Lecture 11

Ex: $Q = -x^2 + y^2 + 4yz + 4zx$. Reduce it to canonical form and find the values of x for which Q = 0.

$$\begin{split} Q &= X^T A X = \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \\ & |A - \lambda I| = \begin{vmatrix} -1 - \lambda & 0 & 2 \\ 0 & 1 - \lambda & 2 \\ 2 & 2 & -\lambda \end{vmatrix} = 0 \\ & (-1 - \lambda)[(-\lambda)(1 - \lambda) - 4] + 2[(-2)(1 - \lambda)] \\ & \Rightarrow \lambda^3 - 9\lambda = 0 \\ & \Rightarrow \lambda = 0, 3, -3 \end{split}$$

For $\lambda = 0$,

$$(A-0\cdot I)X=0 \ \begin{pmatrix} -1 & 0 & 2 \ 0 & 1 & 2 \ 2 & 2 & 0 \end{pmatrix} X=0$$

 $egin{array}{ccc} R_3 \longrightarrow R_3 + 2R_1 \ R_3 \longrightarrow R_3 - 2R_2 \end{array}$

$$egin{pmatrix} -1 & 0 & 2 \ 0 & 1 & 2 \ 0 & 0 & 0 \end{pmatrix} egin{pmatrix} x \ y \ z \end{pmatrix} = 0$$

if x = k, then -x + 2z = 0 & y + 2z = 0

$$\Rightarrow X_1 = egin{bmatrix} k & -k & k/2 \end{bmatrix}^T$$

take k = 2,

$$X_1 = \begin{bmatrix} 2 & -2 & 1 \end{bmatrix}^T$$

For $\lambda = 3$,

 $(A - 3 \cdot I)X = 0$

$$egin{pmatrix} -4 & 0 & 2 \ 0 & -2 & 2 \ 2 & 2 & -3 \end{pmatrix} X = 0$$

 $egin{array}{ccc} R_3 \longrightarrow 2R_3 + R_1 \ R_3 \longrightarrow R_3 + 2R_2 \end{array}$

$$\begin{pmatrix} -4 & 0 & 2 \ 0 & -2 & 2 \ 0 & 0 & 0 \end{pmatrix} egin{pmatrix} x \ y \ z \end{pmatrix} = 0$$

if x = k, then -4x + 2z = 0 & -2y + 2z = 0

$$\Rightarrow X_2 = egin{bmatrix} k & 2k & 2k \end{bmatrix}^T$$

take k = 1,

$$X_2 = [egin{matrix} 1 & 2 & 2 \end{bmatrix}^T$$

For $\lambda = -3$,

$$(A+3\cdot I)X=0 \ egin{pmatrix} 2 & 0 & 2 \ 0 & 4 & 2 \ 2 & 2 & 3 \end{pmatrix} X=0$$

 $egin{array}{cccc} R_3 \longrightarrow R_3 - R_1 \ R_3 \longrightarrow 2R_3 - R_2 \end{array}$

$$\begin{pmatrix} 2 & 0 & 2 \\ 0 & 4 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

if x=k, then 2x+2z=0 & 2y+z=0

$$\Rightarrow X_1 = egin{bmatrix} k & k/2 & -k \end{bmatrix}^T$$

take k = 2,

$$X_1 = \begin{bmatrix} 2 & 1 & -2 \end{bmatrix}^T$$

Thus,

$$\Rightarrow \frac{X_1}{||X_1||} = \frac{1}{3} \begin{bmatrix} 2\\-2\\1 \end{bmatrix}, \frac{X_2}{||X_2||} = \frac{1}{3} \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \frac{X_3}{||X_3||} = \frac{1}{3} \begin{bmatrix} 2\\1\\-2 \end{bmatrix}$$

$$P = egin{bmatrix} \uparrow & \uparrow & \uparrow \ rac{X_1}{X_1 \| X_2 \|} & rac{X_2}{\| X_2 \|} & rac{X_3}{\| X_3 \|} \ \downarrow & \downarrow & \downarrow \end{bmatrix}$$
 $Q = X^T A X = Y^T (P^T A P) Y = Y^{-1} egin{bmatrix} 0 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & -3 \end{bmatrix} Y$

Thus the canonical form $Q = 3y_2^2 - 3y_3^2$. \Rightarrow Indefinite quadratic form.

Now lets calculate the value of X for which Q = 0.

$$egin{aligned} Q &= 3y_2^2 - 3y_3^2 = 0 \ &\Rightarrow y_2 = +_- y_3 \ Y &= egin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix}^T = egin{bmatrix} k_1 & k_2 & +k_2 \end{bmatrix}^T, k_1, k_2 \in \mathbb{R} \ X &= PY = egin{bmatrix} rac{2}{3} & rac{1}{3} & rac{2}{3} \ rac{1}{3} & rac{2}{3} & rac{1}{3} \ rac{1}{3} & rac{2}{3} & rac{-2}{3} \ \end{pmatrix} egin{bmatrix} k_1 \ k_2 \ k_3 \end{bmatrix} \end{aligned}$$

Index

The number of positive square terms in the canonical form is called the index of Q, denotes by (s).

Signature

The difference of number of positive and negative square tems is called the signature of the quadratic form denoted by *sig*.

$$sigQ = s - (r - s) = 2s - r$$

where,

 $r \longrightarrow rank$ of matrix A.

 $s \longrightarrow$ number of positive square terms.

(r - s) \longrightarrow number of negative terms in canonical form.

The quadratic for is said to be

- 1. Positive definite if r = n, s = n
- 2. Negative definite if r = n, s = 0
- 3. Positive semi definite if r < n, s = r

- 4. Negative semi definite if r < n, s = 0
- 5. Indefinite in every other case.

#semester-1 #mathematics #matrices