Lecture 7

Theorem. If A & B are similar matrices, they will have same eigenvalues. **Proof.** Since A & B are similar matrices, $B = P^{-1}AP$.

$$
|B - \lambda I|
$$

= $|P^{-1}AP - \lambda I|$
= $|P^{-1}AP - \lambda P^{-1}IP|$
= $|P^{-1}(A - \lambda I)P|$
= $|P^{-1}||A - \lambda I||P|$
 $\Rightarrow |B - \lambda I| = |A - \lambda I|$

Hence A & B have the same characteristic equation hence the same eigen values.

If A is similar to diagonal matrix D then, A is said to be *diagonalizable*.

 $P^{-1}AP=D$

where P is called *model matrix* and $P^{-1}AP$ is called *similarity transformation*.

Ex: Verify if $A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ is diagonalizable. │
│
 1 .
 1 . 1 2 2 $0 \t 2 \t 1$ -1 2 2 \mathbf{L} ∫
nd
y $|A - \lambda I| = 0$ ⇒ $\begin{vmatrix} 0 & 2-\lambda & 1 \\ -1 & 2 & 2-\lambda \end{vmatrix} = 0$
= $(\lambda - 1)(\lambda - 2)^2 = 0$
igen vectors but will the
endent eigenvectors? $1 - \lambda$ 2 2 $0 \qquad 2 - \lambda \qquad 1$ $=(\lambda-1)(\lambda-2)^2=0$ -1 2 $2-\lambda$

Thus we get $\lambda = 1, 2, 2$.

for $\lambda = 1, \longrightarrow X_1$. for $\lambda = 2, \longrightarrow X_2$.

 X_1 & X_2 are linearly independent eigen vectors but will the third eigenvalue (which has repeated roots) give linearly independent eigenvectors? 0
∣1
s?

To find this we can use this property: If λ is an eigenvalues of multiplicity m of a square matrix A of order n, then the number of linearly independent eigenvectors associated with λ is given by

$$
p=n-r
$$

where, $r = rank(A - \lambda I)$.

$$
r = \text{rank}(A - 2 \cdot I)
$$

$$
A - 2 \cdot I = \begin{pmatrix} -1 & 2 & 2 \\ 0 & 0 & 1 \\ -1 & 2 & 0 \end{pmatrix}
$$

 $R_3 \rightarrow R_3 - R_1$

$$
\begin{pmatrix} -1 & 2 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & -2 \end{pmatrix}
$$

 $R_3 \rightarrow R_3 + 2 R_2$

 \Rightarrow rank r = 2.

 \Rightarrow p = 3 - 2 = 1. So we only have 1 linearly independent eigenvector for $\lambda = 2$.

 \Rightarrow A is not diagonalizable.

$$
R_3 \rightarrow R_3 - R_1
$$
\n
$$
\begin{pmatrix}\n-1 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & -2\n\end{pmatrix}
$$
\n
$$
R_3 \rightarrow R_3 + 2R_2
$$
\n
$$
\begin{pmatrix}\n-1 & 2 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\Rightarrow
$$
 rank r = 2.\n
$$
\Rightarrow
$$
 p = 3 - 2 = 1. So we only have 1 linearly independent eigenvalues.\n
$$
R_3 \rightarrow R_3 + 2R_2
$$
\n
$$
\Rightarrow
$$
 p = 3 - 2 = 1. So we only have 1 linearly independent eigenvalues.\n
$$
R_3 \rightarrow R_3 + 2R_2
$$
\n
$$
\Rightarrow
$$
\n
$$
R_3 \rightarrow R_3 + 2R_2
$$
\n
$$
\Rightarrow
$$
\n
$$
\begin{pmatrix}\n-1 & 2 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\Rightarrow
$$
\n
$$
R_3 \rightarrow R_3 + 2R_2
$$
\n
$$
\Rightarrow
$$
\n
$$
R_3 \rightarrow R_3 + 2R_2
$$
\n
$$
\Rightarrow
$$
\n
$$
\begin{pmatrix}\n-1 & 2 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\Rightarrow
$$
\n
$$
R_3 \rightarrow R_3 + 2R_2
$$
\n
$$
\begin{pmatrix}\n-1 & 2 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\Rightarrow
$$
\n
$$
R_3 \rightarrow R_3 + 2R_2
$$
\n
$$
\begin{pmatrix}\n-1 & 2 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\Rightarrow
$$
\n
$$
R_3 \rightarrow R_3 + 2R_2
$$
\n
$$
\begin{pmatrix}\n-1 & 2 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\Rightarrow
$$
\n
$$
R_3 \rightarrow R_3 + 2R_2
$$

Solving this we get the characteristic equation $P_3(\lambda) = \lambda^3 + \lambda^2 - 21\lambda - 45 = 0$ and thus eigenvalues $\lambda = 5, -3, -3.$ $= \lambda^2$

for $\lambda = 5, \longrightarrow X_1$. for $\lambda = -3, \longrightarrow X_2$. X_1 & X_2 are linearly independent eigen vectors but we need to check if the repeated eigenvalue $\lambda = -3$ will give some other linearly independent eigenvector.

when $\lambda = 5$,

$$
(A - 5 \times I)X = \begin{pmatrix} -7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5 \end{pmatrix} X = 0
$$

\nSolving using Gauss elimination, we get $X_1 = \begin{bmatrix} -k \\ -2k \\ k \end{bmatrix} = k \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}$
\nwhen $\lambda = -3$,
\n
$$
(A - 3 \times I)X = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{pmatrix} X = 0
$$

\nObserve that all the equations are scalar multiples of the equation
\nis like 1 equation with 3 unknowns.
\nThus $X_2 = \begin{bmatrix} -2k_2 + 3k_3 \\ k_2 \\ k_3 \end{bmatrix}$. Taking $k_3 = 0, k_2 = 1$ gives
\n
$$
X_2 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}
$$

\nand if we take $k_2 = 0, k_3 = 1$, we get
\n
$$
X_2 = \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix}
$$

\nWe get 3 independent eigen vectors X_1, X_2, X_3 .

when $\lambda = -3$,

$$
\begin{bmatrix}\nk & \end{bmatrix}\n\begin{bmatrix}\nk & \end{bmatrix}\n\begin{bmatrix}\n1 & \end{bmatrix}
$$
\n
$$
(A - 3 \times I)X = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{pmatrix} X = 0
$$
\n
$$
\text{ons are scalar multiples of the equation}
$$
\n
$$
\text{knowns.}
$$
\n
$$
\begin{aligned}\n\text{Taking } k_3 = 0, k_2 = 1 \text{ gives} \\
X_2 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \\
1, \text{ we get} \\
X_3 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}\n\end{aligned}
$$
\n
$$
\text{In vectors } X_1, X_2, X_3.
$$
\n
$$
\begin{aligned}\nX_1 & \uparrow \uparrow \uparrow \uparrow \downarrow \\
X_2 & \downarrow \downarrow \end{aligned}
$$
\n
$$
\begin{aligned}\n\text{and the matrix A is } \text{diag}.\n\end{aligned}
$$

Observe that all the equations are scalar multiples of the equation $x_1 + 2x_2 - 3x_3 = 0$. This is like 1 equation with 3 unknowns.

$$
\begin{pmatrix}\n-1 & -2 \\
-1 & -2\n\end{pmatrix}
$$

\nSolving using Gauss elimination, we get $X_1 = \begin{bmatrix} -k \\ -2k \\ k \end{bmatrix}$
\nwhen $\lambda = -3$,
\n
$$
(A - 3 \times I)X = \begin{pmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \end{pmatrix}
$$

\nObserve that all the equations are scalar multiples of
\nis like 1 equation with 3 unknowns.
\nThus $X_2 = \begin{bmatrix} -2k_2 + 3k_3 \\ k_2 \\ k_3 \end{bmatrix}$. Taking $k_3 = 0, k_2 = 1$ gives
\n
$$
X_2 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}
$$

\nand if we take $k_2 = 0, k_3 = 1$, we get
\n
$$
X_2 = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}
$$

\nWe get 3 independent eigen vectors X_1, X_2, X_3 .
\n
$$
\Rightarrow
$$
 We can construct $P = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ X_1 & X_2 & X_3 \\ \downarrow & \downarrow & \downarrow \end{bmatrix}$ and the matrix
\n
$$
P = \begin{bmatrix} -1 & -2 & 3 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}
$$

\nWe eign values of A.
\n
$$
M = P^{-1}AP
$$
 which will have $a_{ij} = 0\forall i$

and if we take $k_2 = 0, k_3 = 1$, we get

$$
X_2 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}
$$

$$
X_2, X_3.
$$

and the n

$$
\begin{bmatrix} -1 & -2 \\ -2 & 1 \\ 1 & 0 \end{bmatrix}
$$

have $a_{ij} =$

We get 3 independent eigen vectors X_1, X_2, X_3 .

 \Rightarrow We can construct $P = \begin{bmatrix} 1 & 1 & 1 \ X_1 & X_2 & X_3 \end{bmatrix}$ and the matrix A is diagonalizable. 丿
a
ġ a ↑ ↑ ↑ X_1 X_2 X_3 ↓ ↓ ↓ \mathbf{L}

$$
X_2 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}
$$

\n
$$
\begin{aligned}\nX_1, X_2, X_3. \\
X_3 \\
Y_4\n\end{aligned}
$$
 and the matrix:
\n
$$
P = \begin{bmatrix} -1 & -2 & 3 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}
$$

\nwill have $a_{ij} = 0 \forall i \neq j$

We can now find $D = P^{-1}AP$ which will have $a_{ij} = 0 \forall i \neq j$ and diagonal elements equal to the eigen values of A. $\frac{1}{4}$ |
aיaי $i \frac{1}{7}$

Even this process of diagonalizing a matrix is time consuming since finding P^{-1} is difficult. This is easier when A is real symmetric matrix.

proof. We know that for a real symmetrix matrix, all eigenvalues are real and if $\lambda_i \neq \lambda_j$, then corresponding eigenvectors are orthogonal $(X_i^T X_j = 0).$

For orthogonal matrix A, $A^T A = I \Rightarrow A^{-1} = A^T$. So if we can make P to be an orthogonal matrix, finding its inverse would become very easy.

Thus when A is a real symmetric matrix of order n and having n linearly independent eigen vectors then it is always possible to construct an invertible matrix P that is orthogonal.

So if
$$
P = \begin{bmatrix} \uparrow & \uparrow & & \uparrow \\ X_1 & X_2 & \cdots & X_3 \\ \downarrow & \downarrow & & \downarrow \end{bmatrix}
$$
, is it orthogonal?

It may not be. To make it orthogonal we can take its coloums as *normalised eigenvectors* (dividing eigenvectors by its length) ך נקבול
קול
ר∍יני−

⎥⎦ P = ⎡ ⎢⎣ ↑ ↑ ↑ X1 |X¹ |X2 |X² | ⋯ ^Xⁿ |Xn| ↓ ↓ ↓ ⎤

This vector P is always orthogonal in case of A to be a real symmetric matrix. ⎥⎦

#semester-1 #mathematics #matrices