Properties of Eigenvalues & Eigenvectors cont...

- 8. The eigenvectors corresponding to distinct eigen value are linearly independent.
- 9. All eigenvalues of a real symmetric matrix are real.
- 10. The eigen vectors corresponding to distinct eigen values of a real symmetric matrix are orthogonal.

Vectors X_1, X_2 are said to be orthogonal in n - dimensional vector space if $X_1^T X_2 = 0$ (works like dot product)

Proofs:

property 8.

Assume that $\{X_1, X_2\}$ be linearly dependent vectors with eogenvalues λ_1, λ_2 respectively and $\lambda_1 \neq \lambda_2$ **Lecture 4.**
 Properties of Eigenvalues & Eigenvectors cont...

8. The eigenvectors corresponding to distinct eigen value are linearly independent.

9. All eigenvalues of a real symmetric matrix are real.

10. The eigen **Lecture 4**
 Properties of Eigenvalues & Eigenvectors cont...

8. The eigenvectors corresponding to distinct edgen value are finedly independent.

10. The eigenvectors corresponding to distinct edgen value are finedly i

Therefore, $c_1X_1 + c_2X_2 = 0 \Rightarrow X_2 = \frac{-c_1}{c_2}X_1 = kX_1$ ofr some scalar k.

$$
AX_2 = \lambda_2 X_2
$$

\n
$$
A(cX_1) = \lambda_2 X_2
$$

\n
$$
cAX_1 = \lambda_2 X_2
$$

\n
$$
c\lambda_1 X_1 = \lambda_2 X_2
$$

\n
$$
\Rightarrow \lambda_1 X_2 = \lambda_2 X_2
$$

But $X_2 \neq 0 \Rightarrow \lambda_1 = \lambda_2$. This contradicts our assumption. Thus eigen vectors $\{X_1, X_2\}$ are linearly independent.

property 9.

If A is a symmetric real matrix ($\Rightarrow A = A^T$ & $A = \overline{A}$)

$$
AX=\lambda X
$$

pre-multiplying with $\bar{X^T}$ both the sides.

$$
\overline{X^T}AX = \overline{X^T}\lambda X \qquad \cdots \qquad (1)
$$

taking conjugate on both sides,

taking conjugate on both sides,
\n
$$
\frac{\overline{\overline{X}^T A X}}{\overline{X}^T A X} = \overline{\lambda \overline{X}^T X}
$$
\n
$$
\frac{\overline{\overline{X}^T A X}}{\overline{X}^T A X} = \overline{\lambda \overline{X}^T X}
$$
\ntake transpose both sides,
\n
$$
\overline{X^T A^T X} = \overline{\lambda \overline{X}^T X}
$$
\nBut since $A = A^T$,
\n
$$
\overline{X^T A X} = \overline{\lambda \overline{X}^T X} \qquad \cdots \qquad (2)
$$
\nEquating (1) & (2),
\n
$$
\overline{X^T \lambda X} = \overline{\lambda \overline{X}^T X}
$$

take transpose both sides,

$$
\overline{X^T}A^TX=\overline{\lambda}\overline{X^T}X
$$

But since $A = A^T$,

$$
\overline{X^T}AX = \overline{\lambda}\overline{X^T}X \qquad \cdots \qquad (2)
$$

Equating (1) & (2),

$$
\overline{X^T} \lambda X = \overline{\lambda} \overline{X^T} X
$$

$$
\Rightarrow (\lambda - \overline{\lambda})(\overline{X}X) = 0
$$

if we take $X = \begin{bmatrix} z_1 \ z \end{bmatrix}$ then $\overline{X^T} = [\overline{z_1} \quad \overline{z_2}].$ \overline{z}_2 $\overline{X^T} = [\overline{z_1} \quad \overline{z_2}]$.

$$
\Rightarrow \overline{X^T}X = \overline{z_1}z_1 + \overline{z_2}z_2 = |z_1|^2 + |z_2|^2 \neq 0
$$

\n
$$
\Rightarrow \lambda = \overline{\lambda}
$$
 we represents that all eigen values of real symmetric matrix are real.

property 10.

$$
AX_1=\lambda_1X_1
$$

pre-multiplying with X_2^T ,

$$
X_2^T A X_1 = X_2^T \lambda_1 X_1
$$

take transpose,

$$
(X_2^T A X_1)^T = (\lambda_1 X_2^T X_1)^T
$$

$$
X_1^T A^T X_2 = \lambda_1 X_1^T X_2
$$

Using the fact that A is symmetric $(A = A^T)$,

$$
\Rightarrow X_1^T A X_2 = \lambda_1 X_1^T X_2 \qquad \cdots \qquad (1)
$$

Similarly using $AX_2 = \lambda_2 X_2$ we get,

$$
X_1^T A X_2 = \lambda_2 X_1^T X_2 \qquad \cdots \qquad (2)
$$

Equating (1) & (2)

$$
(\lambda_1-\lambda_2)X_1^TX_2=0
$$

But since $\lambda_1 \neq \lambda_2$, $X_1^T X_2 = 0$.

 \Rightarrow X_1 is *orthogonal* to X_2 .

Q. If $A = I_{3 \times 3}$

$$
|A - \lambda I| = 0
$$

$$
\Rightarrow (1 - \lambda)^3 = 0 \Rightarrow \lambda = 1, 1, 1
$$

How many linearly independent eigenvectors do we get?

Ex: $A = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$. $\|$ $1 \quad 1 \quad 0$ 0 1 1 $0 \quad 0 \quad 1$ \mathbf{L} $|A - \lambda I| = 0$ $\Rightarrow \lambda = 1, 1, 1$

When $\lambda = 1$,

$$
(A - 1 \cdot I)X = 0
$$

\n
$$
\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0
$$

\n= 0 & $x_3 = 0 \Rightarrow X = \begin{pmatrix} k \\ 0 \\ 0 \end{pmatrix}$.
\nfind other non-zero eigen vectors which are l
\n
$$
\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}.
$$

\n
$$
|A - \lambda I| = 0
$$

\n
$$
\Rightarrow \lambda = 1, 1, 1
$$

\n
$$
(A - 1 \cdot I)X = 0
$$

We get $x_2 = 0$ & $x_3 = 0 \Rightarrow X = \begin{bmatrix} 0 \end{bmatrix}$. $\overline{0}$

We cannot find other non-zero eigen vectors which are linearly independent with \sqrt{k}

$$
\begin{aligned}\n\begin{bmatrix}\n0 & 0 & 1\n\end{bmatrix} & |A - \lambda I| &= 0 \\
\Rightarrow \lambda &= 1, 1, 1\n\end{aligned}
$$
\nWhen $\lambda = 1$,

\n
$$
(A - 1 \cdot I)X =
$$
\n
$$
\begin{pmatrix}\n0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0\n\end{pmatrix}\n\begin{pmatrix}\nx_1 \\
x_2 \\
x_3\n\end{pmatrix}
$$
\nWe get $x_2 = 0$ & $x_3 = 0 \Rightarrow X = \begin{pmatrix} k \\ 0 \\ 0 \end{pmatrix}$.

\nWe cannot find other non-zero eigen vectors which

\n
$$
X = \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix}.
$$
\nEx: $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$

\n
$$
|A - \lambda I| = 0
$$
\n
$$
\Rightarrow \lambda = 1, 1, 1
$$
\nWhen $\lambda = 1$,

\n
$$
(A - 1 \cdot I)X =
$$

When $\lambda = 1$,

$$
(A-1\cdot I)X=0
$$

$$
\begin{pmatrix}0&1&0\\0&0&0\\0&0&0\end{pmatrix}\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}=0
$$

We get $x_1 = k_1$, $x_2 = 0$ & $x_3 = k_3$ $\Rightarrow X_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ when $k_1 = 1$ & $k_3 = 0$ and $X_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ when $k_1 = 0$ & ∖(annen mundernet)
annen mundernet / (((rs ty = n) | ($\binom{0}{0}$ o $\binom{1}{1}$ fo m ass $-$ /

wh

a ciε

α ciε $\begin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}$ when $k_1 = 1$ & $k_3 = 0$ and $X_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}$ when $k_1 = 0$ & $k_3 = 1$

Thus we get two linearly independent vectors for $\lambda = 1$.

Property: If λ is an eigenvalues of multiplicity m of a square matrix A of order n, then the number of linearly independent eigenvectors associated with λ is given by χ : $\frac{1}{2}$
 χ : $\frac{1}{2}$
 χ : $\frac{1}{2}$ /
et t
line
rar ──1∃ \setminus l is f
y n
a a n)
0 i 0
∴sc − r

 $p = n - r$

where, $r = rank(A - \lambda I)$.

#semester-1 #mathematics #matrices