Vector spaces & Matrix transformation.

Matrix operations can be viewed as transformation of vector spaces of one dimension to some other.

For example if we have Y = AX, where

$A_{m,n} =$	$a_{1,1}$	$a_{1,2}$	•••	$a_{1,n}$
	$a_{2,1}$	$a_{2,2}$	•••	$a_{2,n}$
	:	•	۰.	:
	$a_{m,1}$	$a_{m,2}$	•••	$a_{m,n}$

we can say that $A_{m,n}$ is transformation from $\mathbb{R}^{n} o \mathbb{R}^{m}$ If,

<u> </u>	[1	[0
A =	0	1

the mapping will be called identity mapping. The shape in Y-plane will be same as on the X-plane.

If for k > 1,

A =	$\lceil k \rceil$	0]
	0	k ight]

the mapping will be called stretching map. The shape in Y-plane will be twice in each dimension as on the X-plane. (If the shape is a line it will be twice as long and if the shape is a square, it would have 4 times the original area)

Similarly, for k < 1 it will be compression mapping and for k < 0, the direction of vector become opposite.

lf,

$$A = egin{bmatrix} cos heta & -sin heta\ sin heta & cos heta \end{bmatrix}$$

 $A: \mathbb{R}^2 \to \mathbb{R}^2$ the vector would rotate θ degrees in anticlockwise direction.

$$y_1=rcos(heta+\psi)=r(cos heta cos\psi-sin heta sin\psi)$$

 $y_2 = rsin(heta+\psi) = r(sin heta cos \psi + sin\psi cos heta)$

So, substituting value of x_1 and x_2 we get

$$egin{aligned} y_1 &= x_1 cos heta - x_2 sin heta \ y_2 &= x_1 sin heta + x_2 cos heta \end{aligned}$$

Thus in matrix format we can write them as:

 $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ For reflection mapping (about x-axis), $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. For reflection mapping (about y-axis), $A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.

Eigen Values & Eigen Vectors

Eigenvectors are vectors for which Y = AX is parallel to X. In other words: $AX = \lambda X$.

In this equation, X is an eigenvector of A and λ is an eigenvalue of A.

<u>#semester-1</u> #mathematics #matrices