
Lecture 3

If X is an eigen vector corresponding to , , How will cX transform? 

� If X is eigenvector corresponding to  then cX will also be an eigenvector
corresponding to the same .

Thus eigen vector corresponding to an eigen value is not unique.

If let say  is an eigen vector corresponding to  and  is another eigen vector
corresponding to ,  ⇒  cannnot be eigen vector corresponding to .

Proof: Suppose  is an eigen vector corresponding to . 

also,

⇒ . But since , we get  which is not true. Thus our
assumption is wrong.  cannnot be eigen vector corresponding to .

Ex: ,   where . 

To get eigen values, 

⇒  

Solving the determinant we get  
When ,
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We get the equations  & . Thus we get infinite eigen vectors

of the form .

When ,

We get the equations  &  & . Thus we get infinite eigen

vectors of the form .

When ,

We get the equations  &  & . Thus we get infinite eigen

vectors of the form .

Properties of Eigenvalues & Eigenvectors

 If  is an eigen value of A, then  is an eigen value of .
 If  is an eigen value of A, then  is an eigen value of .
 If  are eigen values of A then  will be eigen values of .
 If  is an eigen value of A, them  will be an eigen value of .
  and  have the same eigen value.
 Product of fthe eigen values is equal to |A|.
 Sum of eigen values is equal to Trace(A.

Proofs:
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property 1.

⇒  is eigenvalue for  provided that  exists.

corollary: If any one of eigen value of A is zero, then  does not exist.

property 3.

If  are eigen values of A. 
⇒    1, 2, ... , n}. 

Therefore  will be eigenvalues for . Hence in general  are eigen values for .

property 5.

 ⇒ 

 will heve the same determinant hence same characteristic equation hence,
same eigenvalue .

property 6. & 7.

. 

suppose  are roots of a second degree polynomial, 
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Comparing the equations, we get sum of eigenvalues = Trace(A & product of eigenvalues
 |A|. 

Linearly dependent & independent sets

If for a set { }, ,   i. 
⇒ the set is linearly independent.

If for a set { }, , but for some i, . 
⇒  will be linearly dependent on other vectors & the set is linearly dependent.

Ex: Identify  → 1, 0, 0, 0, 1, 0, 0, 0, 1 as linearly dependent or independent set.

This implies  is a linearly independent set.
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v1, v2, ⋯ , vn α1v1 + α2v2 + ⋯ + αnvn = 0 αi = 0 ∀

v1, v2, ⋯ , vn α1v1 + α2v2 + ⋯ + αnvn = 0 αi ≠ 0
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α1(1, 0, 0) + α2(0, 1, 0) + α3(0, 0, 1) = (0, 0, 0)

⇒ (α1,α2,α3) = (0, 0, 0)

⇒ αi = 0∀i
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