \in \mathbb{R}.$

Bounded below sequence / lower bound

If there exists $m \in \mathbb{R}$ \forall $n \ge n_1$ such that $m < x_n$ then the sequence $\{X(n)\}_{n=1}^{\infty}$ is said to be bounded below sequence.

Ex: $\{n\}_{n=1}^{\infty}$ is not bounded above sequence but we can choose $m \in (-\infty, 0)$ such that $m < x_n$.

 \Rightarrow it is a bounded below sequence.

Bounded sequence

If a sequence has both upper bound as well as lower bound then the sequence is called as a bounded sequence. Mathematically, for a bounded sequence, there exists m such that $|x_n| < m \quad \forall \quad n$.

Least upper bound (*lub*)

 $lub = inf/minig\{M_iig\}$

where $M_i
ightarrow$ upper bound.

$$\mathsf{Ex}:\left\{rac{1}{n}
ight\}=\left\{1,rac{1}{2},rac{1}{3},\cdots
ight\}$$
 $M_i\in[1,\infty)$
 $\Rightarrow lubig\{rac{1}{n}ig\}=1$

• Upper bound is not unique but least upper bound is always unique.

Greatest lower bound (glb)

$$glb = sup/max\{m_i\}$$

where $m_i
ightarrow$ lower bound.

 $\mathsf{Ex:}\left\{\frac{1}{n}\right\} = \left\{1, \frac{1}{2}, \frac{1}{3}, \cdots\right\}$

$$egin{aligned} m_i \in (-\infty, 0] \ \Rightarrow glbigg\{rac{1}{n}igg\} = 0 \end{aligned}$$

• Lower bound is not unique but greatest lower bound is always unique.

Theorem. Every convergent sequence is bounded sequence but converse need not be true.

Monotonically increasing sequence

A sequence is monotonically increasing if $x_n \leq x_{n+1} \quad \forall \quad n.$

Ex: $\left\{n\right\} = \left\{1, 2, 3, \cdots\right\}$ is monotonically increasing sequence as $x_n \leq x_{n+1}$ for all n.

Monotonically decreasing sequence

A sequence is monotonically decreasing sequence if

$$x_n \geq x_{n+1} \hspace{0.1in} orall \hspace{0.1in} n$$

Ex: $\left\{\frac{1}{n}\right\} = \left\{1, \frac{1}{2}, \frac{1}{3}, \cdots\right\}$ is monotonically decreasing sequence.

• Constant sequence is both monotonically increasing as well as monotonically decreasing sequence.

Strictly monotonically increasing sequence

A sequence is strictly monotonically increasing sequence if

 $x_n < x_{n+1} \hspace{0.1in} orall \hspace{0.1in} n$

Strictly monotonically decreasing sequence

A sequence is monotonically decreasing sequence if

 $x_n > x_{n+1} \hspace{0.1in} orall \hspace{0.1in} n$

Monotonic convergence theorem

1. Monotonically increasing sequence which is bounded above is convergent.

Ex:
$$\left\{ x_n = 1 - \frac{1}{n} \right\} = \left\{ 0, \frac{1}{2}, \frac{2}{3}, \cdots \right\}$$

$$\lim_{n o\infty} 1-rac{1}{n}=1$$

This is convergent to *lub*.

2. Monotonically decreasing sequence which is bounded below is convergent.

$$\mathsf{Ex:}\left\{\frac{1}{n}\right\} = \left\{1, \frac{1}{2}, \frac{1}{3}, \cdots\right\}$$

$$\lim_{n o\infty}rac{1}{n}=0$$

This is convergent to *glb*.

Subsequence

If $\{x_n\}_{n=1}^{\infty}$ is an infinite sequence then $\{b_i\}$ is a subsequence of $\{x_n\}$ if there exists an increasing sequence $\{n_i\}$ of \mathbb{N} such that $\{b_i = x_{n_i}\}$.

Ex:
$$\left\{x_n=rac{1}{n}
ight\}_{n=1}^\infty$$
 and $\left\{n_i
ight\}=1,4,5,7,\cdots$

Then we obtain subsequence $\{b_i\} = \Big\{1, \frac{1}{4}, \frac{1}{5}, \cdots \Big\}.$

Theorem. Every subsequence of convergent sequence is convergent but converse need not be true.

 $\{x_n\} \longrightarrow$ convergent then $\{x_{n_k}\}$ is also convergent.

Squeeze principle / Sandwich theorem

For sequences $\{a_n\}, \{b_n\}, \{c_n\}$ if

$$a_n \leq b_n \leq c_n \ \& \ \lim_{n o \infty} a_n = \lim_{n o \infty} c_n = L$$

then $\lim_{n \to \infty} b_n$ also equals L.

Thus if a_n and c_n converges to a same value then b_n also converges to that same value.

Cauchy sequence

 $ig\{x_nig\}_{n=1}^\infty$ is said to be a cauchy sequence if $orall \ \epsilon>0, \ \exists n_1\in\mathbb{N}$ such that $|x_n-x_m|<\epsilon \ orall \ n,m\geq n_1.$

Ex: $\left\{\frac{1}{n}\right\}$

we can choose $\epsilon=0.1$ and $n_1=2.$ So for $n\geq 3,m\geq 4$,

$$x_n-x_m=rac{1}{3}-rac{1}{4}=rac{1}{12}<\epsilon$$

 $\Rightarrow \left\{\frac{1}{n}\right\}$ is a cauchy sequence.

Theorem. Every convergent sequence is a cauchy sequence but converse need not be true.

#semester-1 #mathematics #real-analysis