Lecture 7

Theorem. If A & B are similar matrices, they will have same eigenvalues.
Proof. Since A & B are similar matrices, B= P 'AP.

|B — M|
= |P1AP — )]

— |P'AP - AP IP|
= |PY(A— A)P|
= [P7|A - XI|| P

= |B— | = |A — A

Hence A & B have the same characteristic equation hence the same eigen values.

« If Ais similar to diagonal matrix D then, A is said to be diagonalizable.
P lAP=D

where P is called model matrix and P~ AP is called similarity transformation.

1 2 2
Ex: Verifyif A= | 0 2 1] isdiagonalizable.
-1 2 2
|A— M| =0
1—-A 2 2

Thuswe get A =1,2,2.

forx=1,— X;.
for A =2, — X,.

X, & X, are linearly independent eigen vectors but will the third eigenvalue (which has
repeated roots) give linearly independent eigenvectors?



To find this we can use this property: If X is an eigenvalues of multiplicity m of a square
matrix A of order n, then the number of linearly independent eigenvectors associated with
A is given by

p=n-—-r
where, r = rank(A — \I).

r =rank(A —2-1)

-1 2 2
A—lIZKO 0 1

-1 2 0
R3—>R3—R1
-1 2 2
(0 0 1\l
\0 O-J)
R3s — R3 + 2Ry
(—1 2 2\
0 0 1
\o 0 0}
= rankr = 2.

= p =3 -2 =1 So we only have 1 linearly independent eigenvector for A = 2.
= Ais not diagonalizable.

-2 -3
Ex: A= | 2 1 -6
-1 -2 0
|A— M| =0
—2—-A 2 -3
= 2 1-X —6/=0
-1 —2 -

Solving this we get the characteristic equation P3(\) = A3 + A2 — 21\ — 45 = 0 and thus
eigenvalues A =5, -3, —3.

for A =5, — X;.
forA=-3,— X,.



X1 & X, are linearly independent eigen vectors but we need to check if the repeated
eigenvalue \ = —3 will give some other linearly independent eigenvector.

when A =5,
(—7 2 —3\
(A-5xDX=12 -4 —6lx=0
\—1 —2 —5}
—k -1
Solving using Gauss elimination, we get X; = | —2k| =k [ -2
k 1
when A = -3,
1 2 -3
(A-3xDX=[2 4 —-6|X=0
-1 -2 3

Observe that all the equations are scalar multiples of the equation z; + 2z, — 3z3 = 0. This
is like 1 equation with 3 unknowns.

[—2]472 + 3k3—|
Thus X, = ko . Taking k3 = 0, k2 = 1 gives
|_ k3 J
—2
Xo=11
0
and if we take k; = 0,k3 = 1, we get
3
X2 — 0
1
We get 3 independent eigen vectors X, X», Xs.
(N
= We can construct P= | X; X, Xs| andthe matrix A is diagonalizable.
oL
-1 -2 3
P=1-2 1 0
1 0 1

We can now find D = P~'AP which will have a,; = 0Vi # j and diagonal elements equal to
the eigen values of A.




» Even this process of diagonalizing a matrix is time consuming since finding P! is
difficult. This is easier when A is real symmetric matrix.

proof. We know that for a real symmetrix matrix, all eigenvalues are real and if
Ai # Aj, then corresponding eigenvectors are orthogonal (XiTXj =0).

For orthogonal matrix A, ATA=1= A~ = AT. So if we can make P to be an
orthogonal matrix, finding its inverse would become very easy.

Thus when A is a real symmetric matrix of order n and having n linearly independent eigen
vectors then it is always possible to construct an invertible matrix P that is orthogonal.

T 1 T
SoifP= (X, X, --- Xg|,isitorthogonal?
ol l

It may not be. To make it orthogonal we can take its coloums as normalised eigenvectors
(dividing eigenvectors by its length)

1 4
X, X, X,
P=\x1 X X
o !

This vector P is always orthogonal in case of A to be a real symmetric matrix.
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