
Lecture 7

Theorem. If A & B are similar matrices, they will have same eigenvalues. 
Proof. Since A & B are similar matrices, . 

Hence A & B have the same characteristic equation hence the same eigen values.

If A is similar to diagonal matrix D then, A is said to be diagonalizable. 

where P is called model matrix and  is called similarity transformation.

Ex: Verify if  is diagonalizable. 

Thus we get .

for . 
for .

 &  are linearly independent eigen vectors but will the third eigenvalue (which has
repeated roots) give linearly independent eigenvectors?

B = P −1AP

|B − λI|

= |P −1AP − λI|

= |P −1AP − λP −1IP |

= |P −1(A − λI)P |

= |P −1||A − λI||P |

⇒ |B − λI| = |A − λI|

P −1AP = D

P −1AP

A =
⎡⎢⎣ 1 2 2

0 2 1

−1 2 2

⎤⎥⎦ |A − λI| = 0

⇒ = 0∣1 − λ 2 2

0 2 − λ 1

−1 2 2 − λ∣= (λ − 1)(λ − 2)2 = 0

λ = 1, 2, 2

λ = 1,⟶ X1

λ = 2,⟶ X2

X1 X2



To find this we can use this property: If  is an eigenvalues of multiplicity m of a square
matrix A of order n, then the number of linearly independent eigenvectors associated with

 is given by

where, r = rank .

 

 

⇒ rank r = 2. 
⇒ p = 3  2  1. So we only have 1 linearly independent eigenvector for . 
� A is not diagonalizable.

Ex: . 

Solving this we get the characteristic equation  and thus
eigenvalues .

for . 
for .

λ

λ

p = n − r

(A − λI)

r = rank(A − 2 ⋅ I)

A − 2 ⋅ I =
⎛⎜⎝−1 2 2

0 0 1

−1 2 0

⎞⎟⎠R3 → R3 − R1

⎛⎜⎝−1 2 2

0 0 1

0 0 −2

⎞⎟⎠R3 → R3 + 2R2

⎛⎜⎝−1 2 2

0 0 1

0 0 0

⎞⎟⎠ λ = 2

A =
⎡⎢⎣−2 2 −3

2 1 −6

−1 −2 0

⎤⎥⎦ |A − λI| = 0

⇒ = 0∣−2 − λ 2 −3

2 1 − λ −6

−1 −2 −λ∣P3(λ) = λ3 + λ2 − 21λ − 45 = 0

λ = 5, −3, −3

λ = 5,⟶ X1

λ = −3,⟶ X2



 &  are linearly independent eigen vectors but we need to check if the repeated
eigenvalue  will give some other linearly independent eigenvector.

when , 

Solving using Gauss elimination, we get 

when , 

Observe that all the equations are scalar multiples of the equation . This
is like 1 equation with 3 unknowns.

Thus . Taking  gives 

and if we take , we get 

We get 3 independent eigen vectors . 

� We can construct  and the matrix A is diagonalizable.

We can now find  which will have  and diagonal elements equal to
the eigen values of A.

X1 X2

λ = −3

λ = 5

(A − 5 × I)X = X = 0
⎛⎜⎝−7 2 −3

2 −4 −6

−1 −2 −5

⎞⎟⎠X1 = = k
⎡⎢⎣ −k

−2k

k

⎤⎥⎦ ⎡⎢⎣−1

−2

1

⎤⎥⎦λ = −3

(A − 3 × I)X = X = 0
⎛⎜⎝ 1 2 −3

2 4 −6

−1 −2 3

⎞⎟⎠ x1 + 2x2 − 3x3 = 0

X2 =
⎡⎢⎣−2k2 + 3k3

k2

k3

⎤⎥⎦ k3 = 0, k2 = 1

X2 =
⎡⎢⎣−2

1

0

⎤⎥⎦k2 = 0, k3 = 1

X2 =
⎡⎢⎣3

0

1

⎤⎥⎦X1, X2, X3

P =
⎡⎢⎣ ↑ ↑ ↑

X1 X2 X3

↓ ↓ ↓

⎤⎥⎦P =
⎡⎢⎣−1 −2 3

−2 1 0

1 0 1

⎤⎥⎦D = P −1AP aij = 0∀i ≠ j



Even this process of diagonalizing a matrix is time consuming since finding  is
difficult. This is easier when A is real symmetric matrix.

proof. We know that for a real symmetrix matrix, all eigenvalues are real and if 
, then corresponding eigenvectors are orthogonal ( ).

For orthogonal matrix A,  ⇒ . So if we can make P to be an
orthogonal matrix, finding its inverse would become very easy.

Thus when A is a real symmetric matrix of order n and having n linearly independent eigen
vectors then it is always possible to construct an invertible matrix P that is orthogonal.

So if , is it orthogonal? 

It may not be. To make it orthogonal we can take its coloums as normalised eigenvectors
(dividing eigenvectors by its length) 

This vector P is always orthogonal in case of A to be a real symmetric matrix.
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P −1

λi ≠ λj XT
i Xj = 0

AT A = I A−1 = AT

P =
⎡⎢⎣ ↑ ↑ ↑

X1 X2 ⋯ X3

↓ ↓ ↓

⎤⎥⎦P =
⎡⎢⎣ ↑ ↑ ↑

X1

|X1|
X2

|X2| ⋯ Xn

|Xn|

↓ ↓ ↓

⎤⎥⎦


